Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.831
Filter
1.
PLoS One ; 19(5): e0303992, 2024.
Article in English | MEDLINE | ID: mdl-38776314

ABSTRACT

The phytohormone auxin plays a critical role in plant growth and development. Despite significant progress in elucidating metabolic pathways of the primary bioactive auxin, indole-3-acetic acid (IAA), over the past few decades, key components such as intermediates and enzymes have not been fully characterized, and the dynamic regulation of IAA metabolism in response to environmental signals has not been completely revealed. In this study, we established a protocol employing a highly sensitive liquid chromatography-mass spectrometry (LC-MS) instrumentation and a rapid stable isotope labeling approach. We treated Arabidopsis seedlings with two stable isotope labeled precursors ([13C6]anthranilate and [13C8, 15N1]indole) and monitored the label incorporation into proposed indolic compounds involved in IAA biosynthetic pathways. This Stable Isotope Labeled Kinetics (SILK) method allowed us to trace the turnover rates of IAA pathway precursors and product concurrently with a time scale of seconds to minutes. By measuring the entire pathways over time and using different isotopic tracer techniques, we demonstrated that these methods offer more detailed information about this complex interacting network of IAA biosynthesis, and should prove to be useful for studying auxin metabolic network in vivo in a variety of plant tissues and under different environmental conditions.


Subject(s)
Arabidopsis , Indoleacetic Acids , Isotope Labeling , Arabidopsis/metabolism , Indoleacetic Acids/metabolism , Isotope Labeling/methods , Kinetics , Chromatography, Liquid/methods , Seedlings/metabolism , Seedlings/growth & development , Carbon Isotopes , Mass Spectrometry/methods
2.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731875

ABSTRACT

Mass spectrometry has become the most prominent yet evolving technology in quantitative proteomics. Today, a number of label-free and label-based approaches are available for the relative and absolute quantification of proteins and peptides. However, the label-based methods rely solely on the employment of stable isotopes, which are expensive and often limited in availability. Here we propose a label-based quantification strategy, where the mass difference is identified by the differential alkylation of cysteines using iodoacetamide and acrylamide. The alkylation reactions were performed under identical experimental conditions; therefore, the method can be easily integrated into standard proteomic workflows. Using high-resolution mass spectrometry, the feasibility of this approach was assessed with a set of tryptic peptides of human serum albumin. Several critical questions, such as the efficiency of labeling and the effect of the differential alkylation on the peptide retention and fragmentation, were addressed. The concentration of the quality control samples calculated against the calibration curves were within the ±20% acceptance range. It was also demonstrated that heavy labeled peptides exhibit a similar extraction recovery and matrix effect to light ones. Consequently, the approach presented here may be a viable and cost-effective alternative of stable isotope labeling strategies for the quantification of cysteine-containing proteins.


Subject(s)
Acrylamide , Cysteine , Iodoacetamide , Proteomics , Iodoacetamide/chemistry , Alkylation , Cysteine/chemistry , Cysteine/analysis , Acrylamide/chemistry , Acrylamide/analysis , Humans , Proteomics/methods , Mass Spectrometry/methods , Isotope Labeling/methods , Peptides/chemistry , Peptides/analysis , Tandem Mass Spectrometry/methods
3.
Appl Microbiol Biotechnol ; 108(1): 318, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700733

ABSTRACT

DNA-based stable isotope probing (DNA-SIP) technology has been widely employed to trace microbes assimilating target substrates. However, the fractions with labelled universal genes are sometimes difficult to distinguish when detected by quantitative real-time PCR. In this experiment, three paddy soils (AQ, CZ, and NB) were amended with 0.1% glucose containing 13C at six levels, and DNA was then extracted after a 7-day incubation and subjected to isopycnic gradient centrifugation. The results showed that the amount of labelled DNA was notably related to the 13C-glucose percentage, while the separation spans of 18S rRNA and 16S rRNA genes between labelled and unlabelled treatments became notably clearer when the δ13C values of the total DNA were 90.9, 61.6, and 38.9‰ and 256.2, 104.5 and 126.1‰ in the AQ, CZ, and NB soils, respectively. Moreover, fractionated DNA was also labelled by determining the δ13C values while adding only 5 atom% 13C-glucose to the soil. The results suggest that the optimal labelling fractions were not always those fractions with the maximal gene abundance, and detecting the δ13C values of the total and fractionated DNA was beneficial in estimating the results of DNA-SIP. KEY POINTS: • Appropriate 13C-DNA amount was needed for DNA-SIP. • Detecting the 13C ratio of fractionated DNA directly was an assistant method for identifying the labelled fractions. • Fractions with the maximal 18S or 16S rRNA gene abundance always were not labelled.


