Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.260
Filter
1.
Proc Biol Sci ; 291(2024): 20232791, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38835273

ABSTRACT

Sociality underpins major evolutionary transitions and significantly influences the structure and function of complex ecosystems. Social insects, seen as the pinnacle of sociality, have traits like obligate sterility that are considered 'master traits', used as single phenotypic measures of this complexity. However, evidence is mounting that completely aligning both phenotypic and evolutionary social complexity, and having obligate sterility central to both, is erroneous. We hypothesize that obligate and functional sterility are insufficient in explaining the diversity of phenotypic social complexity in social insects. To test this, we explore the relative importance of these sterility traits in an understudied but diverse taxon: the termites. We compile the largest termite social complexity dataset to date, using specimen and literature data. We find that although functional and obligate sterility explain a significant proportion of variance, neither trait is an adequate singular proxy for the phenotypic social complexity of termites. Further, we show both traits have only a weak association with the other social complexity traits within termites. These findings have ramifications for our general comprehension of the frameworks of phenotypic and evolutionary social complexity, and their relationship with sterility.


Subject(s)
Isoptera , Social Behavior , Isoptera/physiology , Animals , Biological Evolution , Phenotype , Behavior, Animal
2.
Sci Rep ; 14(1): 9993, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38693201

ABSTRACT

Termites are widely distributed globally and serve as a valuable food source in many countries. However, information on the myriad nutritional benefits of processed termite products in African markets remain largely unexploited. This study evaluated the phytochemicals, fatty acids, amino acids, minerals, vitamins and proximate composition of the edible winged termites (Macrotermes spp.) from three major Counties of Kenya. A total of 9 flavonoids, 5 alkaloids, and 1 cytokinin were identified. The oil content varied from 33 to 46%, exhibiting significant levels of beneficial omega 3 fatty acids, such as methyl (9Z,12Z,15Z)-octadecatrienoate and methyl (5Z,8Z,11Z,14Z,17Z)-eicosapentaenoate, ranging from 82.7-95.1 to 6.3-8.1 µg/g, respectively, across the different regions. Four essential and cereal-limiting amino acids lysine (1.0-1.3 mg/g), methionine (0.08-0.1 mg/g), leucine (0.6-0.9 mg/g) and threonine (0.1-0.2 mg/g), were predominant. Moreover, termites had a rich profile of essential minerals, including iron (70.7-111.8 mg/100 g), zinc (4.4-16.2 mg/100 g) and calcium (33.1-53.0 mg/100 g), as well as vitamins A (2.4-6.4 mg/kg), C (0.6-1.9 mg/kg) and B12 (10.7-17.1 mg/kg). The crude protein (32.2-44.8%) and fat (41.2-49.1%) contents of termites from the various Counties was notably high. These findings demonstrated the promising nutrients potential of winged termites and advocate for their sustainable utilization in contemporary efficacious functional food applications to combat malnutrition.


Subject(s)
Amino Acids , Isoptera , Nutritive Value , Animals , Amino Acids/analysis , Minerals/analysis , Vitamins/analysis , Fatty Acids/analysis , Phytochemicals/analysis , Kenya , Africa , Humans
3.
Proc Biol Sci ; 291(2023): 20232711, 2024 May.
Article in English | MEDLINE | ID: mdl-38772420

ABSTRACT

In social insect colonies, selfish behaviour due to intracolonial conflict among members can result in colony-level costs despite close relatedness. In certain termite species, queens use asexual reproduction for within-colony queen succession but rely on sexual reproduction for worker and alate production, resulting in multiple half-clones of a single primary queen competing for personal reproduction. Our study demonstrates that competition over asexual queen succession among different clone types leads to the overproduction of parthenogenetic offspring, resulting in the production of dysfunctional parthenogenetic alates. By genotyping the queens of 23 field colonies of Reticulitermes speratus, we found that clone variation in the queen population reduces as colonies develop. Field sampling of alates and primary reproductives of incipient colonies showed that overproduced parthenogenetic offspring develop into alates that have significantly smaller body sizes and much lower survivorship than sexually produced alates. Our results indicate that while the production of earlier and more parthenogenetic eggs is advantageous for winning the competition for personal reproduction, it comes at a great cost to the colony. Thus, this study highlights the evolutionary interplay between individual-level and colony-level selection on parthenogenesis by queens.


