Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.851
Filter
1.
Parasit Vectors ; 17(1): 208, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720313

ABSTRACT

BACKGROUND: Triatoma infestans, Triatoma brasiliensis, Triatoma pseudomaculata and Rhodnius prolixus are vectors of Trypanosoma cruzi, the etiological agent of Chagas disease. Chickens serve as an important blood food source for triatomines. This study aimed to assess the insecticidal activity of fluralaner (Exzolt®) administered to chickens against triatomines (R. prolixus, T. infestans, T. brasiliensis and T. pseudomaculata). METHODS: Twelve non-breed chickens (Gallus gallus domesticus) were randomized based on weight into three groups: negative control (n = 4); a single dose of 0.5 mg/kg fluralaner (Exzolt®) (n = 4); two doses of 0.5 mg/kg fluralaner (Exzolt®) (n = 4). Nymphs of 3rd, 4th and 5th instars of R. prolixus, T. infestans, T. brasiliensis and T. pseudomaculata (all n = 10) were allowed to feed on chickens before treatment, and at intervals of 1, 7, 14, 21, 28, 35 and 56 days after treatment, with insect mortality determined. RESULTS: Treatment with two doses of fluralaner showed higher insecticidal efficacy against R. prolixus, T. infestans and T. brasiliensis compared to the single-dose treatment. Similar insecticidal efficacy was observed for T. pseudomaculata for one and two doses of fluralaner. Insecticidal activity of fluralaner (Exzolt®) against triatomine bugs was noted up to 21 and 28 days after treatment with one and two doses of fluralaner, respectively. CONCLUSIONS: The results demonstrate that treatment of chickens with fluralaner (Exzolt®) induces insecticidal activity against triatomines for up to 28 days post-treatment, suggesting its potential use as a control strategy for Chagas disease in endemic areas.


Subject(s)
Chickens , Insecticides , Isoxazoles , Animals , Chickens/parasitology , Isoxazoles/pharmacology , Isoxazoles/administration & dosage , Insecticides/pharmacology , Insecticides/administration & dosage , Insect Vectors/drug effects , Chagas Disease/transmission , Chagas Disease/drug therapy , Chagas Disease/veterinary , Triatominae , Nymph/drug effects , Poultry Diseases/parasitology , Poultry Diseases/prevention & control , Triatoma/drug effects
2.
Braz J Microbiol ; 55(2): 1811-1816, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38739216

ABSTRACT

As the prevalence of drug-resistant Candida isolates continues to rise, the imperative for identifying novel compounds to enhance the arsenal of antifungal drugs becomes increasingly critical. Consequently, exploring new treatment strategies, including synthesizing molecular hybrids and applying combination therapy, is essential. For this reason, this study evaluated the efficacy of ten molecular hybrids of aza-bicyclic 2-isoxazoline-acylhydrazone belonging to two series 90 and 91 as possible anti-Candida agents. In addition, we also investigated the interaction between the hybrids and fluconazole, a commonly used antifungal drug. We evaluated the antifungal effect of aza-bicyclic 2-isoxazoline-acylhydrazone hybrid compounds against six Candida spp. strains that target planktonic cells. However, none of these new molecules were inhibitory active at the tested concentrations (2 to 1,024 µg/mL). Moreover, we analyzed the interaction between the ten new hybrid molecules and fluconazole using the checkerboard assay, employing two different methodologies for reading the plate. For this, one isolate fluconazole-resistant was selected. We observed that only one combination, 6-(4-tert-butylbenzoil)-4,5,6,6a-tetrahydro-3a-H-pirrole[3,2-d]isoxazole-3-carboxylic(furan-2-metilidene)-hydrazide (91e) and fluconazole, exhibited a synergistic interaction (FICI range 0.0781 to 0.4739). The combination successfully inhibited the growth of C. albicans CA2 fluconazole-resistant, and no interaction was observed in an isolate susceptible to fluconazole. Additionally, these results emphasize the continued need for research into new compounds and the importance of using combined approaches to increase their activity.


Subject(s)
Antifungal Agents , Candida albicans , Drug Resistance, Fungal , Drug Synergism , Fluconazole , Hydrazones , Isoxazoles , Microbial Sensitivity Tests , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Fluconazole/pharmacology , Candida albicans/drug effects , Hydrazones/pharmacology , Hydrazones/chemistry , Isoxazoles/pharmacology , Isoxazoles/chemistry , Humans
3.
Exp Cell Res ; 439(1): 114089, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38740166