Subject(s)
Carbon Isotopes , DNA, Bacterial , RNA, Ribosomal, 16S , RNA, Ribosomal, 18S , Soil Microbiology , RNA, Ribosomal, 16S/genetics , Carbon Isotopes/analysis , DNA, Bacterial/genetics , RNA, Ribosomal, 18S/genetics , Ultracentrifugation , Soil/chemistry , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Isotope Labeling/methods , Glucose/metabolism
4.
Bioinformatics ; 40(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38656970

ABSTRACT

MOTIVATION: Many diseases, such as cancer, are characterized by an alteration of cellular metabolism allowing cells to adapt to changes in the microenvironment. Stable isotope-resolved metabolomics (SIRM) and downstream data analyses are widely used techniques for unraveling cells' metabolic activity to understand the altered functioning of metabolic pathways in the diseased state. While a number of bioinformatic solutions exist for the differential analysis of SIRM data, there is currently no available resource providing a comprehensive toolbox. RESULTS: In this work, we present DIMet, a one-stop comprehensive tool for differential analysis of targeted tracer data. DIMet accepts metabolite total abundances, isotopologue contributions, and isotopic mean enrichment, and supports differential comparison (pairwise and multi-group), time-series analyses, and labeling profile comparison. Moreover, it integrates transcriptomics and targeted metabolomics data through network-based metabolograms. We illustrate the use of DIMet in real SIRM datasets obtained from Glioblastoma P3 cell-line samples. DIMet is open-source, and is readily available for routine downstream analysis of isotope-labeled targeted metabolomics data, as it can be used both in the command line interface or as a complete toolkit in the public Galaxy Europe and Workfow4Metabolomics web platforms. AVAILABILITY AND IMPLEMENTATION: DIMet is freely available at https://github.com/cbib/DIMet, and through https://usegalaxy.eu and https://workflow4metabolomics.usegalaxy.fr. All the datasets are available at Zenodo https://zenodo.org/records/10925786.


Subject(s)
Isotope Labeling , Metabolomics , Software , Metabolomics/methods , Humans , Isotope Labeling/methods , Glioblastoma/metabolism , Cell Line, Tumor
5.
Physiol Plant ; 176(3): e14292, 2024.
Article in English | MEDLINE | ID: mdl-38685817

ABSTRACT

Tracer injection has long been recognized as a valuable tool for delineating tree hydraulics and assessing water transport pathways. Recently, isotope tracers have emerged as innovative instruments for investigating tree hydraulics, providing new insights into tree water dynamics. Nevertheless, there is a critical need for further research to comprehensively grasp water movement and distribution within trees. A previously introduced technique for analyzing the isotopic ratio of water in wet tissues, offering millimeter-scale resolution for visualizing tracer movement, faces challenges due to its underdeveloped sample preparation techniques. In this study, we introduced an H2 18O tracer into S. gracilistyla samples, exclusively comprising indeterminate roots, stems, and leaves, cultivated through hydroponics and grown within the current year. Our objective was to assess the axial distribution of the tracer in the xylem. Additionally, we devised a novel method for preparing frozen wet tissue samples, enhancing the repeatability and success rate of experiments. The results demonstrated that all frozen wet tissue samples exhibited an average water loss rate of less than 0.6%. Isotopic analysis of these samples unveiled a consistent decline in tracer concentration with increasing height in all Salix specimens, with three out of five samples revealing a significant isotope gradient. Our findings affirm the efficacy and practicality of combining isotopic labeling with freezing, stabilization, and preparation techniques. Looking ahead, our isotopic labeling and analysis methods are poised to transcend woody plants, finding extensive applications in plant physiology and ecohydrology.