Subject(s)
Isoptera , Parthenogenesis , Animals , Isoptera/physiology , Isoptera/genetics , Female , Reproduction , Social Behavior
4.
Proc Biol Sci ; 291(2023): 20232439, 2024 May.
Article in English | MEDLINE | ID: mdl-38772424

ABSTRACT

Genetic changes that enabled the evolution of eusociality have long captivated biologists. More recently, attention has focussed on the consequences of eusociality on genome evolution. Studies have reported higher molecular evolutionary rates in eusocial hymenopteran insects compared with their solitary relatives. To investigate the genomic consequences of eusociality in termites, we analysed nine genomes, including newly sequenced genomes from three non-eusocial cockroaches. Using a phylogenomic approach, we found that termite genomes have experienced lower rates of synonymous substitutions than those of cockroaches, possibly as a result of longer generation times. We identified higher rates of non-synonymous substitutions in termite genomes than in cockroach genomes, and identified pervasive relaxed selection in the former (24-31% of the genes analysed) compared with the latter (2-4%). We infer that this is due to reductions in effective population size, rather than gene-specific effects (e.g. indirect selection of caste-biased genes). We found no obvious signature of increased genetic load in termites, and postulate efficient purging of deleterious alleles at the colony level. Additionally, we identified genomic adaptations that may underpin caste differentiation, such as genes involved in post-translational modifications. Our results provide insights into the evolution of termites and the genomic consequences of eusociality more broadly.


Subject(s)
Genome, Insect , Isoptera , Selection, Genetic , Animals , Isoptera/genetics , Phylogeny , Evolution, Molecular , Cockroaches/genetics , Social Behavior
5.
Elife ; 122024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597934

ABSTRACT

Termites build complex nests which are an impressive example of self-organization. We know that the coordinated actions involved in the construction of these nests by multiple individuals are primarily mediated by signals and cues embedded in the structure of the nest itself. However, to date there is still no scientific consensus about the nature of the stimuli that guide termite construction, and how they are sensed by termites. In order to address these questions, we studied the early building behavior of Coptotermes gestroi termites in artificial arenas, decorated with topographic cues to stimulate construction. Pellet collections were evenly distributed across the experimental setup, compatible with a collection mechanism that is not affected by local topography, but only by the distribution of termite occupancy (termites pick pellets at the positions where they are). Conversely, pellet depositions were concentrated at locations of high surface curvature and at the boundaries between different types of substrate. The single feature shared by all pellet deposition regions was that they correspond to local maxima in the evaporation flux. We can show analytically and we confirm experimentally that evaporation flux is directly proportional to the local curvature of nest surfaces. Taken together, our results indicate that surface curvature is sufficient to organize termite building activity and that termites likely sense curvature indirectly through substrate evaporation. Our findings reconcile the apparently discordant results of previous studies.


Subject(s)
Isoptera , Humans , Animals , Consensus , Cues , Personality , Physical Phenomena
6.
J Nat Prod ; 87(4): 935-947, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38575516

ABSTRACT

We report on the use of nitric oxide-mediated transcriptional activation (NOMETA) as an innovative means to detect and access new classes of microbial natural products encoded within silent biosynthetic gene clusters. A small library of termite nest- and mangrove-derived fungi and actinomyces was subjected to cultivation profiling using a miniaturized 24-well format approach (MATRIX) in the presence and absence of nitric oxide, with the resulting metabolomes subjected to comparative chemical analysis using UPLC-DAD and GNPS molecular networking. This strategy prompted study of Talaromyces sp. CMB-TN6F and Coccidiodes sp. CMB-TN39F, leading to discovery of the triterpene glycoside pullenvalenes A-D (1-4), featuring an unprecedented triterpene carbon skeleton and rare 6-O-methyl-N-acetyl-d-glucosaminyl glycoside residues. Structure elucidation of 1-4 was achieved by a combination of detailed spectroscopic analysis, chemical degradation, derivatization and synthesis, and biosynthetic considerations.


