Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 135
Filter
1.
Biotechnol J ; 19(5): e2400178, 2024 May.
Article in English | MEDLINE | ID: mdl-38719574

ABSTRACT

Sucrose isomerase (SIase) catalyzes the hydrolysis and isomerization of sucrose into isomaltulose, a functional sugar extensively used in the food industry. However, the lack of safe and efficient heterologous expression systems for SIase has constrained its production and application. In this study, an engineered Bacillus subtilis strain for antibiotic-free SIase production was developed via a food-grade expression system. First, the B. subtilis strain TEA was modified through the CRISPR/Cas9 system, resulting in a mutant strain TEA4, which exhibited enhanced capabilities for recombinant protein expression. For efficient and safe production of SIase, different constitutive and inducible promoters were evaluated. The maltose-inducible promoter Poglv was found to have an extracellular SIase activity of 21.7 U mL-1 in engineered strain TEA4. Subsequent optimization of the culture medium further increased SIase activity to 26.4 U mL-1 during shake flask cultivation. Eventually, using the crude enzyme solution of the engineered strain in biotransformation reactions resulted in a high yield of isomaltulose under high concentrations sucrose, achieving a maximum yield of 83.1%. These findings demonstrated an engineered B. subtilis strain for antibiotic-free SIase production, paving the way for its scale-up industrial production and application.


Subject(s)
Bacillus subtilis , Glucosyltransferases , Isomaltose , Recombinant Proteins , Sucrose , Bacillus subtilis/genetics , Bacillus subtilis/enzymology , Bacillus subtilis/metabolism , Isomaltose/metabolism , Isomaltose/analogs & derivatives , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Sucrose/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Metabolic Engineering/methods , Promoter Regions, Genetic/genetics , CRISPR-Cas Systems/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
2.
Int J Biol Macromol ; 269(Pt 2): 131834, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688341

ABSTRACT

The amylosucrase (ASase, EC 2.4.1.4) utilizes sucrose as the sole substrate to catalyze multifunctional reactions. It can naturally synthesize α-1,4-linked glucans such as amylose as well as sucrose isomers with more favorable properties than sucrose with a lower intestinal digestibility and non-cariogenic properties. The amino acid sequence of the asase gene from Deinococcus cellulosilyticus (DceAS) exhibits low homology with those of other ASases from other Deinococcus species. In this study, we cloned and expressed DceAS and demonstrated its high activity at pH 6 and pH 8 and maintained stability. It showed higher polymerization activity at pH 6 than at pH 8, but similar isomerization activity and produced more turanose and trehalulose at pH 6 than at pH 8 and produced more isomaltulose at pH 8. Furthermore, the molecular weight of DceAS was 226.6 kDa at pH 6 and 145.5 kDa at pH 8, indicating that it existed as a trimer and dimer, respectively under those conditions. Additionally, circular dichroism spectra showed that the DceAS secondary structure was different at pH 6 and pH 8. These differences in reaction products at different pHs can be harnessed to naturally produce sucrose alternatives that are more beneficial to human health.


Subject(s)
Deinococcus , Glucosyltransferases , Glucosyltransferases/chemistry , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Deinococcus/enzymology , Deinococcus/genetics , Hydrogen-Ion Concentration , Isomaltose/metabolism , Isomaltose/chemistry , Isomaltose/analogs & derivatives , Amino Acid Sequence , Enzyme Stability , Cloning, Molecular , Molecular Weight , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Sucrose/metabolism , Substrate Specificity , Kinetics , Protein Structure, Secondary , Disaccharides
3.
Appl Environ Microbiol ; 90(1): e0152123, 2024 01 24.
Article in English | MEDLINE | ID: mdl-38084944

