Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 17.043
Filter
1.
J Musculoskelet Neuronal Interact ; 24(2): 107-119, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38825993

ABSTRACT

OBJECTIVES: The current study investigated performance fatigability (PF) and time course of changes in force, electromyographic amplitude (EMG AMP) and frequency (EMG MPF), and neuromuscular efficiency (NME) during a sustained, isometric, handgrip hold to failure (HTF) using the rating of perceived exertion (RPE)-Clamp Model. METHODS: Twelve males performed a handgrip HTF anchored to RPE=5. The time to task failure (Tlim), force (N), EMG AMP and MPF, and NME (normalized force/ normalized EMG AMP) were recorded. Analyses included a paired samples t-test for PF at an alpha of p<0.05, 1-way repeated measures ANOVA across time and post-hoc t-tests (p<0.0025) for force, EMG AMP and MPF, and NME responses. RESULTS: The PF (pre- to post- maximal force % decline) was 38.2±11.5%. There were decreases in responses, relative to 0% Tlim, from 40% to 100% Tlim (force), at 30%, 60%, and 100% Tlim (EMG AMP), from 10% to 100% Tlim(EMP MPF), and from 50% to 65%, and 80% to 100% Tlim (NME) (p<0.0025). CONCLUSIONS: The RPE-Clamp Model in this study demonstrated that pacing strategies may be influenced by the integration of anticipatory, feedforward, and feedback mechanisms, and provided insights into the relationship between neuromuscular and perceptual responses, and actual force generating capacity.


Subject(s)
Electromyography , Hand Strength , Muscle Fatigue , Muscle, Skeletal , Humans , Male , Hand Strength/physiology , Muscle Fatigue/physiology , Young Adult , Adult , Electromyography/methods , Muscle, Skeletal/physiology , Isometric Contraction/physiology , Physical Exertion/physiology
2.
J Sports Sci Med ; 23(2): 425-435, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38841632

ABSTRACT

Non-local muscle fatigue (NLMF) refers to a transient decline in the functioning of a non-exercised muscle following the fatigue of a different muscle group. Most studies examining NLMF conducted post-tests immediately after the fatiguing protocols, leaving the duration of these effects uncertain. The aim of this study was to investigate the duration of NLMF (1-, 3-, and 5-minutes). In this randomized crossover study, 17 recreationally trained participants (four females) were tested for the acute effects of unilateral knee extensor (KE) muscle fatigue on the contralateral homologous muscle strength, and activation. Each of the four sessions included testing at either 1-, 3-, or 5-minutes post-test, as well as a control condition for non-dominant KE peak force, instantaneous strength (force produced within the first 100-ms), and vastus lateralis and biceps femoris electromyography (EMG). The dominant KE fatigue intervention protocol involved two sets of 100-seconds maximal voluntary isometric contractions (MVIC) separated by 1-minute of rest. Non-dominant KE MVIC forces showed moderate and small magnitude reductions at 1-min (p < 0.0001, d = 0.72) and 3-min (p = 0.005, d = 0.30) post-test respectively. The KE MVIC instantaneous strength revealed large magnitude, significant reductions between 1-min (p = 0.021, d = 1.33), and 3-min (p = 0.041, d = 1.13) compared with the control. In addition, EMG data revealed large magnitude increases with the 1-minute versus control condition (p = 0.03, d = 1.10). In summary, impairments of the non-exercised leg were apparent up to 3-minutes post-exercise with no significant deficits at 5-minutes. Recovery duration plays a crucial role in the manifestation of NLMF.


Subject(s)
Cross-Over Studies , Electromyography , Isometric Contraction , Knee , Muscle Fatigue , Muscle Strength , Humans , Muscle Fatigue/physiology , Female , Male , Isometric Contraction/physiology , Muscle Strength/physiology , Young Adult , Knee/physiology , Time Factors , Adult , Quadriceps Muscle/physiology , Muscle, Skeletal/physiology , Hamstring Muscles/physiology
4.
J Bodyw Mov Ther ; 38: 8-12, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38763619