Subject(s)
Aminoglycosides , Isoptera , Nitric Oxide , Triterpenes , Animals , Triterpenes/pharmacology , Triterpenes/chemistry , Triterpenes/metabolism , Nitric Oxide/biosynthesis , Nitric Oxide/metabolism , Molecular Structure , Isoptera/microbiology , Aminoglycosides/pharmacology , Australia , Transcriptional Activation/drug effects , Fungi/metabolism , Talaromyces/chemistry , Talaromyces/metabolism , Actinomyces/metabolism , Actinomyces/drug effects
7.
Arthropod Struct Dev ; 79: 101346, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38520874

ABSTRACT

The large abundance of termites is partially achieved by their defensive abilities. Stylotermitidae represented by a single extant genus, Stylotermes, is a member of a termite group Neoisoptera that encompasses 83% of termite species and 94% of termite genera and is characterized by the presence of the frontal gland. Within Neoisoptera, Stylotermitidae represents a species-poor sister lineage of all other groups. We studied the structure of the frontal, labral and labial glands in soldiers and workers of Stylotermes faveolus, and the composition of the frontal gland secretion in S. faveolus and Stylotermes halumicus. We show that the frontal gland is a small active secretory organ in soldiers and workers. It produces a cocktail of monoterpenes in soldiers, and some of these monoterpenes and unidentified proteins in workers. The labral and labial glands are developed similarly to other termite species and contribute to defensive activities (labral in both castes, labial in soldiers) or to the production of digestive enzymes (labial in workers). Our results support the importance of the frontal gland in the evolution of Neoisoptera. Toxic, irritating and detectable monoterpenes play defensive and pheromonal functions and are likely critical novelties contributing to the ecological success of these termites.


Subject(s)
Cockroaches , Isoptera , Animals , Pheromones/metabolism , Monoterpenes/metabolism
8.
J Nat Prod ; 87(3): 591-599, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38442389

ABSTRACT

A new polyol polyketide, named retinestatin (1), was obtained and characterized from the culture of a Streptomyces strain, which was isolated from a subterranean nest of the termite Reticulitermes speratus kyushuensis Morimoto. The planar structure of 1 was elucidated on the basis of the cumulative analysis of ultraviolet, infrared, mass spectrometry, and nuclear magnetic resonance spectroscopic data. The absolute configuration of 1 at 12 chiral centers was successfully assigned by employing a J-based configuration analysis in combination with ROESY correlations, a quantum mechanics-based computational approach to calculate NMR chemical shifts, and a 3 min flash esterification by Mosher's reagents followed by NMR analysis. Biological evaluation of retinestatin (1) using an in vitro model of Parkinson's disease revealed that 1 protected SH-SY5Y dopaminergic cells from MPP+-induced cytotoxicity, indicating its neuroprotective effects.


Subject(s)
Isoptera , Neuroblastoma , Polyketides , Polymers , Streptomyces , Animals , Humans , Polyketides/chemistry , Molecular Structure , Streptomyces/chemistry
9.
Sci Total Environ ; 926: 171760, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38537830

ABSTRACT

Ecosystems that offer carbon sequestration by leaching bicarbonate to groundwater are valuable natural capital. One region that may offer this service is the west coast of South Africa. Over 20 % is covered by soil mounds ("heuweltjies") up to 40 m diameter, 2 m high, inhabited by the southern harvester termite Microhodotermes viator and enriched in soil organic and inorganic carbon and soluble minerals. We aimed to generate radiogenic and stable isotope data for soils and groundwater in a region where these data are absent, to 1) verify the atmosphere-soil-groundwater link, and 2) resolve the timing and pattern of calcite dissolution and water infiltration in the landscape. Results show that soil and groundwater sulfate have the same marine aerosol source. Episodic calcite dissolution in mound centers, which increased during periods of global cooling, has been set against background input of marine aerosols since before the Last Glacial according to radiocarbon (14C) ages. Our data push back soil organic carbon 14C ages of inhabited termite mounds to 13-19 ka (kiloannum, thousand years before present), nest carbonate 14C ages to 33 ka, and mound soil carbonate 14C ages to 34 ka, making these the oldest active termite features ever dated. These ages are consistent with soil organic carbon and carbonate 14C ages of regional, non-mound, coastal petrocalcic horizons formed by accumulation of carbonate leached from their overlying aeolian dune fields. Harvesting activities of termites inject younger organic material around nests >1 m deep, leading to continuous renewal of important soil carbon reservoirs at depth. Termite bioturbation increases the system's ability to dissolve carbonate. The central, bioturbated part of the mounds have greater infiltration depths and greater calcite dissolution, whereas surrounding soils experienced more surface runoff. Calcareous termite mounds offer a mechanism to sequester CO2 through dissolution and leaching of soil carbonate-bicarbonate to groundwater.