Subject(s)
Freezing , Oxygen Isotopes , Trees , Water , Xylem , Oxygen Isotopes/analysis , Water/metabolism , Trees/metabolism , Xylem/metabolism , Xylem/chemistry , Plant Leaves/metabolism , Plant Leaves/chemistry , Plant Roots/metabolism , Plant Roots/chemistry , Isotope Labeling/methods , Plant Stems/chemistry , Plant Stems/metabolism
6.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(5): 159491, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38565373

ABSTRACT

Inborn errors of metabolism (IEM) represent a heterogeneous group of more than 1800 rare disorders, many of which are causing significant childhood morbidity and mortality. More than 100 IEM are linked to dyslipidaemia, but yet our knowledge in connecting genetic information with lipidomic data is limited. Stable isotope tracing studies of the lipid metabolism (STL) provide insights on the dynamic of cellular lipid processes and could thereby facilitate the delineation of underlying metabolic (patho)mechanisms. This mini-review focuses on principles as well as technical limitations of STL and describes potential clinical applications by discussing recently published STL focusing on IEM.


Subject(s)
Lipid Metabolism , Lipidomics , Humans , Lipidomics/methods , Lipid Metabolism/genetics , Lipid Metabolism, Inborn Errors/metabolism , Lipid Metabolism, Inborn Errors/genetics , Metabolism, Inborn Errors/metabolism , Metabolism, Inborn Errors/genetics , Animals , Lipids/genetics , Isotope Labeling/methods
7.
Appl Radiat Isot ; 209: 111313, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38603864

ABSTRACT

The aim of the work presented in this manuscript was to radiolabel methotrexate and prepare radiolabeled methotrexate micelles, an antifolate drug with Tc-99m using QbD approach. The radiolabeling was executed using the experimental design and the radiolabeled drug was further encapsulated in micelles. The authors are of the view that the radiolabeled MTX could be used to target the folate receptor overexpressing cancers such as the kidney, colorectal, breast, brain etc thereby opening newer possibilities to the theranostic applications of the formed conjugate.


Subject(s)
Methotrexate , Micelles , Technetium , Methotrexate/chemistry , Technetium/chemistry , Humans , Radiopharmaceuticals/chemistry , Isotope Labeling/methods , Folic Acid Antagonists/chemistry
8.
Analyst ; 149(10): 2833-2841, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38587502

ABSTRACT

Sensing and visualization of metabolites and metabolic pathways in situ are significant requirements for tracking their spatiotemporal dynamics in a non-destructive manner. The shikimate pathway is an important cellular mechanism that leads to the de novo synthesis of many compounds containing aromatic rings of high importance such as phenylalanine, tyrosine, and tryptophan. In this work, we present a cost-effective and extraction-free method based on the principles of stable isotope-coupled Raman spectroscopy and hyperspectral Raman imaging to monitor and visualize the activity of the shikimate pathway. We also demonstrated the applicability of this approach for nascent aromatic amino acid localization and tracking turnover dynamics in both prokaryotic and eukaryotic model systems. This method can emerge as a promising tool for both qualitative and semi-quantitative in situ metabolomics, contributing to a better understanding of aromatic ring-containing metabolite dynamics across various organisms.


Subject(s)
Shikimic Acid , Spectrum Analysis, Raman , Shikimic Acid/metabolism , Shikimic Acid/analysis , Shikimic Acid/analogs & derivatives , Spectrum Analysis, Raman/methods , Hyperspectral Imaging/methods , Isotope Labeling/methods , Carbon Isotopes/chemistry , Escherichia coli/metabolism
9.
Methods Mol Biol ; 2790: 439-466, 2024.
Article in English | MEDLINE | ID: mdl-38649586

ABSTRACT

Stable isotope labeling with 13CO2 coupled with mass spectrometry allows monitoring the incorporation of 13C into photosynthetic intermediates and is a powerful technique for the investigation of the metabolic dynamics of photosynthesis. We describe here a protocol for 13CO2 labeling of large leaved plants and of Arabidopsis thaliana rosette, and a method for quantitative mass spectrometry analyses to uncover the labeling pattern of Calvin-Benson cycle sucrose, and starch synthesis as well as carbon-concentrating mechanism metabolites.