ABSTRACT

Cyclodextrinases are carbohydrate-active enzymes involved in the linearization of circular amylose oligosaccharides. Primarily thought to function as part of starch metabolism, there have been previous reports of bacterial cyclodextrinases also having additional enzymatic activities on linear malto-oligosaccharides. This substrate class also includes environmentally rare α-diglucosides such as kojibiose (α-1,2), nigerose (α-1,3), and isomaltose (α-1,6), all of which have valuable properties as prebiotics or low-glycemic index sweeteners. Previous genome sequencing of three Cellvibrio japonicus strains adapted to utilize these α-diglucosides identified multiple, but uncharacterized, mutations in each strain. One of the mutations identified was in the amy13E gene, which was annotated to encode a neopullulanase. In this report, we functionally characterized this gene and determined that it in fact encodes a cyclodextrinase with additional activities on α-diglucosides. Deletion analysis of amy13E found that this gene was essential for kojibiose and isomaltose metabolism in C. japonicus. Interestingly, a Δamy13E mutant was not deficient for cyclodextrin or pullulan utilization in C. japonicus; however, heterologous expression of the gene in E. coli was sufficient for cyclodextrin-dependent growth. Biochemical analyses found that CjAmy13E cleaved multiple substrates but preferred cyclodextrins and maltose, but had no activity on pullulan. Our characterization of the CjAmy13E cyclodextrinase is useful for refining functional enzyme predictions in related bacteria and for engineering enzymes for biotechnology or biomedical applications.IMPORTANCEUnderstanding the bacterial metabolism of cyclodextrins and rare α-diglucosides is increasingly important, as these sugars are becoming prevalent in the foods, supplements, and medicines humans consume that subsequently feed the human gut microbiome. Our analysis of a cyclomaltodextrinase with an expanded substrate range is significant because it broadens the potential applications of the GH13 family of carbohydrate active enzymes (CAZymes) in biotechnology and biomedicine. Specifically, this study provides a workflow for the discovery and characterization of novel activities in bacteria that possess a high number of CAZymes that otherwise would be missed due to complications with functional redundancy. Furthermore, this study provides a model from which predictions can be made why certain bacteria in crowded niches are able to robustly utilize rare carbon sources, possibly to gain a competitive growth advantage.


Subject(s)
Cellvibrio , Cyclodextrins , Humans , Isomaltose/metabolism , Escherichia coli/genetics , Glycoside Hydrolases/metabolism , Oligosaccharides/metabolism , Cyclodextrins/metabolism
4.
FEBS J ; 289(4): 1118-1134, 2022 02.
Article in English | MEDLINE | ID: mdl-34665923

ABSTRACT

Glycoside hydrolase family 15 (GH15) inverting enzymes contain two glutamate residues functioning as a general acid catalyst and a general base catalyst, for isomaltose glucohydrolase (IGHase), Glu178 and Glu335, respectively. Generally, a two-catalytic residue-mediated reaction exhibits a typical bell-shaped pH-activity curve. However, IGHase is found to display atypical non-bell-shaped pH-kcat and pH-kcat /Km profiles, theoretically better-fitted to a three-catalytic residue-associated pH-activity curve. We determined the crystal structure of IGHase by the single-wavelength anomalous dispersion method using sulfur atoms and the cocrystal structure of a catalytic base mutant E335A with isomaltose. Although the activity of E335A was undetectable, the electron density observed in its active site pocket did not correspond to an isomaltose but a glycerol and a ß-glucose, cryoprotectant, and hydrolysis product. Our structural and biochemical analyses of several mutant enzymes suggest that Tyr48 acts as a second catalytic base catalyst. Y48F mutant displayed almost equivalent specific activity to a catalytic acid mutant E178A. Tyr48, highly conserved in all GH15 members, is fixed by another Tyr residue in many GH15 enzymes; the latter Tyr is replaced by Phe290 in IGHase. The pH profile of F290Y mutant changed to a bell-shaped curve, suggesting that Phe290 is a key residue distinguishing Tyr48 of IGHase from other GH15 members. Furthermore, F290Y is found to accelerate the condensation of isomaltose from glucose by modifying a hydrogen-bonding network between Tyr290-Tyr48-Glu335. The present study indicates that the atypical Phe290 makes Tyr48 of IGHase unique among GH15 enzymes.


Subject(s)
Glycoside Hydrolases/chemistry , Isomaltose/metabolism , Actinobacteria/enzymology , Biocatalysis , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Hydrogen-Ion Concentration , Hydrolysis , Isomaltose/chemistry , Models, Molecular , Mutation , Protein Conformation
5.
Biotechnol Lett ; 43(1): 261-269, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32910357

ABSTRACT

OBJECTIVE: To characterize a recombinant isomerase that can catalyze the isomerization of sucrose into isomaltulose and investigate its application for the enzymatic production of isomaltulose. RESULTS: A sucrose isomerase gene from Erwinia sp. Ejp617 was synthesized and expressed in Escherichia coli BL21(DE3). The enzymatic characterization revealed that the optimal pH and temperature of the purified sucrose isomerase were 6.0 and 40 °C, respectively. The enzyme activity was slightly activated by Mn2+and Mg2+, but partially inhibited by Ca2+, Ba2+, Cu2+, Zn2+ and EDTA. The kinetic parameters of Km and Vmax for sucrose were 69.28 mM and 118.87 U/mg, respectively. The time course showed that 240.9 g/L of isomaltulose was produced from 300 g/L of sucrose, and the yield reached 80.3% after bioreaction for 180 min. CONCLUSIONS: This recombinant enzyme showed excellent capability for biotransforming sucrose to isomaltulose at the substrate concentration of 300 g/L. Further investigations should be carried out focusing on selection of suitable heterologous expression system with the aim to improve its expression level.