ABSTRACT

OBJECTIVE: Long-term assessments of lower leg muscle forces in ambulant patients with distal myopathies. METHODS AND MATERIALS: Over a five-year period, we measured involuntary, nerve-stimulated, isometric torques of the ankle dorsiflexors in a group of ambulant patients with myopathies and compared results with voluntary Manual Muscle Tests (MMT). RESULTS: From ten recruited patients, five could finish the five-year protocol. Twenty-seven force measurements sessions (one per year; 1,5 hours duration each) were performed. These patients exhibited low, stable torques or increased minimally (0.2 Newtonmeter, versus 0.1 Nm, ns; 0.7 vs. 1.0, ns; 3.4 vs. 3.5, ns; 0.2 vs. 0.1, ns; 0.8 vs. 1.5, P 0.0004 initial values vs. 5-year values, [norm: 3.9-5.7 Nm]). A 6th patient, eliciting low torque values (0.1 Nm) early passed away. Contraction times inversely correlated with MMT. MMT provided similar overall force abilities. CONCLUSIONS: Long-term monitoring of lower leg muscle forces in ambulant patients is limited by the patient's health status. In a small group of patients, stimulated lower leg forces did not worsen over many years relative to their diagnosed myopathies. Tracking involuntary forces, could be a useful monitoring providing phenotypic information, in addition to MMT. Future devices should be small and be simply self-applying, designed for subjects' domestic use and web-based data transfer. CLINICALTRIALS: gov NCT00735384.


Subject(s)
Muscle, Skeletal , Torque , Humans , Male , Muscle, Skeletal/physiology , Muscle, Skeletal/physiopathology , Middle Aged , Female , Adult , Muscular Diseases/physiopathology , Follow-Up Studies , Leg/physiopathology , Leg/physiology , Isometric Contraction/physiology , Muscle Strength/physiology , Aged , Muscle Contraction/physiology
5.
PLoS One ; 19(5): e0301872, 2024.
Article in English | MEDLINE | ID: mdl-38776288

ABSTRACT

BACKGROUND: The current clinical gold standard for assessing isometric quadriceps muscle strength is an isokinetic dynamometer (IKD). However, in clinics without an IKD, clinicians default to using handheld dynamometers (HHD), which are less reliable and accurate than the IKD, particularly for large muscle groups. A novel device (ND) was developed that locks the weight stack of weight machines, and measures forces applied to the machine, turning this equipment into an isometric dynamometer. The objectives of this study were to characterize the test-retest reliability of the ND, determine the within-day and between-days inter-rater reliability and concurrent validity compared with that of the HHD, in healthy volunteers (HV) and individuals with knee osteoarthritis (OA) for measuring knee extensors isometric muscle force. MATERIALS AND METHODS: 29 healthy (age = 28.4 ± 7.4 years) and 15 knee OA (age = 37.6 ± 13.4 years) participants completed three maximum force isometric strength testing trials on dominant side knee extensor muscles on three devices (ND, HHD, and IKD) in two separate sessions by two raters. The maximum force (Fmax) produced, and the force-time series were recorded. Reliability and validity were assessed using Intraclass Correlation Coefficient (ICC), Bland-Altman Plots, Pearson's r, and cross-correlations. RESULTS: The ND demonstrated excellent test-retest reliability (ICC2,3 = 0.97). The within-day (ICC2,3 = 0.88) and between-day inter-rater reliability (ICC2,3 = 0.87) was good for HHD. The ND showed excellent within-day (ICC2,3 = 0.93) and good between-day (ICC2,3 = 0.89) inter-rater reliability. The Bland-Altman analysis revealed HHD systematic bias and underestimation of force particularly with quadriceps force values exceeding 450 N. Mean differences were found in maximum force between HHD vs. IKD (MDabs = 58 N, p < .001) but not the HHD vs. ND (MDabs = 24 N, p = .267) or ND vs. IKD (MDabs = 34 N, p = .051). The concurrent validity of Fmax (r = 0.81) and force-time curve correlation (0.96 ± 0.05) were the highest between the ND and IKD. CONCLUSIONS: The ND's test-retest reliability and concurrent validity make it a potential strength assessment tool with utility in physical therapy and fitness settings for large muscle groups such as the knee extensors.


Subject(s)
Isometric Contraction , Muscle Strength Dynamometer , Muscle Strength , Humans , Adult , Male , Female , Reproducibility of Results , Muscle Strength/physiology , Middle Aged , Isometric Contraction/physiology , Osteoarthritis, Knee/physiopathology , Quadriceps Muscle/physiology , Young Adult , Knee Joint/physiology , Knee Joint/physiopathology , Knee/physiology , Knee/physiopathology
6.
J Strength Cond Res ; 38(6): 1149-1156, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38781472