ABSTRACT

Nucleus pulposus cells (NPCs) apoptosis and inflammation are the extremely critical factors of intervertebral disc degeneration (IVDD). Nevertheless, the underlying procedure remains mysterious. Macrophage migration inhibitory factor (MIF) is a cytokine that promotes inflammation and has been demonstrated to have a significant impact on apoptosis and inflammation. For this research, we employed a model of NPCs degeneration stimulated by lipopolysaccharides (LPS) and a rat acupuncture IVDD model to examine the role of MIF in vitro and in vivo, respectively. Initially, we verified that there was a significant rise of MIF expression in the NP tissues of individuals with IVDD, as well as in rat models of IVDD. Furthermore, this augmented expression of MIF was similarly evident in degenerated NPCs. Afterwards, it was discovered that ISO-1, a MIF inhibitor, effectively decreased the quantity of cells undergoing apoptosis and inhibited the release of inflammatory molecules (TNF-α, IL-1ß, IL-6). Furthermore, it has been shown that the PI3K/Akt pathway plays a vital part in the regulation of NPCs degeneration by MIF. Ultimately, we showcased that the IVDD process was impacted by the MIF inhibitor in the rat model. In summary, our experimental results substantiate the significant involvement of MIF in the degeneration of NPCs, and inhibiting MIF activity can effectively mitigate IVDD.


Subject(s)
Apoptosis , Inflammation , Intervertebral Disc Degeneration , Macrophage Migration-Inhibitory Factors , Nucleus Pulposus , Rats, Sprague-Dawley , Animals , Macrophage Migration-Inhibitory Factors/antagonists & inhibitors , Macrophage Migration-Inhibitory Factors/metabolism , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Intervertebral Disc Degeneration/pathology , Intervertebral Disc Degeneration/metabolism , Apoptosis/drug effects , Inflammation/metabolism , Inflammation/pathology , Rats , Male , Humans , Intramolecular Oxidoreductases/metabolism , Intramolecular Oxidoreductases/antagonists & inhibitors , Signal Transduction/drug effects , Female , Isoxazoles/pharmacology , Adult , Middle Aged , Proto-Oncogene Proteins c-akt/metabolism , Cells, Cultured , Disease Models, Animal , Phosphatidylinositol 3-Kinases/metabolism
4.
Eur J Med Chem ; 271: 116443, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38691887

ABSTRACT

Xanthine oxidase (XO) is a key enzyme for the production of uric acid in the human body. XO inhibitors (XOIs) are clinically used for the treatment of hyperuricemia and gout, as they can effectively inhibit the production of uric acid. Previous studies indicated that both indole and isoxazole derivatives have good inhibitory effects against XO. Here, we designed and synthesized a novel series of N-5-(1H-indol-5-yl)isoxazole-3-carboxylic acids according to bioisosteric replacement and hybridization strategies. Among the obtained target compounds, compound 6c showed the best inhibitory activity against XO with an IC50 value of 0.13 µM, which was 22-fold higher than that of the classical antigout drug allopurinol (IC50 = 2.93 µM). Structure-activity relationship analysis indicated that the hydrophobic group on the nitrogen atom of the indole ring is essential for the inhibitory potencies of target compounds against XO. Enzyme kinetic studies proved that compound 6c acted as a mixed-type XOI. Molecular docking studies showed that the target compound 6c could not only retain the key interactions similar to febuxostat at the XO binding site but also generate some new interactions, such as two hydrogen bonds between the oxygen atom of the isoxazole ring and the amino acid residues Ser876 and Thr1010. These results indicated that 5-(1H-indol-5-yl)isoxazole-3-carboxylic acid might be an efficacious scaffold for designing novel XOIs and compound 6c has the potential to be used as a lead for further the development of novel anti-gout candidates.


Subject(s)
Carboxylic Acids , Drug Design , Enzyme Inhibitors , Isoxazoles , Xanthine Oxidase , Xanthine Oxidase/antagonists & inhibitors , Xanthine Oxidase/metabolism , Structure-Activity Relationship , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Isoxazoles/chemistry , Isoxazoles/pharmacology , Isoxazoles/chemical synthesis , Carboxylic Acids/pharmacology , Carboxylic Acids/chemistry , Carboxylic Acids/chemical synthesis , Molecular Structure , Humans , Molecular Docking Simulation , Indoles/pharmacology , Indoles/chemistry , Indoles/chemical synthesis , Dose-Response Relationship, Drug
5.
Eur J Med Chem ; 272: 116448, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38704936

ABSTRACT

Colorectal cancer (CRC) is trending to be a major health problem throughout the world. Therapeutics with dual modes of action have shown latent capacity to create ideal anti-tumor activity. Signal transducer and activator of transcription 3 (STAT3) has been proved to be a potential target for the development of anti-colon cancer drug. In addition, modulation of tumor redox homeostasis through deploying exogenous reactive oxygen species (ROS)-enhancing agents has been widely applied as anti-tumor strategy. Thus, simultaneously targeting STAT3 and modulation ROS balance would offer a fresh avenue to combat CRC. In this work, we designed and synthesized a novel series of isoxazole-fused quinones, which were evaluated for their preliminary anti-proliferative activity against HCT116 cells. Among these quinones, compound 41 exerted excellent in vitro anti-tumor effect against HCT116 cell line with an IC50 value of 10.18 ± 0.4 nM. Compound 41 was proved to bind to STAT3 by using Bio-Layer Interferometry (BLI) assay, and can significantly inhibit phosphorylation of STAT3. It also elevated ROS of HCT116 cells by acting as a substrate of NQO1. Mitochondrial dysfunction, apoptosis, and cell cycle arrest, which was caused by compound 41, might be partially due to the inhibition of STAT3 phosphorylation and ROS production induced by 41. Moreover, it exhibited ideal anti-tumor activity in human colorectal cancer xenograft model and good safety profiles in vivo. Overall, this study provided a novel quinone derivative 41 with excellent anti-tumor activity by inhibiting STAT3 and elevating ROS level, and gave insights into designing novel anti-tumor therapeutics by simultaneously modulation of STAT3 and ROS.