Subject(s)
Ecosystem , Isoptera , Animals , Soil , Carbon , Bicarbonates , South Africa , Carbonates , Calcium Carbonate
10.
Proc Natl Acad Sci U S A ; 121(12): e2308922121, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38442141

ABSTRACT

Fossils encompassing multiple individuals provide rare direct evidence of behavioral interactions among extinct organisms. However, the fossilization process can alter the spatial relationship between individuals and hinder behavioral reconstruction. Here, we report a Baltic amber inclusion preserving a female-male pair of the extinct termite species Electrotermes affinis. The head-to-abdomen contact in the fossilized pair resembles the tandem courtship behavior of extant termites, although their parallel body alignment differs from the linear alignment typical of tandem runs. To solve this inconsistency, we simulated the first stage of amber formation, the immobilization of captured organisms, by exposing living termite tandems to sticky surfaces. We found that the posture of the fossilized pair matches trapped tandems and differs from untrapped tandems. Thus, the fossilized pair likely is a tandem running pair, representing the direct evidence of the mating behavior of extinct termites. Furthermore, by comparing the postures of partners on a sticky surface and in the amber inclusion, we estimated that the male likely performed the leader role in the fossilized tandem. Our results demonstrate that past behavioral interactions can be reconstructed despite the spatial distortion of body poses during fossilization. Our taphonomic approach demonstrates how certain behaviors can be inferred from fossil occurrences.


Subject(s)
Isoptera , Humans , Female , Male , Animals , Amber , Extinction, Psychological , Fossils , Posture
11.
Sci Prog ; 107(1): 368504241236026, 2024.
Article in English | MEDLINE | ID: mdl-38490163

ABSTRACT

Termites cause a serious menace to wooden structures all over the world. They rely mostly on entozoic fauna residing in their hindgut for the digestion of cellulosic and hemicellulosic materials. One of the ways to control termites is through their gut symbionts. The present study was designed to characterize the hindgut bacteria isolated from Odontotermes obesus and Heterotermes indicola. Furthermore, the growth inhibitory effect of eight tropical plant extracts was investigated to find out potential control agents for these bacterial isolates. The characterization of bacteria was carried out based on their morphology, Gram staining, biochemical and amplification of 16SrRNA gene. Amplified products were sequenced to confirm their relationship with bacterial isolates from termites of other regions. The growth inhibitory effect of ethanolic leaf extracts of eight plants was evaluated in an invitro agar well diffusion method. Qualitative and quantitative phytochemical analysis of the most effective plant was carried out to learn about bioactive agents. The results confirmed the presence of five bacteria from each termite species. The Bacillus cereus, Escherichia coli, and Lysinibacillus fusiformis were common to both termites whereas Lysinibacillus xylanilyticus and Lysinibacillus macrolides were found in O. obesus only and H. indicola harbor Bacillus subtilis and Shigella sonnei in addition to common three ones. Among the plant extracts of Carica papaya, Eucalyptus camaldulensis, Osmium basilicum, Grevillea robusta, Eucalyptus globulus, Pongamia pinnata, Mentha longifolia, and Melia azedarach, the G. robusta > E. camaldulensis > O. basilicum were found to have growth inhibitory effects with increasing concentrations from 100 to 2000 µg/mL. The biodiversity of the bacterial fauna is important for the biological control of termites. Leaf extracts of these medicinal plants can be used to control termite infestation in an environment-friendly manner to save huge economic loss.