ABSTRACT

ABSTRACT: Nuzzo, JL. Muscle strength preservation during repeated sets of fatiguing resistance exercise: A secondary analysis. J Strength Cond Res 38(6): 1149-1156, 2024-During sustained or repeated maximal voluntary efforts, muscle fatigue (acute strength loss) is not linear. After a large initial decrease, muscle strength plateaus at approximately 40% of baseline. This plateau, which likely reflects muscle strength preservation, has been observed in sustained maximal isometric and repeated maximal isokinetic contractions. Whether this pattern of fatigue occurs with traditional resistance exercise repetitions with free weights and weight stack machines has not been overviewed. Here, the aim was to determine whether the number of repetitions completed across 4 or more consecutive repetitions-to-failure tests exhibits the same nonlinear pattern of muscle fatigue. A secondary analysis was applied to data extracted as part of a recent meta-analysis on repetitions-to-failure tests. Studies were eligible if they reported mean number of repetitions completed in 4-6 consecutive repetitions-to-failure tests at a given relative load. Twenty-nine studies were included. Overall, the results show that the number of repetitions completed in consecutive repetitions-to-failure tests at a given load generally decreases curvilinearly. The numbers of repetitions completed in sets 2, 3, 4, 5, and 6 were equal to approximately 70, 55, 50, 45, and 45% of the number of repetitions completed in set 1, respectively. Longer interset rest intervals typically attenuated repetition loss, but the curvilinear pattern remained. From the results, a chart was created to predict the number of repetitions across 6 sets of resistance exercise taken to failure based on the number of repetitions completed in set 1. The chart is a general guide and educational tool. It should be used cautiously. More data from a variety of exercises, relative loads, and interset rest intervals are needed for more precise estimates of number of repetitions completed during repeated sets of fatiguing resistance exercise.


Subject(s)
Muscle Fatigue , Muscle Strength , Resistance Training , Humans , Resistance Training/methods , Muscle Fatigue/physiology , Muscle Strength/physiology , Muscle, Skeletal/physiology , Isometric Contraction/physiology
7.
Med Probl Perform Art ; 39(2): 64-71, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38814125

ABSTRACT

BACKGROUND: Ballet dancers are expected to use their bodies symmetrically during training, because dance movements are performed on both sides. However, there is a general belief that ballet training encourages the use of one side of the body more than the other. Frequent repetition of a particular exercise can lead to body asymmetries and musculoskeletal injuries. The aim of this cross-sectional study was to investigate the presence of lower limbs and trunk muscle strength asymmetries in ballet dancers and secondly to assess whether there is a difference between professional dancers and ballet students. METHODS: Ballet students (n=19) and professional ballet dancers (n=23) performed maximal voluntary isometric contractions of the trunk (flexion, extension, lateral flexion), hip (flexion, extension, adduction, abduction, external and internal rotation), knee (flexion, extension) and ankle (flexion, extension) on isometric dynamometer. RESULTS: The results showed that the percentage of ballet dancers with contralateral muscle strength asymmetries >10% ranged from 22.5% (ballet students) to 31.6% (professional dancers). The percentage of ballet dancers deviating by >10% from the normative maximum torque agonist/antagonist ratio ranged from 56.5% to 100%. A statistically significant difference between ballet students and professional ballet dancers was found in the trunk flexion/extension ratio (t(40) = -3 .55; p = 0.001; d = 0.55). CONCLUSION: This study revealed strength asymmetries in the lower limbs and trunk in ballet dancers, both professionals and students. Further research is needed to develop appropriate complementary exercise to address and eliminate asymmetries in muscle strength in ballet dancers.


Subject(s)
Dancing , Isometric Contraction , Lower Extremity , Muscle Strength , Muscle, Skeletal , Humans , Dancing/physiology , Muscle Strength/physiology , Female , Cross-Sectional Studies , Young Adult , Male , Lower Extremity/physiology , Muscle, Skeletal/physiology , Isometric Contraction/physiology , Torso/physiology , Adult , Range of Motion, Articular/physiology
8.
Turk J Med Sci ; 54(1): 148-156, 2024.
Article in English | MEDLINE | ID: mdl-38812641