Subject(s)
Arabidopsis , Carbon Isotopes , Isotope Labeling , Photosynthesis , Isotope Labeling/methods , Arabidopsis/metabolism , Carbon Isotopes/metabolism , Mass Spectrometry/methods , Sucrose/metabolism , Carbon Dioxide/metabolism , Starch/metabolism , Metabolomics/methods , Plant Leaves/metabolism
10.
Methods Mol Biol ; 2797: 23-34, 2024.
Article in English | MEDLINE | ID: mdl-38570450

ABSTRACT

Isotopically labelled proteins are important reagents in structural biology as well as in targeted drug development. The field continues to advance with complex multi-isotope labeling. We have combined our experience in high-level soluble KRAS4b expression with protocols for isotope incorporation, to achieve reliable and efficient approaches for several labeling strategies. Typical experiments achieve nearly 100% 15N incorporation, with yields in the range of 1.3-24.6 mg/L (median = 6.4 mg/L, n = 53). Improvements in the growth parameters in the presence of deuterium reduce the standard time of fermentation from 5 days to 3 days by modifying the medium used during the weaning process. The methods described are compatible with multi-isotope labeling and site-specific labeling.


Subject(s)
Isotopes , Proteins , Proteins/chemistry , Isotope Labeling/methods , Nitrogen Isotopes
11.
Chemistry ; 30(28): e202400581, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38470445

ABSTRACT

α,ß-aromatic lactams are highly abundant in biologically active molecules, yet so far they cannot be radiolabeled with short-lived (t1/2=20.3 min), ß+-decaying carbon-11, which has prevented their application as positron emission tomography tracers. Herein, we developed, optimized, and applied a widely applicable, one-pot, quick, robust and automatable radiolabeling method for α,ß-aromatic lactams starting from [11C]CO2 using the reagent POCl3⋅AlCl3. This method proceeds via intramolecular Friedel-Crafts acylation of in situ formed [11C]isocyanates and shows a broad substrate scope for the formation of five- and six-membered rings. We implemented our developed labeling method for the radiosynthesis of the potential PARP1 PET tracer [carbonyl-11C]DPQ in a clinical radiotracer production facility following the standards of the European Pharmacopoeia.


Subject(s)
Carbon Radioisotopes , Isocyanates , Positron-Emission Tomography , Radiopharmaceuticals , Carbon Radioisotopes/chemistry , Acylation , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/chemical synthesis , Isocyanates/chemistry , Positron-Emission Tomography/methods , Isotope Labeling/methods , Lactams/chemistry
12.
Nat Commun ; 15(1): 2592, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519475

ABSTRACT

Carbon isotope labelling of bioactive molecules is essential for accessing the pharmacokinetic and pharmacodynamic properties of new drug entities. Aryl carboxylic acids represent an important class of structural motifs ubiquitous in pharmaceutically active molecules and are ideal targets for the installation of a radioactive tag employing isotopically labelled CO2. However, direct isotope incorporation via the reported catalytic reductive carboxylation (CRC) of aryl electrophiles relies on excess CO2, which is incompatible with carbon-14 isotope incorporation. Furthermore, the application of some CRC reactions for late-stage carboxylation is limited because of the low tolerance of molecular complexity by the catalysts. Herein, we report the development of a practical and affordable Pd-catalysed electrocarboxylation setup. This approach enables the use of near-stoichiometric 14CO2 generated from the primary carbon-14 source Ba14CO3, facilitating late-stage and single-step carbon-14 labelling of pharmaceuticals and representative precursors. The proposed isotope-labelling protocol holds significant promise for immediate impact on drug development programmes.