Subject(s)
Antineoplastic Agents , Apoptosis , Cell Proliferation , Colorectal Neoplasms , Drug Screening Assays, Antitumor , Isoxazoles , Quinones , Reactive Oxygen Species , STAT3 Transcription Factor , STAT3 Transcription Factor/antagonists & inhibitors , STAT3 Transcription Factor/metabolism , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Reactive Oxygen Species/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Cell Proliferation/drug effects , Structure-Activity Relationship , Animals , Isoxazoles/pharmacology , Isoxazoles/chemistry , Isoxazoles/chemical synthesis , Quinones/pharmacology , Quinones/chemistry , Quinones/chemical synthesis , Apoptosis/drug effects , Molecular Structure , Mice , Dose-Response Relationship, Drug , HCT116 Cells , Mice, Nude , Mice, Inbred BALB C
6.
Parasit Vectors ; 17(1): 194, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664829

ABSTRACT

BACKGROUND: Sarcoptic mange is a serious animal welfare concern in bare-nosed wombats (Vombatus ursinus). Fluralaner (Bravecto®) is a novel acaricide that has recently been utilised for treating mange in wombats. The topical 'spot-on' formulation of fluralaner can limit treatment delivery options in situ, but dilution to a volume for 'pour-on' delivery is one practicable solution. This study investigated the in vitro acaricidal activity of Bravecto, a proposed essential oil-based diluent (Orange Power®), and two of its active constituents, limonene and citral, against Sarcoptes scabiei. METHODS: Sarcoptes scabiei were sourced from experimentally infested pigs. In vitro assays were performed to determine the lethal concentration (LC50) and survival time of the mites when exposed to varying concentrations of the test solutions. RESULTS: All compounds were highly effective at killing mites in vitro. The LC50 values of Bravecto, Orange Power, limonene and citral at 1 h were 14.61 mg/ml, 4.50%, 26.53% and 0.76%, respectively. The median survival times of mites exposed to undiluted Bravecto, Orange Power and their combination were 15, 5 and 10 min, respectively. A pilot survival assay of mites collected from a mange-affected wombat showed survival times of < 10 min when exposed to Bravecto and Orange Power and 20 min when exposed to moxidectin. CONCLUSIONS: These results confirm the acaricidal properties of Bravecto, demonstrate acaricidal properties of Orange Power and support the potential suitability of Orange Power and its active constituents as a diluent for Bravecto. As well as killing mites via direct exposure, Orange Power could potentially enhance the topical delivery of Bravecto to wombats by increasing drug penetration in hyperkeratotic crusts. Further research evaluating the physiochemical properties and modes of action of Orange Power and its constituents as a formulation vehicle would be of value.


Subject(s)
Acaricides , Isoxazoles , Plant Oils , Sarcoptes scabiei , Scabies , Animals , Sarcoptes scabiei/drug effects , Acaricides/pharmacology , Isoxazoles/pharmacology , Scabies/drug therapy , Scabies/parasitology , Plant Oils/pharmacology , Plant Oils/chemistry , Acyclic Monoterpenes/pharmacology , Swine , Limonene/pharmacology , Limonene/chemistry , Terpenes/pharmacology , Terpenes/chemistry , Cyclohexenes/pharmacology , Cyclohexenes/chemistry , Lethal Dose 50
7.
Eur J Pharmacol ; 972: 176561, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38580182

ABSTRACT

Neuronal depression in the thalamus underlies anesthetic-induced loss of consciousness, while the precise sub-thalamus nuclei and molecular targets involved remain to be elucidated. The present study investigated the role of extrasynaptic GABAA receptors in the central medial thalamic nucleus (CM) in anesthesia induced by gaboxadol (THIP) and diazepam (DZP) in rats. Local lesion of the CM led to a decrease in the duration of loss of righting reflex induced by THIP and DZP. CM microinjection of THIP but not DZP induced anesthesia. The absence of righting reflex in THIP-treated rats was consistent with the increase of low frequency oscillations in the delta band in the medial prefrontal cortex. CM microinjection of GABAA receptor antagonist SR95531 significantly attenuated the anesthesia induced by systemically-administered THIP, but not DZP. Moreover, the rats with declined expression of GABAA receptor δ-subunit in the CM were less responsive to THIP or DZP. These findings explained a novel mechanism of THIP-induced loss of consciousness and highlighted the role of CM extrasynaptic GABAA receptors in mediating anesthesia.