ABSTRACT

Background/aim: Although high muscle strength worsens the sense of force, it is unknown whether there is a relationship between this deterioration and the underlying molecular mechanisms. This study examined the relationship between decreased force sense (FS) acuity and strength-related gene expressions. Materials and methods: Maximal voluntary isometric contraction (MVIC) and FS (50% MVIC) tests were performed on the knee joints of twenty-two subjects. The expression analyses were evaluated by qRT-PCR in blood samples taken before, after MVIC, after 50% MVIC, and 15 min after the test. Results: MVIC and FS error values were significantly correlated with each other (r = .659, p = .001). The qRT-PCR analyses demonstrated that the expressed mRNAs of the interleukin 6 (IL-6), alpha-actinin 3 (ACTN3), angiotensin-converting enzyme (ACE), brain-derived neurotrophic factor (BDNF), and ciliary neurotrophic factor receptor (CNTFR) genes dramatically increased until 50% MVIC and subsequently decreased 15 min after the exercise (p < .05). The muscle-specific creatine kinase (CKMM), myosin light chain kinase (MLCK), and G-protein ß3 subunit (GNB3) genes reached their peak expression levels 30 min after MVIC (p < .05). ACE and ACTN3 gene expression increased significantly in parallel with the increased FS error (p < .05). These gene expression fluctuations observed at 50% MVIC and after the rest could be related to changes in cellular metabolism leading to fatigue. Conclusion: The time points of gene expression levels during exercise need to be considered. The force acuity of those whose maximal force develops too much may deteriorate.


Subject(s)
Isometric Contraction , Muscle Strength , Humans , Male , Muscle Strength/genetics , Muscle Strength/physiology , Isometric Contraction/physiology , Adult , Young Adult , Gene Expression , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Interleukin-6/genetics , Female , Brain-Derived Neurotrophic Factor/genetics , Peptidyl-Dipeptidase A/genetics , Actinin/genetics , Knee Joint
9.
Psychol Sport Exerc ; 73: 102657, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38719021

ABSTRACT

Ratings of perceived exertion (RPE) are frequently used to monitor and prescribe exercise intensity. However, studies examining the shape and robustness of how feelings of effort map onto objective outputs are limited and report inconsistent results. To address this, we investigated whether (1) producing isometric forces according to RPE levels reliably leads to differences in force output, (2) if feelings of effort map linearly or non-linearly onto force output, and (3) if this mapping is robust when visual feedback and social facilitation are present. In a counterbalanced repeated measures design, N = 26 participants performed isometric handgrip contractions prescribed by ten levels of the Borg CR-10 scale. They did so either with or without the availability of concurrent visual feedback regarding their force production, and in the presence or absence of another person performing the same task simultaneously. We found that subjects reliably produced different force outputs that corresponded to each RPE level. Furthermore, concurrent visual feedback led to a linearization of force output, while in the absence of feedback, the produced forces could also be described by quadratic and cubic functions. Exploratory post-hoc analyses revealed that participants perceived moderate RPE levels to be more challenging to produce. By shedding light on the dynamic nature of the mapping between RPE and objective performance, our findings provide helpful insights regarding the utility of RPE scales.


Subject(s)
Hand Strength , Isometric Contraction , Physical Exertion , Humans , Isometric Contraction/physiology , Physical Exertion/physiology , Male , Hand Strength/physiology , Female , Young Adult , Adult , Perception/physiology , Feedback, Sensory/physiology
10.
J Biomech ; 168: 112134, 2024 May.
Article in English | MEDLINE | ID: mdl-38723428

ABSTRACT

Connective tissues can be recognized as an important structural support element in muscles. Recent studies have also highlighted its importance in active force generation and transmission between muscles, particularly through the epimysium. In the present study, we aimed to investigate the impact of the endomysium, the connective tissue surrounding muscle fibers, on both passive and active force production. Pairs of skeletal muscle fibers were extracted from the extensor digitorum longus muscles of rats and, after chemical skinning, their passive and active force-length relationships were measured under two conditions: (i) with the endomysium between muscle fibers intact, and (ii) after its dissection. We found that the dissection of the endomysium caused force to significantly decrease in both active (by 22.2 % when normalized to the maximum isometric force; p < 0.001) and passive conditions (by 25.9 % when normalized to the maximum isometric force; p = 0.034). These findings indicate that the absence of endomysium compromises muscle fiber's not only passive but also active force production. This effect may be attributed to increased heterogeneity in sarcomere lengths, enhanced lattice spacing between myofilaments, or a diminished role of trans-sarcolemmal proteins due to dissecting the endomysium. Future investigations into the underlying mechanisms and their implications for various extracellular matrix-related diseases are warranted.