Subject(s)
Carbon , Palladium , Carbon/chemistry , Carbon Isotopes , Carbon Radioisotopes , Palladium/chemistry , Isotope Labeling/methods , Carbon Dioxide/chemistry , Catalysis
13.
J Proteomics ; 297: 105128, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38382841

ABSTRACT

Investigating site-specific protein phosphorylation remains a challenging task. The present study introduces a two-step chemical derivatization method for accurate identification of phosphopeptides. Methylamine neutralizes carboxyl groups, thus reducing the adsorption of non-phosphorylated peptides during enrichment, while dimethylamine offers a cost-effective reagent for stable isotope labeling of phosphorylation sites. The derivatization improves the mass spectra obtained through liquid chromatography-tandem mass spectrometry. The product ions at m/z 58.07 and 64.10 Da, resulting from dimethylamine-d0 and dimethylamine-d6 labeled phosphorylation sites respectively, can serve as report ions. Derivatized phosphopeptides from casein demonstrate enhanced ionization and formation of product ions, yielding a significant increase in the number of identifiable peptides. When using the parallel reaction monitoring technique, it is possible to distinguish isomeric phosphopeptides with the same amino acid sequence but different phosphorylation sites. By employing a proteomic software and screening the report ions, we identified 29 endogenous phosphopeptides in 10 µL of human saliva with high reliability. These findings indicate that the two-step derivatization strategy has great potential in site-specific phosphorylation and large-scale phosphoproteomics research. SIGNIFICANCE: There is a significant need to improve the accuracy of identifying phosphoproteins and phosphopeptides and analyzing them quantitatively. Several chemical derivatization techniques have been developed to label phosphorylation sites, thus enabling the identification and relative quantification of phosphopeptides. Nevertheless, these methods have limitations, such as incomplete conversion or the need for costly isotopic reagents. Building upon previous contributions, our study moves the field forward due to high efficiency in site-specific labeling, cost-effectiveness, improved sensitivity, and comprehensive product ion coverage. Using the two-step derivatization approach, we successfully identified 29 endogenous phosphopeptides in 10 µL of human saliva with high reliability. The outcomes underscore the possibility of the method for site-specific phosphorylation and large-scale phosphoproteomics investigations.


Subject(s)
Phosphopeptides , Proteomics , Humans , Phosphopeptides/analysis , Isotope Labeling/methods , Proteomics/methods , Reproducibility of Results , Indicators and Reagents , Phosphorylation , Ions , Dimethylamines
14.
Anal Chem ; 96(6): 2303-2308, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38306584

ABSTRACT

Mass isotopomer distribution analysis (MIDA) is an analytical technique that measures the synthesis rate of biological polymers using combinatorial probabilities and stable isotope labeling. Over the past few decades, this method has been developed and applied to a wide range of uses that have increased our understanding of metabolism and the etiology and monitoring of disease. There is currently no publicly available piece of software for performing MIDA calculations in a targeted manner without its functionality being limited to a specific use case. We present a cross-platform Python graphical user interface implementation for research to obtain kinetic parameters easily from stable-isotope labeling studies and provide the code and user manual on GitHub.


Subject(s)
Polymers , Software , Isotope Labeling/methods , Polymers/metabolism , User-Computer Interface
15.
J Chromatogr A ; 1717: 464691, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38301333

ABSTRACT

Mass spectrometry-based metabolomics with stable isotope labeling (SIL) is an established tool for sensitive and precise analyses of tissue metabolism, its flux, and pathway activities in diverse models of physiology and disease. Despite the simplicity and broad applicability of deuterium (2H)-labeled precursors for tracing metabolic pathways with minimal biological perturbations, they are rarely employed in LC-MS/MS-guided metabolomics. In this study, we have developed a LC-MS/MS-guided workflow to trace deuterium metabolism in mouse organs following 2H7 -glucose infusion. The workflow includes isotopically labeled glucose infusion, mouse organ isolation and metabolite extraction, zwitterion-based hydrophilic interaction liquid chromatography (HILIC) coupled to high-resolution tandem mass spectrometry, targeted data acquisition for sensitive detection of deuterated metabolites, a spectral library of over 400 metabolite standards, and multivariate data analysis with pathway mapping. The optimized method was validated for matrix effects, normalization, and quantification to provide both tissue metabolomics and tracking the in-vivo metabolic fate of deuterated glucose through key metabolic pathways. We quantified more than 100 metabolites in five major mouse organ tissues (liver, kidney, brain, brown adipose tissue, and heart). Furthermore, we mapped isotopologues of deuterated metabolites from glycolysis, tricarboxylic acid (TCA) cycle, and amino acid pathways, which are significant for studying both health and various diseases. This study will open new avenues in LC-MS based analysis of 2H-labeled tissue metabolism research in animal models and clinical settings.


