Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 310
Filter
1.
Langmuir ; 40(21): 10992-11010, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38743441

ABSTRACT

The exploration of environmentally friendly, less toxic, sustained-release insecticide is increasing with the growing demand for food to meet the requirements of the expanding population. As a sustained-release carrier, the unique, environmentally friendly intelligent responsive hydrogel system is an important factor in improving the efficiency of insecticide utilization and accurate release. In this study, we developed a facile approach for incorporating the natural compound rosin (dehydroabietic acid, DA) and zinc ions (Zn2+) into a poly(N-isopropylacrylamide) (PNIPAM) hydrogel network to construct a controlled-release hydrogel carrier (DA-PNIPAM-Zn2+). Then, the model insecticide avermectin (AVM) was encapsulated in the carrier at a drug loading rate of 36.32% to form AVM@DA-PNIPAM-Zn2+. Surprisingly, the smart controlled carrier exhibited environmental responsiveness, strongly enhanced mechanical properties, self-healing ability, hydrophobicity, and photostability to ensure a balance between environmental friendliness and the precision of the drug release. The release experiments showed that the carboxyl and amide groups in the polymer chains alter the intermolecular forces within the hydrogel meshes and ingredient diffusion by changing temperatures (25 and 40 °C) and pH values (5.8, 7.4, and 8.5), leading to different release behaviors. The insecticidal activity of the AVM@DA-PNIPAM-Zn2+ against oriental armyworms was good, with an effective minimum toxicity toward aquatic animals. Therefore, AVM@DA-PNIPAM-Zn2+ is an effective drug delivery system against oriental armyworms. We anticipate that this ecofriendly, sustainable, smart-response carrier may broaden the utilization rosin and its possible applications in the agricultural sector.


Subject(s)
Drug Carriers , Hydrogels , Insecticides , Ivermectin , Resins, Plant , Ivermectin/analogs & derivatives , Ivermectin/chemistry , Ivermectin/pharmacology , Ivermectin/toxicity , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Hydrogen-Ion Concentration , Insecticides/chemistry , Insecticides/pharmacology , Resins, Plant/chemistry , Drug Carriers/chemistry , Temperature , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacology , Drug Liberation , Moths/drug effects , Rosaceae/chemistry , Zinc/chemistry , Zinc/pharmacology , Acrylic Resins
2.
ACS Nano ; 18(21): 13781-13793, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38752333

ABSTRACT

Pine wood nematode (PWN) disease is a globally devastating forest disease caused by infestation with PWN, Bursaphelenchus xylophilus, which mainly occurs through the vector insect Japanese pine sawyer (JPS), Monochamus alternatus. PWN disease is notoriously difficult to manage effectively and is known as the "cancer of pine trees." In this study, dual enzyme-responsive nanopesticides (AVM@EC@Pectin) were prepared using nanocoating avermectin (AVM) after modification with natural polymers. The proposed treatment can respond to the cell wall-degrading enzymes secreted by PWNs and vector insects during pine tree infestation to intelligently release pesticides to cut off the transmission and infestation pathways and realize the integrated control of PWN disease. The LC50 value of AVM@EC@Pectin was 11.19 mg/L for PWN and 26.31 mg/L for JPS. The insecticidal activity of AVM@EC@Pectin was higher than that of the commercial emulsifiable concentrate (AVM-EC), and the photostability, adhesion, and target penetration were improved. The half-life (t1/2) of AVM@EC@Pectin was 133.7 min, which is approximately twice that of AVM-EC (68.2 min). Sprayed and injected applications showed that nanopesticides had superior bidirectional transportation, with five-times higher AVM contents detected in the roots relative to those of AVM-EC when sprayed at the top. The safety experiment showed that the proposed treatment had lower toxicity and higher safety for nontarget organisms in the application environment and human cells. This study presents a green, safe, and effective strategy for the integrated management of PWN disease.


Subject(s)
Biomass , Ivermectin , Pinus , Animals , Pinus/parasitology , Pinus/chemistry , Ivermectin/analogs & derivatives , Ivermectin/pharmacology , Ivermectin/chemistry , Ivermectin/metabolism , Plant Diseases/parasitology , Plant Diseases/prevention & control , Nematoda/drug effects , Insecticides/pharmacology , Insecticides/chemistry , Nanoparticles/chemistry , Humans
3.
J Agric Food Chem ; 72(21): 12146-12155, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38747516