Subject(s)
Anesthesia , Isoxazoles , Receptors, GABA-A , Animals , Receptors, GABA-A/metabolism , Male , Rats , Isoxazoles/pharmacology , Diazepam/pharmacology , Rats, Sprague-Dawley , Mediodorsal Thalamic Nucleus/drug effects , Mediodorsal Thalamic Nucleus/metabolism , Mediodorsal Thalamic Nucleus/physiology , Reflex, Righting/drug effects , Synapses/drug effects , Synapses/metabolism , Thalamus/drug effects , Thalamus/metabolism
8.
Eur J Med Chem ; 271: 116397, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38626522

ABSTRACT

In this study, a new series of Isoxazole-carboxamide derivatives were synthesized and characterized via HRMS, 1H-, 13CAPT-NMR, and MicroED. The findings revealed that nearly all of the synthesized derivatives exhibited potent inhibitory activities against both COX enzymes, with IC50 values ranging from 4.1 nM to 3.87 µM. Specifically, MYM1 demonstrated the highest efficacy among the compounds tested against the COX-1, displaying an IC50 value of 4.1 nM. The results showed that 5 compounds possess high COX-2 isozyme inhibitory effects with IC50 value in range 0.24-1.30 µM with COX-2 selectivity indexes (2.51-6.13), among these compounds MYM4 has the lowest IC50 value against COX-2, with selectivity index around 4. Intriguingly, this compound displayed significant antiproliferative effects against CaCo-2, Hep3B, and HeLa cancer cell lines, with IC50 values of 10.22, 4.84, and 1.57 µM, respectively, which was nearly comparable to that of doxorubicin. Compound MYM4 showed low cytotoxic activities on normal cell lines LX-2 and Hek293t with IC50 values 20.01 and 216.97 µM respectively, with safer values than doxorubicin. Furthermore, compound MYM4 was able to induce the apoptosis, suppress the colonization of both HeLa and HepG2 cells. Additionally, the induction of Reactive oxygen species (ROS) production could be the mechanism underlying the apoptotic effect and the cytotoxic activity of the compound. In the 3D multicellular tumor spheroid model, results revealed that MYM4 compound hampered the spheroid formation capacity of Hep3B and HeLa cancer cells. Moreover, the molecular docking of MYM4 compound revealed a high affinity for the COX2 enzyme, with energy scores (S) -7.45 kcal/mol, which were comparable to celecoxib (S) -8.40 kcal/mol. Collectively, these findings position MYM4 as a promising pharmacological candidate as COX inhibitor and anticancer agent.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Cyclooxygenase Inhibitors , Drug Screening Assays, Antitumor , Isoxazoles , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Isoxazoles/pharmacology , Isoxazoles/chemistry , Isoxazoles/chemical synthesis , Structure-Activity Relationship , Cell Proliferation/drug effects , Cyclooxygenase Inhibitors/pharmacology , Cyclooxygenase Inhibitors/chemical synthesis , Cyclooxygenase Inhibitors/chemistry , Molecular Structure , Dose-Response Relationship, Drug , Spheroids, Cellular/drug effects , Models, Molecular , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/metabolism , Cell Line, Tumor
9.
Brain Res ; 1835: 148929, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38599510

ABSTRACT

Temporal order memory is impaired in autism spectrum disorder (ASD) and schizophrenia (SCZ). These disorders, more prevalent in males, result in abnormal dendritic spine pruning during adolescence in layer 3 (L3) medial prefrontal cortex (mPFC), yielding either too many (ASD) or too few (SCZ) spines. Here we tested whether altering spine density in neural circuits including the mPFC could be associated with impaired temporal order memory in male mice. We have shown that α4ßδ GABAA receptors (GABARs) emerge at puberty on spines of L5 prelimbic mPFC (PL) where they trigger pruning. We show here that α4ßδ receptors also increase at puberty in L3 PL (P < 0.0001) and used these receptors as a target to manipulate spine density here. Pubertal injection (14 d) of the GABA agonist gaboxadol, at a dose (3 mg/kg) selective for α4ßδ, reduced L3 spine density by half (P < 0.0001), while α4 knock-out increased spine density âˆ¼ 40 % (P < 0.0001), mimicking spine densities in SCZ and ASD, respectively. In both cases, performance on the mPFC-dependent temporal order recognition task was impaired, resulting in decreases in the discrimination ratio which assesses preference for the novel object: -0.39 ± 0.15, gaboxadol versus 0.52 ± 0.09, vehicle; P = 0.0002; -0.048 ± 0.10, α4 KO versus 0.49 ± 0.04, wild-type; P < 0.0001. In contrast, the number of approaches was unaltered, reflecting unchanged locomotion. These data suggest that altering α4ßδ GABAR expression/activity alters spine density in L3 mPFC and impairs temporal order memory to mimic changes in ASD and SCZ. These findings may provide insight into these disorders.