Subject(s)
Muscle Fibers, Skeletal , Animals , Rats , Muscle Fibers, Skeletal/physiology , Rats, Wistar , Connective Tissue/physiology , Sarcomeres/physiology , Male , Muscle, Skeletal/physiology , Biomechanical Phenomena , Isometric Contraction/physiology , Muscle Contraction/physiology
11.
Chronobiol Int ; 41(5): 709-724, 2024 May.
Article in English | MEDLINE | ID: mdl-38722075

ABSTRACT

We have investigated the magnitude of circadian variation in Isokinetic and Isometric strength of the knee extensors and flexors, as well as back squat and bench press performance using the MuscleLab force velocity transducer. Ten resistance-trained males (mean±SD: age 21.5 ± 1.1 years; body mass 78.3 ± 5.2 kg; height 1.71 ± 0.07 m) underwent a) three to four familiarization sessions on each dynamometer and b) four sessions at different times of day (03:00, 09:00, 15:00 and 21:00 h). Each session was administered in a counterbalanced order and included a period when Perceived onset of mood states (POMS), then rectal and muscle temperature (Trec, Tm) was measured at rest, after which a 5-min standardized 150 W warm-up was performed on a cycle ergometer. Once completed, Isokinetic (60 and 240°·s-1 for extension and flexion) and Isometric dynamometry with peak torque (PT), time-to-peak-torque (tPT) and peak force (PF) and % activation was measured. Lastly, Trec and Tm were measured before the bench press (at 30, 50 and 70 kg) and back squat (at 40, 60 and 80 kg) exercises. A linear encoder was attached to an Olympic bar used for the exercises and average force (AF), peak velocity (PV) and time-to-peak-velocity (tPV) were measured (MuscleLab software; MuscleLab Technology, Langesund, Norway) during the concentric phase of the movements. Five-min recovery was allowed between each set with three repetitions being completed. General linear models with repeated measures and cosinor analysis were used to analyse the data. Values for Trec and Tm at rest were higher in the evening compared to morning values (Acrophase Φ: 16:35 and 17:03 h, Amplitude A: 0.30 and 0.23°C, Mesor M: 36.64 and 37.43°C, p < 0.05). Vigor, happy and fatigue mood states responses showed Φ 16:11 and 16:03 h and 02:05 h respectively. Circadian rhythms were apparent for all variables irrespective of equipment used where AF, PF and PT values peaked between 16:18 and 18:34 h; PV, tPV and tPT peaked between 05:54 and 08:03 h (p < 0.05). In summary, circadian rhythms in force output (force, torque, power, and velocity) were shown for isokinetic, isometric dynamometers and complex multi-joint movements (using a linear encoder); where tPV and tPT occur in the morning compared to the evening. Circadian rhythms in strength can be detected using a portable, low-cost instrument that shows similar cosinor characteristics as established dynamometers. Hence, muscle-strength can be measured in a manner that is more directly transferable to the world of athletic and sports performance.


Subject(s)
Circadian Rhythm , Muscle Strength , Muscle, Skeletal , Humans , Male , Circadian Rhythm/physiology , Young Adult , Muscle, Skeletal/physiology , Muscle Strength/physiology , Isometric Contraction/physiology , Muscle Strength Dynamometer , Adult , Torque , Exercise/physiology
12.
Article in English | MEDLINE | ID: mdl-38722723

ABSTRACT

Quantifying muscle strength is an important measure in clinical settings; however, there is a lack of practical tools that can be deployed for routine assessment. The purpose of this study is to propose a deep learning model for ankle plantar flexion torque prediction from time-series mechanomyogram (MMG) signals recorded during isometric contractions (i.e., a similar form to manual muscle testing procedure in clinical practice) and to evaluate its performance. Four different deep learning models in terms of model architecture (based on a stacked bidirectional long short-term memory and dense layers) were designed with different combinations of the number of units (from 32 to 512) and dropout ratio (from 0.0 to 0.8), and then evaluated for prediction performance by conducting the leave-one-subject-out cross-validation method from the 10-subject dataset. As a result, the models explained more variance in the untrained test dataset as the error metrics (e.g., root-mean-square error) decreased and as the slope of the relationship between the measured and predicted joint torques became closer to 1.0. Although the slope estimates appear to be sensitive to an individual dataset, >70% of the variance in nine out of 10 datasets was explained by the optimal model. These results demonstrated the feasibility of the proposed model as a potential tool to quantify average joint torque during a sustained isometric contraction.