Subject(s)
Isoptera , Animals , Isoptera/microbiology , Bacteria/genetics , Plant Extracts/pharmacology , Biodiversity
12.
Behav Processes ; 217: 105012, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38493970

ABSTRACT

It is generally believed that termites can't learn and are not "intelligent". This study aimed to test whether termites could have any form of memory. A Y-shaped test device with one release chamber and two identical test chambers was designed and constructed by 3D printing. A colony of damp wood termites was harvested from the wild. Worker termites were randomly selected for experiment. Repellent odors that could mimic the alarm pheromone for termites were first identified. Among all substances tested, a tea tree oil and lemon juice were found to contain repellent odors for the tested termites, as they significantly reduced the time that termites spent in the chamber treated with these substances. As control, a trail pheromone was found to be attractive. Subsequently, a second cohort of termites were operant conditioned by punishment using both tea tree oil and lemon juice, and then tested for their ability to remember the path that could lead to the repellant odors. The test device was thoroughly cleaned between trials. It was found that conditioned termites displayed a reduced tendency to choose the path that led to expectant punishment as compared with naïve termites. Thus, it is concluded that damp wood termites are capable of learning and forming "fear memory", indicative of "intelligence" in termites. This result challenges established presumption about termites' intelligence.


Subject(s)
Isoptera , Odorants , Isoptera/physiology , Animals , Conditioning, Operant/physiology , Pheromones/pharmacology , Memory/physiology , Learning/physiology , Tea Tree Oil/pharmacology , Citrus , Insect Repellents/pharmacology , Behavior, Animal/physiology , Punishment
13.
Heredity (Edinb) ; 132(5): 257-266, 2024 May.
Article in English | MEDLINE | ID: mdl-38509263

ABSTRACT

Hybridization between invasive pest species may lead to significant genetic and economic impacts that require close monitoring. The two most invasive and destructive termite species worldwide, Coptotermes formosanus Shiraki and Coptotermes gestroi (Wasmann), have the potential for hybridization in the field. A three-year field survey conducted during the dispersal flight season of Coptotermes in Taiwan identified alates with atypical morphology, which were confirmed as hybrids of the two Coptotermes species using microsatellite and mitochondrial analyses. Out of 27,601 alates collected over three years, 4.4% were confirmed as hybrid alates, and some advanced hybrids (>F1 generations) were identified. The hybrid alates had a dispersal flight season that overlapped with the two parental species 13 out of 15 times. Most of the hybrid alates were females, implying that mating opportunities beyond F1 may primarily be possible through female hybrids. However, the incipient colony growth results from all potential mating combinations suggest that only backcross colonies with hybrid males could sometimes lead to brood development. The observed asymmetrical viability and fertility of hybrid alates may critically reduce the probability of advanced-hybrid colonies being established in the field.


Subject(s)
Gene Flow , Hybridization, Genetic , Isoptera , Microsatellite Repeats , Animals , Isoptera/genetics , Isoptera/physiology , Female , Male , Microsatellite Repeats/genetics , Taiwan , Introduced Species , DNA, Mitochondrial/genetics
14.
Curr Opin Insect Sci ; 63: 101183, 2024 06.
Article in English | MEDLINE | ID: mdl-38428818

ABSTRACT

In social insects, interactions among colony members trigger caste differentiation with morphological modifications. During caste differentiation in termites, body parts and caste-specific morphologies are modified during postembryonic development under endocrine controls such as juvenile hormone (JH) and ecdysone. In addition to endocrine factors, developmental toolkit genes such as Hox- and appendage-patterning genes also contribute to the caste-specific body part modifications. These toolkits are thought to provide spatial information for specific morphogenesis. During social evolution, the complex crosstalks between physiological and developmental mechanisms should be established, leading to the sophisticated caste systems. This article reviews recent studies on these mechanisms underlying the termite caste differentiation and addresses implications for the evolution of caste systems in termites.


Subject(s)
Isoptera , Juvenile Hormones , Animals , Isoptera/genetics , Isoptera/physiology , Isoptera/growth & development , Juvenile Hormones/metabolism , Gene Expression Regulation, Developmental , Ecdysone/metabolism
15.
J Insect Sci ; 24(2)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38491951