Subject(s)
Dendritic Spines , Prefrontal Cortex , Receptors, GABA-A , Schizophrenia , Prefrontal Cortex/metabolism , Prefrontal Cortex/drug effects , Animals , Receptors, GABA-A/metabolism , Male , Schizophrenia/metabolism , Mice , Dendritic Spines/metabolism , Dendritic Spines/drug effects , Mice, Knockout , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , Mice, Inbred C57BL , Isoxazoles/pharmacology , Autistic Disorder/metabolism , Autistic Disorder/pathology , GABA-A Receptor Agonists/pharmacology , Autism Spectrum Disorder/metabolism , Recognition, Psychology/physiology , Recognition, Psychology/drug effects
10.
Molecules ; 29(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38542850

ABSTRACT

The farnesoid X receptor (FXR) has been recognized as a potential drug target for the treatment of non-alcoholic fatty liver disease (NAFLD). FXR agonists benefit NAFLD by modulating bile acid synthesis and transport, lipid metabolism, inflammation, and fibrosis pathways. However, there are still great challenges involved in developing safe and effective FXR agonists. To investigate the critical factors contributing to their activity on the FXR, 3D-QSAR molecular modeling was applied to a series of isoxazole derivatives, using comparative molecular field analysis (CoMFA (q2 = 0.664, r2 = 0.960, r2pred = 0.872)) and comparative molecular similarity indices analysis (CoMSIA (q2 = 0.706, r2 = 0.969, r2pred = 0.866)) models, which demonstrated strong predictive ability in our study. The contour maps generated from molecular modeling showed that the presence of hydrophobicity at the R2 group and electronegativity group at the R3 group in these compounds is crucial to their agonistic activity. A molecular dynamics (MD) simulation was carried out to further understand the binding modes and interactions between the FXR and its agonists in preclinical or clinical studies. The conformational motions of loops L: H1/H2 and L: H5/H6 in FXR-ligand binding domain (LBD) were crucial to the protein stability and agonistic activity of ligands. Hydrophobic interactions were formed between residues (such as LEU287, MET290, ALA291, HIS294, and VAL297) in helix H3 and ligands. In particular, our study found that residue ARG331 participated in salt bridges, and HIS447 participated in salt bridges and hydrogen bonds with ligands; these interactions were significant to protein-ligand binding. Eight new potent FXR agonists were designed according to our results, and their activities were predicted to be better than that of the first synthetic FXR agonist, GW4064.


Subject(s)
Molecular Dynamics Simulation , Non-alcoholic Fatty Liver Disease , Humans , Quantitative Structure-Activity Relationship , Molecular Docking Simulation , Ligands , Isoxazoles/pharmacology , Isoxazoles/chemistry
11.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167136, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38531483

ABSTRACT

Farnesoid X receptor (FXR) improves the function of islets, especially in the setting of Roux-en-Y gastric bypass (RYGB). Here we investigated how FXR activation regulates ß-cell proliferation and explored the potential link between FXR signaling and the menin pathway in controlling E2F3 expression, a key transcription factor for controlling adult ß-cell proliferation. Stimulation with the FXR agonist GW4064 or chenodeoxycholic acid (CDCA) increased E2F3 expression and ß-cell proliferation. Consistently, E2F3 knockdown abolished GW4064-induced proliferation. Treatment with GW4064 increased E2F3 expression in ß-cells via enhancing Steroid receptor coactivator-1 (SRC1) recruitment, increasing the pro-transcriptional acetylation of histone H3 at the E2f3 promoter. GW4064 treatment also decreased the association between FXR and menin, leading to the induction of FXR-mediated SRC1 recruitment. Mimicking the impact of FXR agonists, RYGB also increased E2F3 expression and ß-cell proliferation in GK rats and SD rats. These findings unravel the crucial role of the FXR/menin signaling in epigenetically controlling E2F3 expression and ß-cell proliferation, a mechanism possibly underlying RYGB-induced ß-cell proliferation.


Subject(s)
Cell Proliferation , E2F3 Transcription Factor , Epigenesis, Genetic , Insulin-Secreting Cells , Receptors, Cytoplasmic and Nuclear , Animals , Rats , Cell Proliferation/drug effects , Epigenesis, Genetic/drug effects , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/agonists , Receptors, Cytoplasmic and Nuclear/genetics , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/drug effects , Male , E2F3 Transcription Factor/metabolism , E2F3 Transcription Factor/genetics , Rats, Wistar , Histones/metabolism , Isoxazoles/pharmacology , Signal Transduction/drug effects , Islets of Langerhans/metabolism , Islets of Langerhans/drug effects , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/pathology
12.
Fitoterapia ; 175: 105927, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38548028