Subject(s)
Ankle Joint , Isometric Contraction , Torque , Humans , Isometric Contraction/physiology , Male , Adult , Ankle Joint/physiology , Young Adult , Proof of Concept Study , Deep Learning , Algorithms , Myography/methods , Muscle Strength/physiology , Female , Muscle, Skeletal/physiology , Neural Networks, Computer , Reproducibility of Results , Biomechanical Phenomena
13.
J Electromyogr Kinesiol ; 76: 102885, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723398

ABSTRACT

Spinal cord injury (SCI) resulting in complex neuromuscular pathology is not sufficiently well understood. To better quantify neuromuscular changes after SCI, this study uses a clustering index (CI) method for surface electromyography (sEMG) clustering representation to investigate the relation between sEMG and torque in SCI survivors. The sEMG signals were recorded from 13 subjects with SCI and 13 gender-age matched able-bodied subjects during isometric contraction of the biceps brachii muscle at different torque levels using a linear electrode array. Two torque representations, maximum voluntary contraction (MVC%) and absolute torque, were used. CI values were calculated for sEMG. Regression analyses were performed on CI values and torque levels of elbow flexion, revealing a strong linear relationship. The slopes of regressions between SCI survivors and control subjects were compared. The findings indicated that the range of distribution of CI values and slopes was greater in subjects with SCI than in control subjects (p < 0.05). The increase or decrease in slope was also observed at the individual level. This suggests that the CI and its sEMG clustering-torque relation may serve as valuable quantitative indicators for determining neuromuscular lesions after SCI, contributing to the development of effective rehabilitation strategies for improving motor performance.


Subject(s)
Electromyography , Muscle, Skeletal , Spinal Cord Injuries , Humans , Spinal Cord Injuries/physiopathology , Electromyography/methods , Male , Female , Adult , Muscle, Skeletal/physiopathology , Cluster Analysis , Torque , Isometric Contraction/physiology , Middle Aged
14.
Sensors (Basel) ; 24(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38794110

ABSTRACT

Since isometric training is gaining popularity, some devices are being developed to test isometric force as an alternative to the more expensive force plates (FPs); thus, the aim of this study was to test the reliability and validity of "GSTRENGTH" for measuring PF in the isometric belt squat exercise. Five subjects performed 24 contractions at three different knee angles (90°, 105° and 120°) on two occasions (120 total cases). Peak force data were measured using FPs and a strain gauge (SG) and analyzed by Pearson's product-moment correlation coefficient, ICCs, Cronbach's alpha, a paired sample t-test and Bland-Altman plots. Perfect or almost perfect relationships (r: 0.999-1) were found with an almost perfect or perfect level of agreement (ICCs: 0.992-1; α: 0.998-1). The t-test showed significant differences for the raw data but not for the predictions by the equations obtained with the SG values. The Bland-Altman plots, when significant, showed trivial to moderate values for systematic bias in general. In conclusion, "GSTRENGTH" was shown to be a valid alternative to FPs for measuring PF.


Subject(s)
Isometric Contraction , Humans , Isometric Contraction/physiology , Male , Adult , Knee Joint/physiology , Reproducibility of Results , Biomechanical Phenomena/physiology , Female , Young Adult , Exercise/physiology
15.
J Electromyogr Kinesiol ; 76: 102881, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574588

ABSTRACT

Cortical motor neuron activity appears to drive lower motor neurons through two distinct frequency bands: the ß range (15-30 Hz) during weak muscle contractions and γ range (30-50 Hz) during strong contractions. It is unknown whether the frequency of cortical drive shifts continuously or abruptly between the ß and γ frequency bands as contraction strength changes. Intermuscular coherence (IMC) between synergistic arm muscles was used to assess how the frequency of common neuronal drive shifts with increasing contraction strength. Muscle activity was recorded by surface electromyography (EMG) from the biceps and brachioradialis in nine healthy adults performing 30-second isometric holds with added loads. IMC was calculated across the two muscle groups during the isometric contraction. Significant IMC was present in the 20 to 50 Hz range with all loads. Repeated measures ANOVA show the peak frequency of IMC increased significantly when load was added, from a peak of 32.7 Hz with no added load, to 35.3 Hz, 35.7 Hz, and 36.3 Hz with three-, five-, and ten-pound loads respectively. An increase in IMC frequency occurs in response to added load, suggesting that cortical drive functions over a range of frequencies as a function of an isometric contraction against load.