Subject(s)
Liquid Chromatography-Mass Spectrometry , Tandem Mass Spectrometry , Mice , Animals , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Deuterium , Metabolomics/methods , Glucose , Isotope Labeling/methods
16.
Talanta ; 271: 125730, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38310758

ABSTRACT

Lipidomics analysis of gut microbiome has become critical in recent surge of extensive human disease studies that investigate microbiome contributions. However, challenges remain in comprehending the origins of thousands of lipid species produced by the diverse microbes. Here, we proposed the development and utilization of a liquid chromatography-mass spectrometry-based approach, named lipidome isotope labelling of gut microbes (LILGM), which enables confident detection and identification of endogenous gut microbial lipidome via 13C/15N labeling strategy and high-resolution mass spectrometry. Our method leveraged in vitro microbial cultures and stable isotope-labeled 13C and 15N, allowing a reasonable degree of isotope incorporation into microbial lipids over short-term of inoculation. We then systematically detected the mass spectral patterns of 182 labeled lipid species by our in-house data analysis pipeline. Further bioinformatics analyses confidently identified biologically relevant microbial lipids from lipid classes such as diacylglycerols (DGs), fatty acids (FAs), phosphatidylglycerols (PGs), and phosphatidylethanolamines (PEs) that may have profound impacts to human physiology. Our study also demonstrated the application of LILGM by showcasing the confident detection of dysregulated microbial lipids post antibiotic perturbation. The debiased sparse partial correlation analysis provides insights into lipid metabolism intricacies. Overall, our method can provide unambiguous analyses to the endogenous microbial lipids in given biological context, and can also instantly reflect the lipidomic changes of gut microbes in response to environmental factors. We believe our LILGM approach has the potential to provide new body of knowledge by combining promising analytical approaches for sensitive and specific lipid detection to support functional microbiome studies.


Subject(s)
Gastrointestinal Microbiome , Lipids , Humans , Lipids/chemistry , Lipidomics , Tandem Mass Spectrometry/methods , Isotope Labeling/methods , Isotopes/analysis
17.
Chembiochem ; 25(6): e202400019, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38311594

ABSTRACT

Stable isotope labeling is an extremely useful tool for characterizing the structure, tracing the metabolism, and imaging the distribution of natural products in living organisms using mass-sensitive measurement techniques. In this study, a cyanobacterium was cultured in 15 N/13 C-enriched media to endogenously produce labeled, bioactive oligopeptides. The extent of heavy isotope incorporation in these peptides was determined with LC-MS, while the overall extent of heavy isotope incorporation in whole cells was studied with nanoSIMS and AFM-IR. Up to 98 % heavy isotope incorporation was observed in labeled cells. Three of the most abundant peptides, microcystin-LR (MCLR), cyanopeptolin-A (CYPA), and aerucyclamide-A (ACAA), were isolated and further studied with Raman and FTIR spectroscopies and DFT calculations. This revealed several IR and Raman active vibrations associated with functional groups not common in ribosomal peptides, like diene, ester, thiazole, thiazoline, and oxazoline groups, which could be suitable for future vibrational imaging studies. More broadly, this study outlines a simple and relatively inexpensive method for producing heavy-labeled natural products. Manipulating the bacterial culture conditions by the addition of specific types and amounts of heavy-labeled nutrients provides an efficient means of producing heavy-labeled natural products for mass-sensitive imaging studies.


Subject(s)
Biological Products , Cyanobacteria , Vibration , Peptides/chemistry , Isotopes , Isotope Labeling/methods
18.
Anal Chim Acta ; 1288: 342114, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38220268