ABSTRACT

STAT3 is a crucial member within a family of seven essential transcription factors. Elevated STAT3 levels have been identified in various cancer types, notably in breast cancer (BC). Consequently, inhibiting STAT3 is recognized as a promising and effective strategy for therapeutic intervention against breast cancer. We herein synthesize a library of isoxazole (PAIs) from piperic acid [2E, 4E)-5-(2H-1,3-Benzodioxol-5-yl) penta-2,4-dienoic acid] on treatment with propargyl bromide followed by oxime under prescribed reaction conditions. Piperic acid was obtained by hydrolysis of piperine extracted from Piper nigrum. First, we checked the binding potential of isoxazole derivatives with breast cancer target proteins by network pharmacology, molecular docking, molecular dynamic (MD) simulation and cytotoxicity analysis as potential anti-breast cancer (BC) agents. The multi-source databases were used to identify possible targets for isoxazole derivatives. A network of protein-protein interactions (PPIs) was generated by obtaining 877 target genes that overlapped gene symbols associated with isoxazole derivatives and BC. Molecular docking and MD modelling demonstrated a strong affinity between isoxazole derivatives and essential target genes. Further, the cell viability studies of isoxazole derivatives on the human breast carcinoma cell lines showed toxicity in all breast cancer cell lines. In summary, our study indicated that the isoxazole derivative showed the significant anticancer activity. The results highlight the prospective utility of isoxazole derivatives as new drug candidates for anticancer chemotherapy, suggesting route for the continued exploration and development of drugs suitable for clinical applications.


Subject(s)
Fatty Acids, Unsaturated , Isoxazoles , Molecular Docking Simulation , STAT3 Transcription Factor , Triple Negative Breast Neoplasms , Humans , STAT3 Transcription Factor/antagonists & inhibitors , STAT3 Transcription Factor/metabolism , Triple Negative Breast Neoplasms/drug therapy , Isoxazoles/pharmacology , Isoxazoles/chemistry , Cell Line, Tumor , Molecular Structure , Fatty Acids, Unsaturated/pharmacology , Fatty Acids, Unsaturated/isolation & purification , Fatty Acids, Unsaturated/chemistry , Network Pharmacology , Molecular Dynamics Simulation , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification
13.
Int Wound J ; 21(3): e13946, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38477426

ABSTRACT

Keloids seem to overexpress cyclo-oxygenase-2 (COX-2), suggesting a role in its deregulated pathway in inducing an altered epithelial-mesenchymal interaction, which may be responsible for the overgrowth of dermal components resulting in scars or keloid lesions. This study aimed to evaluate the effect of Parecoxib, a COX-2 inhibitor, on cell growth in fibroblast primary cultures obtained from human keloid tissues. Tissue explants were obtained from patients who underwent intralesional excision of untreated keloids; central fractions were isolated from keloid tissues and used for establishing distinct primary cultures. Appropriate aliquots of Parecoxib, a COX-2 inhibitor were diluted to obtain the concentration used in the experimental protocols in vitro (1, 10 or 100 µM). Treatment with Parecoxib (at all concentrations) caused a significant decrease in cellular growth from 24 hours onwards, and with a maximum at 72 hours (P < .02). Moreover, at 72 hours Parecoxib significantly reduced cellular vitality. Parecoxib treatment also induced an increase in fragmented nuclei with a maximum effect at 100 µM and a significant decrease in Bcl-2 and an increase in activated caspase-3 protein levels at 72 hours compared with control untreated cultures. Our findings suggest a potential use of the COX-2 inhibitor, Parecoxib, as the therapy for keloids.


Subject(s)
Cicatrix, Hypertrophic , Keloid , Humans , Keloid/pathology , Cyclooxygenase 2 Inhibitors/metabolism , Cyclooxygenase 2 Inhibitors/pharmacology , Isoxazoles/metabolism , Isoxazoles/pharmacology , Fibroblasts , Cicatrix, Hypertrophic/metabolism
14.
Parasit Vectors ; 17(1): 110, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38449052