ABSTRACT

The mitogenome sequence data have been widely used in inferring the phylogeny of insects. In this study, we determined the complete mitogenome for Macrotermes sp. (Termitidae, Macrotermitinae) using next-generation sequencing. Macrotermes sp. possesses a typical insect mitogenome, displaying an identical gene order and gene content to other existing termite mitogenomes. We present the first prediction of the secondary structure of ribosomal RNA genes in termites. The rRNA secondary structures of Macrotermes sp. exhibit similarities to closely related insects and also feature distinctive characteristics in their helical structures. Together with 321 published mitogenomes of termites as ingroups and 8 cockroach mitogenomes as outgroups, we compiled the most comprehensive mitogenome sequence matrix for Termitoidae to date. Phylogenetic analyses were conducted using datasets employing different data coding strategies and various inference methods. Robust relationships were recovered at the family or subfamily level, demonstrating the utility of comprehensive mitogenome sampling in resolving termite phylogenies. The results supported the monophyly of Termitoidae, and consistent relationships within this group were observed across different analyses. Mastotermitidae was consistently recovered as the sister group to all other termite families. The families Hodotermitidae, Stolotermitidae, and Archotermopsidae formed the second diverging clade, followed by the Kalotermitidae. The Neoisoptera was consistently supported with strong node support, with Stylotermitidae being sister to the remaining families. Rhinotermitidae was found to be non-monophyletic, and Serritermitidae nested within the basal clades of Rhinotermitidae and was sister to Psammotermitinae. Overall, our phylogenetic results are largely consistent with earlier mitogenome studies.


Subject(s)
Cockroaches , Genome, Mitochondrial , Isoptera , Humans , Animals , Phylogeny , Isoptera/genetics , Cockroaches/genetics , Insecta/genetics
16.
PeerJ ; 12: e16843, 2024.
Article in English | MEDLINE | ID: mdl-38436016

ABSTRACT

The soldier caste is one of the most distinguished castes inside the termite colony. The mechanism of soldier caste differentiation has mainly been studied at the transcriptional level, but the function of microRNAs (miRNAs) in soldier caste differentiation is seldom studied. In this study, the workers of Coptotermes formosanus Shiraki were treated with methoprene, a juvenile hormone analog which can induce workers to transform into soldiers. The miRNomes of the methoprene-treated workers and the controls were sequenced. Then, the differentially expressed miRNAs (DEmiRs) were corrected with the differentially expressed genes DEGs to construct the DEmiR-DEG regulatory network. Afterwards, the DEmiR-regulated DEGs were subjected to GO enrichment and KEGG enrichment analysis. A total of 1,324 miRNAs were identified, among which 116 miRNAs were screened as DEmiRs between the methoprene-treated group and the control group. A total of 4,433 DEmiR-DEG pairs were obtained. No GO term was recognized as significant in the cellular component, molecular function, or biological process categories. The KEGG enrichment analysis of the DEmiR-regulated DEGs showed that the ribosome biogenesis in eukaryotes and circadian rhythm-fly pathways were enriched. This study demonstrates that DEmiRs and DEGs form a complex network regulating soldier caste differentiation in termites.


Subject(s)
Isoptera , MicroRNAs , Animals , Isoptera/genetics , Methoprene , Circadian Rhythm , Control Groups , MicroRNAs/genetics
17.
J Morphol ; 285(3): e21684, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38439588

ABSTRACT

Among marsupials, the endangered numbat (Myrmecobius fasciatus) is the only obligate myrmecophage with a diet comprised strictly of termites. Like many other specialised myrmecophagous mammals, numbats have a gracile and highly specialised skull morphology with an elongated rostrum and small braincase. Myrmecobiidae is one of four taxonomic families within the Australasian marsupial order Dasyuromorphia, and to date, the muscular anatomy of any member of this group is relatively poorly known. We utilised microdissection and contrast-enhanced microcomputed tomography scanning to provide the first comprehensive qualitative and quantitative descriptions of jaw muscle anatomy in numbats and quolls (Dasuyrus species). The arrangement of the jaw muscles across these species was conservative, both in gross anatomy and muscle proportions, corresponding to a 'generalised' mammalian pattern. In contrast to Dasyurus, the jaw muscles of the numbat were greatly reduced. Many aspects of the muscle anatomy of the numbat were similar to patterns reported in other myrmecophagous species, particularly a greatly reduced temporalis muscle. Unusually, the digastric muscle in the numbat was comprised of a single, large anterior belly while the posterior belly was absent. We propose that the enlarged anterior belly of the digastric may be linked to jaw stabilisation and coordination of tongue movements during feeding. The lateral insertion and fascial connection of the digastric to the tongue in numbats may also aid in distributing stress evenly across the jaw and minimise muscle fatigue. The muscle descriptions and three-dimensional models provided in this study will facilitate further analysis of musculoskeletal adaptation and evolution within the Dasyuromorphia.