Subject(s)
Bacterial Proteins , Glucosyltransferases , Isomaltose/analogs & derivatives , Recombinant Proteins , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Bacterial Proteins/metabolism , Biotransformation , Enzyme Stability , Erwinia/enzymology , Erwinia/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Glucosyltransferases/chemistry , Glucosyltransferases/genetics , Glucosyltransferases/isolation & purification , Glucosyltransferases/metabolism , Isomaltose/analysis , Isomaltose/chemistry , Isomaltose/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
6.
Enzyme Microb Technol ; 141: 109653, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33051012

ABSTRACT

A gene conferring α-glucosidase (AG) with high transglycosylation activity from Aspergillus neoniger (a non-niger strain belonging to section Nigri) was cloned and expressed in Pichia pastoris. As the cDNA construction retained intronic portions due to alternative splicing, the exonic portions of the gene were stitched using restriction digestion and overlap extension PCR. Pre-determined open-loop exponential feeding strategies were evaluated for methanol dosage to improve the recombinant enzyme synthesis during high-cell density cultivation in 5 L bioreactor. Specific growth rate of 0.1 h-1 resulted in the highest enzyme activity of 182.3 mU/mL in the supernatant, whereas the activity of 3.8 U/g dry cell weight was obtained in the cell pellet. There was negligible enzyme activity in the cell lysate, indicating that approximately 80 % accumulation of total enzyme is in the periplasm. Later, this unreleased fraction was extracted to 90 % yield using 25 mM cysteine. The enzyme was purified and validated using western blot analysis and MS/MS profile. The SDS PAGE analysis revealed three bands corresponding to 80, 38, and 33 kDa indicating the multimeric nature of the enzyme. Thus, obtained enzyme was utilized in synthesis of a potential prebiotic molecule, isomaltooligosaccharides (IMOs), which can be used as a sweetener and bulk filler in the food industry. This is the first report to demonstrate challenges in cloning and expression of transglycosylating α-glucosidase from Aspergillus neoniger.


Subject(s)
Aspergillus/enzymology , Fungal Proteins/metabolism , Isomaltose/metabolism , Oligosaccharides/metabolism , Saccharomycetales/genetics , alpha-Glucosidases/metabolism , Aspergillus/genetics , Bioreactors , Cloning, Molecular , DNA, Complementary , Fungal Proteins/genetics , Fungal Proteins/isolation & purification , Gene Expression , Glycosylation , Isomaltose/chemistry , Methanol/analysis , Methanol/metabolism , Oligosaccharides/chemistry , Periplasm/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Saccharomycetales/metabolism , alpha-Glucosidases/genetics , alpha-Glucosidases/isolation & purification
8.
Biosci Biotechnol Biochem ; 84(3): 507-517, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31718466

ABSTRACT

Membrane-bound quinoprotein glucose dehydrogenase from acetic acid bacteria produces lactobionic acid by the oxidation of lactose. Its enzymatic activity on lactose and maltose is much lower than that on D-glucose. For that reason, the activity of the enzyme on disaccharides has been considered low. In this study, we show that the isomaltose-oxidizing activity of acetic acid bacteria is much higher than their lactose-oxidizing activity. In addition to isomaltose, the enzyme oxidized gentiobiose and melibiose to the same extent. According to the characteristics of the isomaltose-oxidizing activity and investigations using dehydrogenase-deficient mutant bacteria, we identified the responsible enzyme as membrane-bound quinoprotein glucose dehydrogenase.Abbreviations: AAB: acetic acid bacteria; m-GDH: membrane-bound quinoprotein glucose dehydrogenase; DCIP: 2,6-dichlorophenolindophenol; DP: degree of polymerization; HPAEC-PAD: high-performance anion-exchange chromatography with pulsed amperometric detection; NMR: nuclear magnetic resonance; TLC: thin layer chromatography; COSY: correlation spectroscopy.