ABSTRACT

In this study, an α-amylase-responsive controlled-release formulation was developed by capping polydopamine onto ß-cyclodextrin-modified abamectin-loaded hollow mesoporous silica nanoparticles. The prepared Aba@HMS@CD@PDA were subjected to characterization using various analytical techniques. The findings revealed that Aba@HMS@CD@PDA, featuring a loading rate of 18.8 wt %, displayed noteworthy release behavior of abamectin in the presence of α-amylase. In comparison to abamectin EC, Aba@HMS@CD@PDA displayed a significantly foliar affinity and improved rainfastness on lotus leaves. The results of field trail demonstrated a significantly higher control efficacy against Spodoptera litura Fabricius compared to abamectin EC at all concentrations after 7, 14, and 21 days of spaying, showcasing the remarkable persistence of Aba@HMS@CD@PDA. These results underscore the potential of Aba@HMS@CD@PDA as a novel and persistently effective strategy for sustainable on-demand crop protection. The application of nanopesticides can enhance the effectiveness and efficiency of pesticide utilization, contributing to more sustainable agricultural practices.


Subject(s)
Crop Protection , Insecticides , Nanoparticles , Spodoptera , alpha-Amylases , Animals , alpha-Amylases/chemistry , alpha-Amylases/metabolism , alpha-Amylases/antagonists & inhibitors , Nanoparticles/chemistry , Crop Protection/methods , Spodoptera/drug effects , Insecticides/chemistry , Insecticides/pharmacology , Ivermectin/analogs & derivatives , Ivermectin/chemistry , Ivermectin/pharmacology , Polymers/chemistry , Silicon Dioxide/chemistry , Insect Control , Pesticides/chemistry , Pesticides/pharmacology , Indoles/chemistry , Indoles/pharmacology
4.
J Agric Food Chem ; 72(22): 12489-12497, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38773677

ABSTRACT

The glutathione S-transferases (GSTs) are important detoxifying enzymes in insects. Our previous studies found that the susceptibility of Chilo suppressalis to abamectin was significantly increased when the CsGST activity was inhibited by glutathione (GSH) depletory. In this study, the potential detoxification mechanisms of CsGSTs to abamectin were explored. Six CsGSTs of C. suppressalis were expressed in vitro. Enzymatic kinetic parameters including Km and Vmax of recombinant CsGSTs were determined, and results showed that all of the six CsGSTs were catalytically active and displaying glutathione transferase activity. Insecticide inhibitions revealed that a low concentration of abamectin could effectively inhibit the activities of CsGSTs including CsGSTd1, CsGSTe4, CsGSTo2, CsGSTs3, and CsGSTu1. However, the in vitro metabolism assay found that the six CsGSTs could not metabolize abamectin directly. Additionally, the glutathione transferase activity of CsGSTs in C. suppressalis was significantly increased post-treatment with abamectin. Comprehensive analysis of the results in present and our previous studies demonstrated that CsGSTs play an important role in detoxification of abamectin by catalyzing the conjugation of GSH to abamectin in C. suppressalis, and the high binding affinities of CsGSTd1, CsGSTe4, CsGSTo2, CsGSTs3, and CsGSTu1 with abamectin might also suggest the involvement of CsGSTs in detoxification of abamectin via the noncatalytic passive binding and sequestration instead of direct metabolism. These studies are helpful to better understand the detoxification mechanisms of GSTs in insects.


Subject(s)
Glutathione Transferase , Insect Proteins , Insecticides , Ivermectin , Moths , Glutathione Transferase/metabolism , Glutathione Transferase/genetics , Glutathione Transferase/chemistry , Animals , Insecticides/metabolism , Insecticides/pharmacology , Insecticides/chemistry , Moths/metabolism , Moths/drug effects , Moths/enzymology , Ivermectin/analogs & derivatives , Ivermectin/metabolism , Ivermectin/pharmacology , Ivermectin/chemistry , Insect Proteins/metabolism , Insect Proteins/genetics , Insect Proteins/chemistry , Kinetics , Oryza/metabolism , Oryza/parasitology , Oryza/chemistry , Glutathione/metabolism , Glutathione/chemistry
5.
J Nanobiotechnology ; 22(1): 202, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658952

ABSTRACT

Multi-modal combination therapy is regarded as a promising approach to cancer treatment. Combining chemotherapy and phototherapy is an essential multi-modal combination therapy endeavor. Ivermectin (IVM) is a potent antiparasitic agent identified as having potential antitumor properties. However, the fact that it induces protective autophagy while killing tumor cells poses a challenge to its further application. IR780 iodide (IR780) is a near-infrared (NIR) dye with outstanding photothermal therapy (PTT) and photodynamic therapy (PDT) effects. However, the hydrophobicity, instability, and low tumor uptake of IR780 limit its clinical applications. Here, we have structurally modified IR780 with hydroxychloroquine, an autophagy inhibitor, to synthesize a novel compound H780. H780 and IVM can form H780-IVM nanoparticles (H-I NPs) via self-assembly. Using hyaluronic acid (HA) to modify the H-I NPs, a novel nano-delivery system HA/H780-IVM nanoparticles (HA/H-I NPs) was synthesized for chemotherapy-phototherapy of colorectal cancer (CRC). Under NIR laser irradiation, HA/H-I NPs effectively overcame the limitations of IR780 and IVM and exhibited potent cytotoxicity. In vitro and in vivo experiment results showed that HA/H-I NPs exhibited excellent anti-CRC effects. Therefore, our study provides a novel strategy for CRC treatment that could enhance chemo-phototherapy by modulating autophagy.