Subject(s)
Isoptera , Marsupialia , Humans , Animals , X-Ray Microtomography , Neck Muscles , Skull
18.
J Antibiot (Tokyo) ; 77(5): 299-305, 2024 May.
Article in English | MEDLINE | ID: mdl-38528114

ABSTRACT

Strain Odt1-22T, an insect-derived actinomycete was isolated from a termite (Odontotermes formosanus) that was collected from Chanthaburi province, Thailand. Strain Odt1-22T was aerobic, Gram-stain-positive, and produced bud-like spore chain on the substrate hypha. According to chemotaxonomic analysis, strain Odt1-22T contained meso-diaminopimelic acid in peptidoglycan and the whole-cell hydrolysates contained arabinose, galactose, glucose, and ribose. The major menaquinone was MK-8(H4). The diagnostic phospholipids were diphosphatidylglycerol, hydroxyphosphatidylethanolamine, phosphatidylethanolamine and phosphatidylglycerol. Phylogenetic analysis based on 16 S rRNA gene sequence revealed that strain Odt1-22T was identified to the genus Actinomycetospora and showed high similarity values with A. chiangmaiensis DSM 45062 T (99.24%), A. soli SF1T (99.24%) and A. corticicola 014-5 T (98.17%). The genomic size of strain Odt1-22T was 6.6 Mbp with 73.8% G + C content and 6355 coding sequences (CDSs). The genomic analysis, strain Odt1-22T and closely related species A. chiangmaiensis DSM 45062 T, A. soli SF1T and A. corticicola DSM 45772 T displayed the values of average nucleotide identity-blast (ANIb) at 83.7-84.1% and MUMmer (ANIm) at 86.6-87.0%. Moreover, the results of digital DNA-DNA hybridization values between strain Odt1-22T and related Actinomycetospora species were 45.8-50.5% that lower than the threshold value of commonly used to delineate separated species level. On the basis of phenotypic, chemotaxonomic, and genotypic data, strain Odt1-22T represented a novel species within the genus Actinomycetospora, for which the name Actinomycetospora termitidis sp. nov. is proposed. The type strain of the species is Odt1-22T (= TBRC 16192 T = NBRC 115965 T).


Subject(s)
Isoptera , Phylogeny , RNA, Ribosomal, 16S , Animals , Isoptera/microbiology , RNA, Ribosomal, 16S/genetics , Thailand , DNA, Bacterial/genetics , Actinobacteria/genetics , Actinobacteria/isolation & purification , Actinobacteria/classification , Diaminopimelic Acid , Vitamin K 2/chemistry , Base Composition , Phospholipids/chemistry , Sequence Analysis, DNA
19.
Zootaxa ; 5399(5): 505-516, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38480123

ABSTRACT

We here propose a species group within the genus Platydracus, the brachycerus group, that is very likely associated with termites and includes three known species: Platydracus brachycerus Smetana & Davies, 2000; Platydracus juang Smetana, 2005; and Platydracus donnyi Rougemont, 2015. We also describe three new species belonging to this group, all from China: P. smetanai sp. n. (Zhejiang, Anhui, Hunan, Guangxi), P. gracilis sp. n. (Guangxi) and P. paragracilis sp. n. (Yunnan). Platydracus juang is newly recorded from Hunan, Guangxi, Guangdong and Hainan provinces. A key to species of the Platydracus brachycerus group is provided.


Subject(s)
Coleoptera , Isoptera , Animals , China , Animal Distribution
20.
PeerJ ; 12: e16936, 2024.
Article in English | MEDLINE | ID: mdl-38435985

ABSTRACT

Reticulitermes flavipes, one of the most destructive subterranean termite species, has been detected for the first time in an arid territory: Lanzarote (Canary Islands, Spain). This invasive species was introduced into several countries but never such a dry region. Although there are places with presence of this termite at similar or even higher temperatures, none has annual rainfall (10.1 mm) as low as Lanzarote. On this island it is present in semi-desert, near an affected urban area. Distribution, genetic, climate and host-plant data are evaluated to track and understand its invasion process in the archipelago.


Subject(s)
Cockroaches , Isoptera , Animals , Climate , Introduced Species , Spain
SELECTION OF CITATIONS
SEARCH DETAIL
...