Subject(s)
Acetic Acid/metabolism , Bacteria/metabolism , Disaccharides/metabolism , Glucose 1-Dehydrogenase/metabolism , Isomaltose/metabolism , Melibiose/metabolism , Oxidation-Reduction
9.
Nutrients ; 11(10)2019 Oct 04.
Article in English | MEDLINE | ID: mdl-31590285

ABSTRACT

Low-glycemic compared to high-glycemic diets have been shown to improve metabolic status and enhance fat oxidation. The randomized, double-blind, controlled intervention study aimed to evaluate the effects of an energy-reduced diet containing isomaltulose (ISO, Palatinose™) versus sucrose (SUC) on body weight loss. Sixty-four healthy overweight/obese adults were allocated to consume either 40g/d ISO or SUC added to an energy-reduced diet for 12 weeks. Anthropometric measurements, body composition, and energy metabolism were assessed at baseline and after 4, 8, and 12 weeks. Fifty participants (age: 40.7 ± 11.7 y; BMI: 29.4 ± 2.7 kg/m²) completed the study. During the 12 weeks, both groups significantly lost weight (p < 0.001), which was more pronounced following ISO (-3.2 ± 2.9 vs. -2.1 ± 2.6 kg; p = 0.258). Moreover, for participants in the ISO group, this was accompanied by a significant reduction in fat mass (ISO: -1.9 ± 2.5, p = 0.005; SUC: -0.9 ± 2.6%, p = 0.224). The overall decrease in energy intake was significantly higher in the ISO compared to that in the SUC group (p = 0.022). In addition, breakfast containing ISO induced a significantly lower increase in postprandial respiratory quotient (RQ) (mean incremental area under the curve (iAUC)2h for ISO vs. SUC: 4.8 ± 4.1 vs. 6.9 ± 3.1, p = 0.047). The results suggest that ISO in exchange for SUC may help to facilitate body weight reduction, lower postprandial RQ associated with higher fat oxidation, and reduce energy intake.


Subject(s)
Caloric Restriction , Energy Metabolism , Glycemic Index , Isomaltose/analogs & derivatives , Obesity/diet therapy , Sucrose/administration & dosage , Weight Loss , Adiposity , Adult , Double-Blind Method , England , Female , Humans , Isomaltose/administration & dosage , Isomaltose/adverse effects , Isomaltose/metabolism , Male , Middle Aged , Obesity/diagnosis , Obesity/physiopathology , Oxidation-Reduction , Sucrose/adverse effects , Sucrose/metabolism , Time Factors , Treatment Outcome , Young Adult
10.
Sci Rep ; 9(1): 13908, 2019 09 26.
Article in English | MEDLINE | ID: mdl-31558734

ABSTRACT

Recently, wild strains of Saccharomyces cerevisiae isolated from a variety of natural resources have been used to make bread, beer, wine, and sake. In the current study, we isolated wild S. cerevisiae MC strain from the carnation (Dianthus caryophyllus L) flower and produced sake using its cerulenin-resistant mutant strain MC87-46. Then, we characterized the components, including ethanol, amino acids, organic acids, and sugars, in the fermented sake. Sake brewed with MC87-46 is sweet owing to the high content of isomaltose, which was at a concentration of 44.3 mM. The low sake meter value of -19.6 is most likely due to this high isomaltose concentration. The genomic DNA of MC87-46 encodes for isomaltases IMA1, IMA2, IMA3, IMA4 and IMA5, as well as the isomaltose transporter gene, AGT1. However, these genes were not induced in MC87-46 by isomaltose, and the strain did not possess isomaltase activity. These results show that MC87-46 cannot utilize isomaltose, resulting in its accumulation in the fermented sake. Isomaltose concentrations in sake brewed with MC87-46 were 24.6-fold more than in commercial sake. These findings suggest that MC87-46 may be useful for commercial application in Japanese sake production because of its unique flavour and nutrient profile.


Subject(s)
Alcoholic Beverages/standards , Fermentation , Isomaltose/metabolism , Saccharomyces cerevisiae/metabolism , Dianthus/microbiology , Industrial Microbiology/methods , Oligo-1,6-Glucosidase/genetics , Oligo-1,6-Glucosidase/metabolism , Saccharomyces cerevisiae/pathogenicity , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
11.
Biomolecules ; 9(8)2019 08 09.
Article in English | MEDLINE | ID: mdl-31404957

ABSTRACT

Isomaltulose is mainly produced from sucrose by microbial fermentation, when the utilization of sucrose contributes a high production cost. To achieve a low-cost isomaltulose production, soy molasses was introduced as an alternative substrate. Firstly, α-galactosidase gene from Rhizomucor miehei was expressed in Yarrowia lipolytica, which then showed a galactosidase activity of 121.6 U/mL. Under the effects of the recombinant α-galactosidase, most of the raffinose-family oligosaccharides in soy molasses were hydrolyzed into sucrose. Then the soy molasses hydrolysate with high sucrose content (22.04%, w/w) was supplemented into the medium, with an isomaltulose production of 209.4 g/L, and the yield of 0.95 g/g. Finally, by virtue of the bioremoval process using Pichia stipitis, sugar byproducts in broth were transformed into ethanol at the end of fermentation, thus resulting in high isomaltulose purity (97.8%). The bioprocess employed in this study provides a novel strategy for low-cost and efficient isomaltulose production from soybean molasses.