Subject(s)
Autophagy , Colorectal Neoplasms , Drug Repositioning , Ivermectin , Nanoparticles , Autophagy/drug effects , Animals , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/therapy , Humans , Mice , Nanoparticles/chemistry , Ivermectin/pharmacology , Ivermectin/chemistry , Cell Line, Tumor , Indoles/chemistry , Indoles/pharmacology , Mice, Inbred BALB C , Mice, Nude , Photochemotherapy/methods , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Phototherapy/methods , Hyaluronic Acid/chemistry , Hydroxychloroquine/pharmacology , Hydroxychloroquine/chemistry , Photothermal Therapy/methods
6.
Int J Pharm ; 656: 124086, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38580074

ABSTRACT

Chronic myeloid leukemia is a life-threatening blood-cancer prevalent among children and adolescents. Research for innovative therapeutics combine drug-repurposing, phytotherapeutics and nanodrug-delivery. Ivermectin (Ivn) is a potent anthelmintic, repurposed for antileukemic-activity. However, Ivn exerts off-target toxicity. Methyl-dihydrojasmonate (MJ) is a phytochemical of known antileukemic potential. Herein, we developed for the first-time Ivn/MJ-coloaded nanostructured-lipid-carrier (Ivn@MJ-NLC) for leveraging the antileukemic-activity of the novel Ivn/MJ-combination while ameliorating possible adverse-effects. The developed Ivn@MJ-NLC possessed optimum-nanosize (97 ± 12.70 nm), PDI (0.33 ± 0.02), entrapment for Ivn (97.48 ± 1.48 %) and MJ (99.48 ± 0.57 %) and controlled-release of Ivn (83 % after 140 h) and MJ (80.98 ± 2.45 % after 48 h). In-vitro K562 studies verified Ivn@MJ-NLC prominent cytotoxicity (IC50 = 35.01 ± 2.23 µg/mL) with pronounced Ivn/MJ-synergism (combination-index = 0.59) at low-concentrations (5-10 µg/mL Ivn). Superior Ivn@MJ-NLC cytocompatibility was established on oral-epithelial-cells (OEC) with high OEC/K562 viability-ratio (1.49-1.85). The innovative Ivn@MJ-NLC enhanced K562-nuclear-fragmentation and afforded upregulation of caspase-3 and BAX (1.71 ± 0.07 and 1.45 ± 0.07-fold-increase, respectively) compared to control. Ex-vivo hemocompatibility and in-vivo-biocompatibility of parenteral-Ivn@MJ-NLC, compared to Ivn-solution, was verified via biochemical-blood analysis, histological and histomorphometric studies of liver and kidney tissues. Our findings highlight Ivn@MJ-NLC as an Ivn/MJ synergistic antileukemic platform, ameliorating possible adverse-effects.


Subject(s)
Drug Carriers , Ivermectin , Lipids , Nanostructures , Humans , Ivermectin/administration & dosage , Ivermectin/chemistry , Ivermectin/pharmacokinetics , Ivermectin/pharmacology , Animals , Drug Carriers/chemistry , Lipids/chemistry , K562 Cells , Nanostructures/administration & dosage , Nanostructures/chemistry , Drug Synergism , Drug Liberation , Cell Survival/drug effects , Male , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Limonins/administration & dosage , Limonins/pharmacology , Limonins/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Rats
7.
Int J Biol Macromol ; 267(Pt 2): 131510, 2024 May.
Article in English | MEDLINE | ID: mdl-38608989