Subject(s)
Electromyography , Isometric Contraction , Muscle, Skeletal , Humans , Muscle, Skeletal/physiology , Male , Electromyography/methods , Isometric Contraction/physiology , Female , Adult , Weight-Bearing/physiology , Arm/physiology , Young Adult
16.
Scand J Med Sci Sports ; 34(4): e14621, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38597348

ABSTRACT

Tendon properties impact human locomotion, influencing sports performance, and injury prevention. Hamstrings play a crucial role in sprinting, particularly the biceps femoris long head (BFlh), which is prone to frequent injuries. It remains uncertain if BFlh exhibits distinct mechanical properties compared to other hamstring muscles. This study utilized free-hand three-dimensional ultrasound to assess morphological and mechanical properties of distal hamstrings tendons in 15 men. Scans were taken in prone position, with hip and knee extended, at rest and during 20%, 40%, 60%, and 80% of maximal voluntary isometric contraction of the knee flexors. Tendon length, volume, cross-sectional area (CSA), and anteroposterior (AP) and mediolateral (ML) widths were quantified at three locations. Longitudinal and transverse deformations, stiffness, strain, and stress were estimated. The ST had the greatest tendon strain and the lowest stiffness as well as the highest CSA and AP and ML width strain compared to other tendons. Biceps femoris short head (BFsh) exhibited the least strain, AP and ML deformation. Further, BFlh displayed the highest stiffness and stress, and BFsh had the lowest stress. Additionally, deformation varied by region, with the proximal site showing generally the lowest CSA strain. Distal tendon mechanical properties differed among the hamstring muscles during isometric knee flexions. In contrast to other bi-articular hamstrings, the BFlh high stiffness and stress may result in greater energy absorption by its muscle fascicles, rather than the distal tendon, during late swing in sprinting. This could partly account for the increased incidence of hamstring injuries in this muscle.


Subject(s)
Hamstring Muscles , Muscle, Skeletal , Male , Humans , Muscle, Skeletal/physiology , Tendons/diagnostic imaging , Tendons/physiology , Hamstring Muscles/physiology , Knee/diagnostic imaging , Knee/physiology , Isometric Contraction/physiology , Ultrasonography
17.
PeerJ ; 12: e17156, 2024.
Article in English | MEDLINE | ID: mdl-38584935

ABSTRACT

This cross-sectional study aimed to investigate whether athletes (ATHL) and non-athletes (NON-ATHL) individuals had similar accuracy in matching intended to actual force during ballistic (BAL) and tonic (TON) isometric contractions. In this cross-sectional study, the subjects were divided into ATHL (n = 20; 22.4 ± 2.3 yrs; 73.2 ± 15.7 kg; 1.76 ± 0.08 m) and NON-ATHL (n = 20; 24.6 ± 2.4 yrs; 68.2 ± 15.0 kg; 1.73 ± 0.1 m) groups. The isometric quadriceps strength was measured with a load cell applied to a custom-built chair. For each condition, subjects performed at first three maximal voluntary isometric contractions (MVIC) as reference. Then, subjects had to match three intended force intensities expressed in percentage of the MVIC (i.e., 25%, 50%, and 75%) without any external feedback. Subjects performed three trials for each force intensity. The accuracy (AC) was calculated as the absolute difference in percentage between the intended and the actual force. A Likert scale was administered for each trial to assess the subjective matching between the intended and the actual force. Statistical analysis showed that the ATHL group was more accurate (p < 0.001) than the NON-ATHL group. In contrast, the AC (p < 0.001) was lower when the force intensities increased independently from the group. Moreover, significantly higher AC (p < 0.001) and lower aggregate Likert scores (p < 0.001) were found in BAL than TON conditions. These results suggest that (i) sports practice could enhance muscle recruitment strategies by increasing the AC in the isometric task; (ii) differences between intended and actual force appeared to be intensity-dependent with lower AC at high force intensities; (iii) different control systems act in modulating BAL and TON contractions.


Subject(s)
Isometric Contraction , Sports , Humans , Athletes , Cross-Sectional Studies , Isometric Contraction/physiology , Quadriceps Muscle , Young Adult , Adult
18.
Scand J Med Sci Sports ; 34(5): e14638, 2024 May.
Article in English | MEDLINE | ID: mdl-38671559

ABSTRACT

This study aimed to examine the temporal dynamics of muscle-tendon adaptation and whether differences between their sensitivity to mechano-metabolic stimuli would lead to non-uniform changes within the triceps surae (TS) muscle-tendon unit (MTU). Twelve young adults completed a 12-week training intervention of unilateral isometric cyclic plantarflexion contractions at 80% of maximal voluntary contraction until failure to induce a high TS activity and hence metabolic stress. Each participant trained one limb at a short (plantarflexed position, 115°: PF) and the other at a long (dorsiflexed position, 85°: DF) MTU length to vary the mechanical load. MTU mechanical, morphological, and material properties were assessed biweekly via simultaneous ultrasonography-dynamometry and magnetic resonance imaging. Our hypothesis that tendon would be more sensitive to the operating magnitude of tendon strain but less to metabolic stress exercise was confirmed as tendon stiffness, Young's modulus, and tendon size were only increased in the DF condition following the intervention. The PF leg demonstrated a continuous increment in maximal AT strain (i.e., higher mechanical demand) over time along with lack of adaptation in its biomechanical properties. The premise that skeletal muscle adapts at a higher rate than tendon and does not require high mechanical load to hypertrophy or increase its force potential during exercise was verified as the adaptive changes in morphological and mechanical properties of the muscle did not differ between DF and PF. Such differences in muscle-tendon sensitivity to mechano-metabolic stimuli may temporarily increase MTU imbalances that could have implications for the risk of tendon overuse injury.