Subject(s)
Ethanol/metabolism , Fermentation , Glycine max/classification , Isomaltose/analogs & derivatives , Molasses , alpha-Galactosidase/metabolism , Ethanol/chemistry , Hydrogen-Ion Concentration , Hydrolysis , Isomaltose/chemistry , Isomaltose/metabolism , Rhizomucor/enzymology , Temperature
12.
Nutrients ; 10(10)2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30326587

ABSTRACT

The effect that blood glucose concentration has on feelings of satiety is unclear. Our aims were to assess satiety and subsequent energy intake following the ingestion of trifle sweetened with sucrose or isomaltulose whilst measuring plasma glucose concentration to confirm glycemic differences between trifles. Seventy-seven healthy adults participated in a double-blind crossover trial where trifle sweetened with sucrose or isomaltulose was consumed on separate days with a two-week washout. Blood was sampled at the baseline, 1 and 2 h postprandially, and satiety assessed using visual analogue scales (VAS). Weighed diet records were taken on test days. A statistically significant difference in blood glucose concentration between trifles was found at 60 min following consumption, with the isomaltulose trifle having a 0.69 mmol/L (95% confidence interval: -1.07, -0.31) lower concentration when compared with the sucrose trifle. Mean satiety response by area-under-the-curve (AUC) was not significantly different between trifles. Mean (SD) appetite scores for the sucrose and isomaltulose trifles were 4493 (2393) and 4527 (2590) mm·min, respectively, with a between trifle difference of -9 (95% CI: -589, 572) mm·min. Mean (SD) energy intake for the remainder of the day following trifle consumption was 3894 kJ (1950 kJ) and 3530 kJ (1926 kJ) after the sucrose and isomaltulose trifles, respectively, and was not significantly different (p = 0.133). The differing glycemic response to trifle was not related to satiety or to subsequent energy intake.


Subject(s)
Blood Glucose/metabolism , Dietary Sucrose/administration & dosage , Energy Intake , Isomaltose/administration & dosage , Satiety Response , Sweetening Agents/administration & dosage , Adolescent , Adult , Biomarkers/blood , Cross-Over Studies , Dietary Sucrose/metabolism , Double-Blind Method , Female , Glycemic Index , Humans , Isomaltose/metabolism , Male , New Zealand , Postprandial Period , Sweetening Agents/metabolism , Time Factors , Young Adult
13.
Cell Transplant ; 27(9): 1407-1412, 2018 09.
Article in English | MEDLINE | ID: mdl-30056762

ABSTRACT

Hematopoietic stem cell transplantation often involves the cryopreservation of stem cell products. Currently, the standard cryoprotective agent (CPA) is dimethyl sulfoxide (DMSO), which is known to cause concentration-related toxicity and side effects when administered to patients. Based on promising in vitro data from our previous study using pentaisomaltose (a 1 kDa subfraction of Dextran 1) as an alternative to DMSO for cryopreservation of hematopoietic progenitor cells (HPCs) from apheresis products, we proceeded to a preclinical model and compared the two CPAs with respect to engraftment of human hematopoietic stem and progenitor cells (HSPCs) in the immunodeficient NSG mouse model. Human HPCs from apheresis products were cryopreserved with either pentaisomaltose or DMSO, and the following outcomes were measured: (1) the post-thaw recovery of cryopreserved cells and clonogenic potential of CD34+ cells and (2) hematopoietic engraftment in NSG mice. We found that recovery and colony-forming cells data were comparable between pentaisomaltose and DMSO. The engraftment data revealed comparable human CD45+ levels in peripheral blood at 8 weeks and bone marrow at 16 weeks post transplantation. Additionally, the frequencies of CD34+CD38low/negative and myeloid/lymphoid cells in the bone marrow were comparable. We here demonstrated that long-term engrafting HSPCs were well preserved in pentaisomaltose and comparable to cells cryopreserved with DMSO. Although a clinical trial is necessary to translate these results into human use, the present data represent an important step toward the replacement of DMSO with a non-toxic alternative.