ABSTRACT

BACKGROUND: The occurrence of higher winter temperatures in Brazilian areas with tropical and highland climates may result in a fifth peak of tick populations during winter in addition to the four generations previously described. Therefore, a strategic control protocol was developed with treatments in two seasons with the objective of controlling the generations of ticks that occur in spring/summer and those that occur in autumn/winter. METHODS: The study was conducted in Mato Grosso do Sul, Brazil, from the beginning of the rainy season, November 2020, to October 2021. In a randomized block design, 36 calves were distributed into three groups: (i) negative control; (ii) traditional strategic control in one season (SC1S), at the beginning of the rainy season; and (iii) strategic control in two seasons (SC2S), at the beginning and end of the rainy season. The SC1S strategic control group was treated on day 0, November 2020, and twice more with intervals of 42 days. The SC2S group received three more treatments beginning on day 182, May 2021, with intervals of 42 days. All treatments consisted of 5% fluralaner (Exzolt® 5%) delivered via a pour-on dose of 1 mL/20 kg body weight. Counts of semi-engorged female ticks were performed on day 3 and every 14 days thereafter, and the animals were weighed at the same time. RESULTS: Fluralaner showed a mean efficacy of more than 95% up to day 294. The two treated groups showed a decrease (P < 0.05) in the average number of ticks on day 3. In the SC2S group, the means were close or equal to zero throughout the study, while in the SC1S group, the means did not differ (P > 0.05) from those of the control group from day 231 onward. The final mean weight gain of each group was 76.40 kg, 98.63 kg, and 115.38 kg for the control, SC1S, and SC2S groups, respectively, differing (P < 0.05) from each other. CONCLUSIONS: Therefore, three applications of fluralaner, with one application every 42 days from the beginning of the rainy season in the middle spring, resulted in effective tick control for 224 days. When three additional treatments were given in autumn/winter with intervals of 42 days between applications, tick counts were reduced throughout the year. This strategic control approach may be indicated in years with climatic conditions that allow that population peaks are expected to occur in the autumn/winter period.


Subject(s)
Rhipicephalus , Female , Cattle , Animals , Isoxazoles/pharmacology , Brazil , Rain
15.
J Agric Food Chem ; 72(8): 3937-3948, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38354096

ABSTRACT

Resistance to the herbicide pyroxasulfone has slowly but steadily increased in agricultural weeds. The evolved resistance of one Lolium rigidum population has been attributed to the conjugation of pyroxasulfone to reduced glutathione, mediated by glutathione transferase (GST) activity. To determine if GST-based metabolism is a widespread mechanism of pyroxasulfone resistance in L. rigidum, a number of putative-resistant populations were screened for GST activity toward pyroxasulfone, the presence of GSTF13-like isoforms (previously implicated in pyroxasulfone conjugation in this species), tissue glutathione concentrations, and response to inhibitors of GSTs and oxygenases. Although there were no direct correlations between pyroxasulfone resistance levels and these individual parameters, a random forest analysis indicated that GST activity was of primary importance for L. rigidum resistance to this herbicide.


Subject(s)
Herbicides , Lolium , Sulfones , Herbicide Resistance , Herbicides/pharmacology , Herbicides/metabolism , Isoxazoles/pharmacology , Glutathione/metabolism
16.
Bioorg Med Chem ; 96: 117516, 2023 12 15.
Article in English | MEDLINE | ID: mdl-37944413

ABSTRACT

Cancer still represents a serious public health problem and one of the main problems related to the worsening of this disease is the ability of some tumors to develop metastasis. In this work, we synthesized a new series of chalcones and isoxazoles derived from eugenol and analogues as molecular hybrids and these compounds were evaluated against different tumor cell lines. This structural pattern was designed considering the cytotoxic potential already known for eugenol, chalcones and isoxazoles. Notably, chalcones 7, 9, 10, and 11 displayed significant activity (4.2-14.5 µM) against two cancer cell lines, surpassing the potency of the control drug doxorubicin. The reaction of chalcones with hydroxylamine hydrochloride provided the corresponding isoxazoles that were inactive against these cancer cells. The dihydroeugenol chalcone 7 showed the most promising results, demonstrating higher potency against HepG2 (CC50: 4.2 µM) and TOV-21G (CC50: 7.2 µM). Chalcone 7 was also three times less toxic than doxorubicin considering HepG2 cells, with a selectivity index greater than 11. Further investigations including clonogenic survival, cell cycle progression and cell migration assays confirmed the compelling antitumoral potential of chalcone 7, as it reduced long-term survival due to DNA fragmentation, inducing cell death and inhibiting HepG2 cells migration. Moreover, in silico studies involving docking and molecular dynamics revealed a consistent binding mode of chalcone 7 with metalloproteinases, particularly MMP-9, shedding light on its potential mechanism of action related to anti-migratory effects. These significant findings suggest the inclusion of compound 7 as a promising candidate for future studies in the field of cancer therapeutics.


Subject(s)
Antineoplastic Agents , Chalcone , Chalcones , Neoplasms , Chalcone/pharmacology , Chalcone/chemistry , Chalcones/pharmacology , Chalcones/chemistry , Eugenol/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Doxorubicin/pharmacology , Isoxazoles/pharmacology , Cell Proliferation , Molecular Structure , Drug Screening Assays, Antitumor , Molecular Docking Simulation , Structure-Activity Relationship
17.
Int J Mol Sci ; 24(22)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-38003327