Subject(s)
Adaptation, Physiological , Magnetic Resonance Imaging , Muscle, Skeletal , Tendons , Ultrasonography , Humans , Male , Young Adult , Muscle, Skeletal/physiology , Muscle, Skeletal/diagnostic imaging , Tendons/physiology , Tendons/diagnostic imaging , Adaptation, Physiological/physiology , Biomechanical Phenomena , Adult , Female , Isometric Contraction/physiology , Elastic Modulus/physiology
19.
J Biomech ; 167: 112089, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38608614

ABSTRACT

Skeletal muscles are complex structures with nonlinear constitutive properties. This complexity often requires finite element (FE) modeling to better understand muscle behavior and response to activation, especially the fiber strain distributions that can be difficult to measure in vivo. However, many FE muscle models designed to study fiber strain do not include force-velocity behavior. To investigate force-velocity property impact on strain distributions within skeletal muscle, we modified a muscle constitutive model with active and passive force-length properties to include force-velocity properties. We implemented the new constitutive model as a plugin for the FE software FEBio and applied it to four geometries: 1) a single element, 2) a multiple-element model representing a single fiber, 3) a model of tapering fibers, and 4) a model representing the bicep femoris long head (BFLH) morphology. Maximum fiber velocity and boundary conditions of the finite element models were varied to test their influence on fiber strain distribution. We found that force-velocity properties in the constitutive model behaved as expected for the single element and multi-element conditions. In the tapered fiber models, fiber strain distributions were impacted by changes in maximum fiber velocity; the range of strains increased with maximum fiber velocity, which was most noted in isometric contraction simulations. In the BFLH model, maximum fiber velocity had minimal impact on strain distributions, even in the context of sprinting. Taken together, the combination of muscle model geometry, activation, and displacement parameters play a critical part in determining the magnitude of impact of force-velocity on strain distribution.


Subject(s)
Hamstring Muscles , Muscle Contraction , Muscle Contraction/physiology , Computer Simulation , Muscle, Skeletal/physiology , Isometric Contraction/physiology , Muscle Fibers, Skeletal/physiology , Models, Biological
20.
PLoS One ; 19(4): e0298958, 2024.
Article in English | MEDLINE | ID: mdl-38564497

ABSTRACT

Mental fatigue is common in society, but its effects on force production capacities remain unclear. This study aimed to investigate the impact of mental fatigue on maximal force production, rate of force development-scaling factor (RFD-SF), and force steadiness during handgrip contractions. Fourteen participants performed two randomized sessions, during which they either carried out a cognitively demanding task (i.e., a visual attention task) or a cognitively nondemanding task (i.e., documentary watching for 62 min). The mental fatigue was evaluated subjectively and objectively (performances and electroencephalography). Maximal voluntary contraction (MVC) force, RFD-SF, and force steadiness (i.e., force coefficient of variation at submaximal intensities; 25, 50, and 75% of MVC) were recorded before and after both tasks. The feeling of mental fatigue was much higher after completing the cognitively demanding task than after documentary watching (p < .001). During the cognitively demanding task, mental fatigue was evidenced by increased errors, missed trials, and decreased N100 amplitude over time. While no effect was reported on force steadiness, both tasks induced a decrease in MVC (p = .040), a force RFD-SF lower slope (p = .011), and a reduction in the coefficient of determination (p = .011). Nevertheless, these effects were not explicitly linked to mental fatigue since they appeared both after the mentally fatiguing task and after watching the documentary. The study highlights the importance of considering cognitive engagement and mental load when optimizing motor performance to mitigate adverse effects and improve force production capacities.


Subject(s)
Hand Strength , Muscle Fatigue , Humans , Electromyography , Hand , Time Factors , Muscle, Skeletal , Isometric Contraction , Muscle Contraction , Mental Fatigue
SELECTION OF CITATIONS
SEARCH DETAIL
...