Subject(s)
Antigens, CD34/analysis , Cryopreservation/methods , Cryoprotective Agents , Dimethyl Sulfoxide , Hematopoietic Stem Cells/cytology , Isomaltose , Animals , Cell Survival/drug effects , Cells, Cultured , Cryoprotective Agents/metabolism , Dimethyl Sulfoxide/metabolism , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells/drug effects , Humans , Isomaltose/metabolism , Mice
14.
Nutrients ; 10(7)2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29966395

ABSTRACT

The glycaemic index (GI) is a useful tool to compare the glycaemic responses of foods. Numerous studies report the favorable effects of low GI diets on long term metabolic health compared with high GI diets. However, it has not been possible to link these effects to the GI itself because of other components such as macronutrients and dietary fibre, which are known to affect GI. This study aimed to create and evaluate isocaloric diets differing in GI independent of macronutrient and fibre content. The GIs of eight diets differing in carbohydrate source were evaluated in mice; cooked cornstarch (CC), raw cornstarch (RC), chow, maltodextrin, glucose, sucrose, isomaltulose, and fructose. A glucose control was also tested. The GIs of all eight diets were different from the GI of the glucose control (GI: 100; p < 0.0001). The GIs of the glucose (mean ± SEM: 52 ± 3), maltodextrin (52 ± 6), CC (50 ± 4), RC (50 ± 6), and chow (44 ± 4) diets were similar, while the GIs of the sucrose (31 ± 4), isomaltulose (24 ± 5), and fructose (18 ± 2) diets were lower than all other diets (p < 0.05). This is the first trial to report GI testing in vivo in mice, resulting in three main findings: chow is relatively high GI, the glucose availability of raw and cooked cornstarch is similar, and the GI of different sugar diets occur in the same rank order as in humans.


Subject(s)
Animal Feed , Blood Glucose/metabolism , Dietary Sugars/metabolism , Glycemic Index , Animals , Biomarkers/blood , Dietary Fiber/administration & dosage , Dietary Fiber/metabolism , Dietary Sucrose/metabolism , Dietary Sugars/administration & dosage , Female , Fructose/metabolism , Isomaltose/metabolism , Mice, Inbred C57BL , Nutritive Value , Polysaccharides/metabolism , Starch/metabolism , Time Factors
15.
Appl Environ Microbiol ; 84(17)2018 09 01.
Article in English | MEDLINE | ID: mdl-29934330

ABSTRACT

Bifidobacteria are a major component of the intestinal microbiota in humans, particularly breast-fed infants. Therefore, elucidation of the mechanisms by which these bacteria colonize the intestine is desired. One approach is transposon mutagenesis, a technique currently attracting much attention because, in combination with next-generation sequencing, it enables exhaustive identification of genes that contribute to microbial fitness. We now describe a transposon mutagenesis system for Bifidobacterium longum subsp. longum 105-A (JCM 31944) based on ISBlo11, a native IS3 family insertion sequence. To build this system, xylose-inducible or constitutive bifidobacterial promoters were tested to drive the expression of full-length or a truncated form at the N terminus of the ISBlo11 transposase. An artificial transposon plasmid, pBFS12, in which ISBlo11 terminal inverted repeats are separated by a 3-bp spacer, was also constructed to mimic the transposition intermediate of IS3 elements. The introduction of this plasmid into a strain expressing transposase resulted in the insertion of the plasmid with an efficiency of >103 CFU/µg DNA. The plasmid targets random 3- to 4-bp sequences, but with a preference for noncoding regions. This mutagenesis system also worked at least in B. longum NCC2705. Characterization of a transposon insertion mutant revealed that a putative α-glucosidase mediates palatinose and trehalose assimilation, demonstrating the suitability of transposon mutagenesis for loss-of-function analysis. We anticipate that this approach will accelerate functional genomic studies of B. longum subsp. longumIMPORTANCE Several hundred species of bacteria colonize the mammalian intestine. However, the genes that enable such bacteria to colonize and thrive in the intestine remain largely unexplored. Transposon mutagenesis, combined with next-generation sequencing, is a promising tool to comprehensively identify these genes but has so far been applied only to a small number of intestinal bacterial species. In this study, a transposon mutagenesis system was established for Bifidobacterium longum subsp. longum, a representative health-promoting Bifidobacterium species. The system enables the identification of genes that promote colonization and survival in the intestine and should help illuminate the physiology of this species.