ABSTRACT

Mass spectrometry-based approaches encompass a powerful collection of tools for the analysis biological molecules, including glycans and glycoconjugates. Unlike most traditional bioanalytical methods focusing on these molecules, mass spectrometry is especially suited for multiplexing, by utilizing stable-isotope labeling. Indeed, stable isotope-based multiplexing can be regarded as the gold-standard approach in reducing noise and uncertainty in quantitative mass spectrometry and quantitative analyses generally. The increasing sophistication and depth of biological questions being asked continue to challenge the practitioners of mass spectrometry method development. To understand the biological relevance of glycans, many stable isotope labeling-based mass spectrometry methods have been developed. Based on the duplex MILPIG (metabolic isotope labeling of polysaccharides with isotopic glucose), we establish here a novel triplex isotope labeling method using baker's yeast as the model system. Two differentially isotope-labeled glucoses (medium: 1-13C1 and heavy: 1,2-13C2), in addition to natural abundance glucose (light), were successfully used to label each monosaccharide ring in N-linked glycans in three different cell culture conditions, that, after sample mixing, resulted in a predictable triplet spectrum amenable for relative quantitation. We demonstrate excellent accuracy and precision of relative quantitation for a 1:1:1 mixture of glycans labeled in such a fashion. In addition, we applied triplex MILPIG to interrogate differential N-glycan profiles in tunicamycin-treated and control yeast cells and show that different N-glycans respond differently to tunicamycin.


Subject(s)
Glucose , Saccharomyces cerevisiae , Tunicamycin/pharmacology , Polysaccharides/analysis , Isotope Labeling/methods , Isotopes
19.
Anal Chim Acta ; 1288: 342137, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38220274

ABSTRACT

BACKGROUND: Chemical isotope labeling (CIL) LC-MS is a powerful tool for metabolome analysis with high metabolomic coverage and quantification accuracy. In CIL LC-MS, the overall metabolite detection efficiency using Orbitrap MS can be further improved by employing a segment scan method where the full m/z range is divided into multiple segments for spectral acquisition with a significant increase in the in-spectrum dynamic range. Considering the metabolic complexity in different types of biological samples (e.g., feces, urine, serum/plasma, cell/tissue extracts, saliva, etc.), we report the development and evaluation of the segment scan method for metabolome analysis of different sample types. RESULTS: It was found that sample complexity significantly influenced the performance of the segment scan method. In metabolically complex samples such as feces and urine, the method yielded a substantial increase (up to 94 %) in detected peak pairs or metabolites, compared to conventional full scan. Conversely, less complex samples like saliva exhibited more modest gains (approximately 25 %). Based on the observations, a 120-m/z segment scan method was determined as a routine approach for CIL LC-Orbitrap-MS-based metabolomics with good compatibility with different types of biological samples. For this method, a further investigation on relative quantification accuracy was done. The peak area ratios of 12C-/13-labeled metabolites were slightly reduced with 72%-84 % of peak pairs falling within the ±25 % range of the anticipated peak ratio of 1.0 among different samples, as opposed to 81%-90 % in the full scan, which was attributed to the inclusion of more low-abundance peak pairs within the narrow MS segments. However, the overall peak ratio measurement precision was not significantly affected by the segment scan. SIGNIFICANCE AND NOVELTY: The segment scan method was found to be useful for CIL LC-Orbitrap-MS-based metabolome analysis of different types of samples with significant improvement in metabolite detectability (25-94 % increase), compared to the conventional full scan method.


Subject(s)
Liquid Chromatography-Mass Spectrometry , Tandem Mass Spectrometry , Chromatography, Liquid/methods , Isotope Labeling/methods , Dansyl Compounds , Metabolome , Metabolomics/methods
20.
J Biophotonics ; 17(2): e202300341, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38010366

ABSTRACT

Global proteome changes in microbes affect the survival and overall production of commercially relevant metabolites through different bioprocesses. The existing methods to monitor proteome level changes are destructive in nature. Stable isotope probing (SIP) coupled with Raman spectroscopy is a relatively new approach for proteome analysis. However, applying this approach for monitoring changes in a large culture volume is not cost-effective. In this study, for the first time we are presenting a novel method of combining reverse SIP using 13 C-glucose and Deuterium to monitor the proteome changes through Raman spectroscopy. The findings of the study revealed visible changes (blue shifts) in proteome related peaks that can be used for monitoring proteome dynamics, that is, synthesis of nascent amino acids and its turnover with time in a non-destructive, cost-effective, and label-free manner.


Subject(s)
Proteome , Spectrum Analysis, Raman , Proteome/metabolism , Spectrum Analysis, Raman/methods , Isotope Labeling/methods , Proteomics , Escherichia coli
SELECTION OF CITATIONS
SEARCH DETAIL
...