ABSTRACT

An efficient regioselective approach to novel functionalized bis(isoxazoles) with a variety of aromatic and aliphatic linkers was elaborated, based on the heterocyclization reaction of electrophilic alkenes under the treatment with tetranitromethane-triethylamine complex affording 3-EWG-5-nitroisoxazoles. The subsequent SNAr reactions of 5-nitroisoxazoles with various O,O-, N,N- and S,S-bis(nucleophiles) provide a wide range of bis(isoxazole) derivatives in good isolated yields. Employing an elaborated method, a series of novel bis(3-EWG-isoxazoles) as the promising allosteric modulators of AMPA receptors were designed and synthesized. The effect of the compounds on the kainate-induced currents was studied in the patch clamp experiments, revealing modulator properties for several of them. The best positive modulator potency was found for dimethyl 5,5'-(ethane-1,2-diylbis(sulfanediyl))bis(isoxazole-3-carboxylate), which potentiated the kainate-induced currents in a wide concentration range (10-12-10-6 M) with maximum potentiation of 77% at 10-10 M. The results were rationalized using molecular docking and molecular dynamics simulations of modulator complexes with the dimeric ligand-binding domain of the GluA2 AMPA receptor. The predicted physicochemical, ADMET, and PAINS properties confirmed that the AMPA receptor modulators based on the bis(isoxazole) scaffold may serve as potential lead compounds for the development of neuroprotective drugs.


Subject(s)
Kainic Acid , Receptors, AMPA , Receptors, AMPA/chemistry , Isoxazoles/pharmacology , Ligands , Molecular Docking Simulation
18.
Nat Struct Mol Biol ; 30(12): 1936-1946, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37903907

ABSTRACT

α5 subunit-containing γ-aminobutyric acid type A (GABAA) receptors represent a promising drug target for neurological and neuropsychiatric disorders. Altered expression and function contributes to neurodevelopmental disorders such as Dup15q and Angelman syndromes, developmental epilepsy and autism. Effective drug action without side effects is dependent on both α5-subtype selectivity and the strength of the positive or negative allosteric modulation (PAM or NAM). Here we solve structures of drugs bound to the α5 subunit. These define the molecular basis of binding and α5 selectivity of the ß-carboline, methyl 6,7-dimethoxy-4-ethyl-ß-carboline-3-carboxylate (DMCM), type II benzodiazepine NAMs, and a series of isoxazole NAMs and PAMs. For the isoxazole series, each molecule appears as an 'upper' and 'lower' moiety in the pocket. Structural data and radioligand binding data reveal a positional displacement of the upper moiety containing the isoxazole between the NAMs and PAMs. Using a hybrid molecule we directly measure the functional contribution of the upper moiety to NAM versus PAM activity. Overall, these structures provide a framework by which to understand distinct modulator binding modes and their basis of α5-subtype selectivity, appreciate structure-activity relationships, and empower future structure-based drug design campaigns.


Subject(s)
Receptors, GABA-A , gamma-Aminobutyric Acid , Receptors, GABA-A/metabolism , Isoxazoles/pharmacology
19.
Int J Med Mushrooms ; 25(9): 1-10, 2023.
Article in English | MEDLINE | ID: mdl-37824402

ABSTRACT

Herbal products found in nature can serve as great systems of study for drug design. The Amanita muscaria mushroom is native to many parts of the Northern Hemisphere and has a very distinctive appearance with its red cap and white spotted warts. The mushroom comprises several pharmacologically active alkaloids, including muscazone, muscarine, ibotenic acid, and muscimol, the latter two compounds being potent GABA agonists. Muscimol has served as a backbone in the design of GABA agonists devoid of effects on the GABA-metabolizing enzyme, GABA transaminase, and GABA uptake systems. In this sense, several analogs of muscimol have been synthesized and studied including THIP, THPO, iso-THIP, iso-THAZ and 4-PIOL which all interact with the GABA receptors much differently. The growing pharmacological and toxicological interest based on many conflicting opinions on the use of the neuroprotective role of muscimol analogs against some neurodegenerative diseases, its potent role in the treatment of cerebral ischemia and other socially significant health conditions provided the basis for this review.


Subject(s)
Amanita , Isoxazoles , Muscimol/pharmacology , Isoxazoles/pharmacology , GABA Agonists , gamma-Aminobutyric Acid
20.
Molecules ; 28(19)2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37836643

ABSTRACT

Isoxazolo[3,4-d] pyridazinones ([3,4-d]s) were previously shown to have selective positive modulation at the metabotropic glutamate receptor (mGluR) Subtypes 2 and 4, with no functional cross-reactivity at mGluR1a, mGluR5, or mGluR8. Additional analogs were prepared to access more of the allosteric pocket and achieve higher binding affinity, as suggested by homology modeling. Two different sets of analogs were generated. One uses the fully formed [3,4-d] with an N6-aryl with and without halogens. These underwent successful selective lateral metalation and electrophilic quenching (LM&EQ) at the C3 of the isoxazole. In a second set of analogs, a phenyl group was introduced at the C4 position of the [3,4-d] ring via a condensation of 4-phenylacetyl-3-ethoxcarbonyl-5-methyl isoxazole with the corresponding hydrazine to generate the 3,4-ds 2b and 2j to 2n.


Subject(s)
Models, Chemical , Molecular Dynamics Simulation , Allosteric Regulation , Benzamides , Isoxazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...