Subject(s)
Bifidobacterium longum/genetics , DNA Transposable Elements/genetics , Gastrointestinal Microbiome/genetics , Mutagenesis/genetics , Plasmids/genetics , Genome, Bacterial/genetics , Humans , Intestines/microbiology , Isomaltose/analogs & derivatives , Isomaltose/metabolism , Sequence Analysis, DNA , Transposases/genetics , Trehalose/metabolism , alpha-Glucosidases/genetics
16.
J Agric Food Chem ; 65(43): 9468-9474, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28980463

ABSTRACT

We explored the ability of an Aspergillus niger α-glucosidase displayed on P. pastoris to act as a whole-cell biocatalyst (Pp-ANGL-GCW61) system to synthesize isomalto-oligosaccharides (IMOs). IMOs are a mixture that includes isomaltose (IG2), panose (P), and isomaltotriose (IG3). In this study, the IMOs were synthesized by a hydrolysis-transglycosylation reaction in an aqueous system of maltose. In a 2 mL reaction system, the IMOs were synthesized with a conversion rate of approximately 49% in 2 h when 30% maltose was utilized under optimal conditions by Pp-ANGL-GCW61. Additionally, the 0.5-L reaction system was conducted in a 2-L stirred reactor with a conversion rate of approximately 44% in 2 h. Moreover, the conversion rate was relatively stable after the whole-cell catalyst was reused three times. In conclusion, Pp-ANGL-GCW61 has a high reaction efficiency and operational stability, which makes it a powerful biocatalyst available for industrial scale synthesis.


Subject(s)
Aspergillus niger/enzymology , Disaccharides/metabolism , Fungal Proteins/metabolism , Isomaltose/metabolism , Oligosaccharides/biosynthesis , Pichia/metabolism , Sugar Alcohols/metabolism , alpha-Glucosidases/metabolism , Disaccharides/chemistry , Fungal Proteins/chemistry , Fungal Proteins/genetics , Gene Expression , Isomaltose/chemistry , Pichia/genetics , Sugar Alcohols/chemistry , alpha-Glucosidases/chemistry , alpha-Glucosidases/genetics
17.
Appl Microbiol Biotechnol ; 101(16): 6399-6408, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28688044

ABSTRACT

Aspergillus niger α-glucosidase (ANG), a member of glycoside hydrolase family 31, catalyzes hydrolysis of α-glucosidic linkages at the non-reducing end. In the presence of high concentrations of maltose, the enzyme also catalyzes the formation of α-(1→6)-glucosyl products by transglucosylation and it is used for production of the industrially useful panose and isomaltooligosaccharides. The initial transglucosylation by wild-type ANG in the presence of 100 mM maltose [Glc(α1-4)Glc] yields both α-(1→6)- and α-(1→4)-glucosidic linkages, the latter constituting ~25% of the total transfer reaction product. The maltotriose [Glc(α1-4)Glc(α1-4)Glc], α-(1→4)-glucosyl product disappears quickly, whereas the α-(1→6)-glucosyl products panose [Glc(α1-6)Glc(α1-4)Glc], isomaltose [Glc(α1-6)Glc], and isomaltotriose [Glc(α1-6)Glc(α1-6)Glc] accumulate. To modify the transglucosylation properties of ANG, residue Asn694, which was predicted to be involved in formation of the plus subsites of ANG, was replaced with Ala, Leu, Phe, and Trp. Except for N694A, the mutations enhanced the initial velocity of the α-(1→4)-transfer reaction to produce maltotriose, which was then degraded at a rate similar to that by wild-type ANG. With increasing reaction time, N694F and N694W mutations led to the accumulation of larger amounts of isomaltose and isomaltotriose than achieved with the wild-type enzyme. In the final stage of the reaction, the major product was panose (N694A and N694L) or isomaltose (N694F and N694W).


Subject(s)
Aspergillus niger/genetics , Aspergillus niger/metabolism , Mutation , alpha-Glucosidases/chemistry , alpha-Glucosidases/genetics , Aspergillus niger/drug effects , Aspergillus niger/enzymology , Glucans/metabolism , Glucans/pharmacology , Hydrogen-Ion Concentration , Hydrolysis , Isomaltose/metabolism , Kinetics , Maltose/metabolism , Maltose/pharmacology , Mutagenesis, Site-Directed , Substrate Specificity , Trisaccharides/metabolism , alpha-Glucosidases/metabolism
18.
Food Chem ; 229: 761-768, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28372242

ABSTRACT

A green process and environmentally benign process is highly desirable in the development of enzymatic catalysis. In this work, the shuttle plasmid pHA01 was constructed and the sucrose isomerase (SIase) was expressed in Bacillus subtilis WB800. The optimal nitrogen and carbon sources for SIase expression were yeast extract (15g/L) and un-pretreated cane molasses (UCM, 20g/L), respectively. After the UCM fed, the whole cell activity reached 5.2U/mL in a 7.5L fermentor. Optimum catalytic temperature and pH of whole cell were 35°C and 5.5, respectively. Although the biologic membrane reactor (BMR) system consecutively worked for 12 batches, the sucrose conversion remained higher than 90%, indicating the BMR system had a greater operational stability. Furthermore, isomaltulose production using the BMR system with low-cost cane molasses as its substrate not only reduces the production cost and mediates environmental pollution, but also solves the genetic background problem of the non-food-grade strains.


Subject(s)
Bacillus subtilis , Green Chemistry Technology/methods , Isomaltose/analogs & derivatives , Molasses , Saccharum , Bacillus subtilis/metabolism , Biological Products/analysis , Biological Products/chemical synthesis , Biological Products/metabolism , Bioreactors , Isomaltose/analysis , Isomaltose/chemical synthesis , Isomaltose/metabolism , Molasses/analysis , Saccharum/chemistry , Saccharum/metabolism , Temperature
19.
Biosci Rep ; 37(2)2017 04 30.
Article in English | MEDLINE | ID: mdl-28385816

ABSTRACT

Paenibacillus sp. 598K cycloisomaltooligosaccharide glucanotransferase (CITase), a member of glycoside hydrolase family 66 (GH66), catalyses the intramolecular transglucosylation of dextran to produce CIs with seven or more degrees of polymerization. To clarify the cyclization reaction and product specificity of the enzyme, we determined the crystal structure of PsCITase. The core structure of PsCITase consists of four structural domains: a catalytic (ß/α)8-domain and three ß-domains. A family 35 carbohydrate-binding module (first CBM35 region of Paenibacillus sp. 598K CITase, (PsCBM35-1)) is inserted into and protrudes from the catalytic domain. The ligand complex structure of PsCITase prepared by soaking the crystal with cycloisomaltoheptaose yielded bound sugars at three sites: in the catalytic cleft, at the joint of the PsCBM35-1 domain and at the loop region of PsCBM35-1. In the catalytic site, soaked cycloisomaltoheptaose was observed as a linear isomaltoheptaose, presumably a hydrolysed product from cycloisomaltoheptaose by the enzyme and occupied subsites -7 to -1. Beyond subsite -7, three glucose moieties of another isomaltooiligosaccharide were observed, and these positions are considered to be distal subsites -13 to -11. The third binding site is the canonical sugar-binding site at the loop region of PsCBM35-1, where the soaked cycloisomaltoheptaose is bound. The structure indicated that the concave surface between the catalytic domain and PsCBM35-1 plays a guiding route for the long-chained substrate at the cyclization reaction.


Subject(s)
Glucosyltransferases/chemistry , Glucosyltransferases/metabolism , Isomaltose/metabolism , Paenibacillus/enzymology , Amino Acid Sequence , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Models, Molecular , Paenibacillus/chemistry , Paenibacillus/metabolism , Protein Binding , Protein Conformation , Substrate Specificity
20.
Electron. j. biotechnol ; 26: 46-51, Mar. 2017. graf, tab
Article in English | LILACS | ID: biblio-1009650

ABSTRACT

Background: Current commercial production of isomalto-oligosaccharides (IMOs) commonly involves a lengthy multistage process with low yields. Results: To improve the process efficiency for production of IMOs, we developed a simple and efficient method by using enzyme cocktails composed of the recombinant Bacillus naganoensis pullulanase produced by Bacillus licheniformis, α-amylase from Bacillus amyloliquefaciens, barley bran ß-amylase, and α-transglucosidase from Aspergillus niger to perform simultaneous saccharification and transglycosylation to process the liquefied starch. After 13 h of reacting time, 49.09% IMOs (calculated from the total amount of isomaltose, isomaltotriose, and panose) were produced. Conclusions: Our method of using an enzyme cocktail for the efficient production of IMOs offers an attractive alternative to the process presently in use.


Subject(s)
Oligosaccharides/metabolism , Starch/metabolism , Enzymes/metabolism , Isomaltose/metabolism , Oligosaccharides/biosynthesis , Aspergillus niger/enzymology , Temperature , Bacillus/enzymology , beta-Amylase/metabolism , Glycosylation , Liquefaction , alpha-Amylases/metabolism , Fermentation , Glucosidases/metabolism , Glycoside Hydrolases/metabolism , Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...