ABSTRACT

Bacterial diseases caused substantial yield losses worldwide, with the rise of antibiotic resistance, there is a critical need for alternative antibacterial compounds. Natural products (NPs) from microorganisms have emerged as promising candidates due to their potential as cost-effective and environmentally friendly bactericides. However, the precise mechanisms underlying the antibacterial activity of many NPs, including Guvermectin (GV), remain poorly understood. Here, we sought to explore how GV interacts with Guanosine 5'-monophosphate synthetase (GMPs), an enzyme crucial in bacterial guanine synthesis. We employed a combination of biochemical and genetic approaches, enzyme activity assays, site-directed mutagenesis, bio-layer interferometry, and molecular docking assays to assess GV's antibacterial activity and its mechanism targeting GMPs. The results showed that GV effectively inhibits GMPs, disrupting bacterial guanine synthesis. This was confirmed through drug-resistant assays and direct enzyme inhibition studies. Bio-layer interferometry assays demonstrated specific binding of GV to GMPs, with dependency on Xanthosine 5'-monophosphate. Site-directed mutagenesis identified key residues crucial for the GV-GMP interaction. This study elucidates the antibacterial mechanism of GV, highlighting its potential as a biocontrol agent in agriculture. These findings contribute to the development of novel antibacterial agents and underscore the importance of exploring natural products for agricultural disease management.


Subject(s)
Adenosine/analogs & derivatives , Anti-Bacterial Agents , Ivermectin , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Ivermectin/pharmacology , Ivermectin/analogs & derivatives , Ivermectin/chemistry , Molecular Docking Simulation , Biological Products/pharmacology , Biological Products/chemistry , Microbial Sensitivity Tests , Carbon-Nitrogen Ligases/metabolism , Carbon-Nitrogen Ligases/chemistry , Carbon-Nitrogen Ligases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Mutagenesis, Site-Directed
8.
Pestic Biochem Physiol ; 201: 105897, 2024 May.
Article in English | MEDLINE | ID: mdl-38685223

ABSTRACT

Solid nanodispersion (SND) is an important variety of nanopesticides which have been extensively studied in recent years. However, the key influencing factors for bioactivity enhancement of nanopesticides remain unclear, which not only limits the exploration of relevant mechanisms, but also hinders the precise design and development of nanopesticides. In this study, we explored the potential of SND in enhancing the bioactivity of nanopesticides, specifically focusing on abamectin SND prepared using a self-emulsifying-carrier solidifying technique combined with parameter optimization. Our formulation, consisting of 8% abamectin, 1% antioxidant BHT (2,6-di-tert-butyl-4-methylphenol), 12% complex surfactants, and 79% sodium benzoate, significantly increased the pseudo-solubility of abamectin by at least 3300 times and reduced its particle size to a mere 15 nm, much smaller than traditional emulsion in water (EW) and water-dispersible granule (WDG) forms. This reduction in particle size and increase in surface activity resulted in improved foliar adhesion and retention, enabling a more efficient application without the need for organic solvents. The inclusion of antioxidants also enhanced photostability compared to EW, and overall stability tests confirmed SND's resilience under various storage conditions. Bioactivity tests demonstrated a marked increase in toxicity against diamondback moths (Plutella xylostella L.) with abamectin SND, which exhibited 3.7 and 7.6 times greater efficacy compared to EW and WDG, respectively. These findings underscore the critical role of small particle size, high surface activity, and strong antioxidant properties in improving the performance and bioactivity of abamectin SND, highlighting its significance in the design and development of high-efficiency, eco-friendly nanopesticides and contributing valuably to sustainable agricultural practices.


Subject(s)
Ivermectin , Ivermectin/analogs & derivatives , Ivermectin/pharmacology , Ivermectin/chemistry , Animals , Insecticides/pharmacology , Insecticides/chemistry , Particle Size , Antioxidants/pharmacology , Antioxidants/chemistry , Nanoparticles/chemistry , Moths/drug effects , Surface-Active Agents/pharmacology , Surface-Active Agents/chemistry , Larva/drug effects , Emulsions
9.
Food Chem ; 449: 139256, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38636286

ABSTRACT

In this report, we firstly synthesized nitro calix [4] resorcinarene compound (referred as KA30) and characterized it though proton (1H) nuclear magnetic resonance (NMR) spectroscopy, electrospray ionization mass spectrometry (ESI-MS) and Fourier Transform Infra-red (FTIR) spectroscopy. KA30 was applied as functionalizing agent for the formation of silver nanoparticles (KA30-AgNPs). These NPs were confirmed as highly selective and extremely sensitive colorimetric sensor for ultra-low level detection of emamectin (EMA) as a novel report. Significant aspect of the sensor is its unique detection range between 0.0005 and 29.5 µM via color change from yellow to colorless with hypochromic-bathochromic shift exhibiting limit of detection (LOD) and limit of quantification (LOQ) as 0.12 nM and 0.4 nM respectively. The sensor was applied to colorimetrically and optically detect EMA in real samples of serum, urine and food. The sensor was further allied with smartphone for real-time, and on-site detection of EMA and results were validated through UPLC.


Subject(s)
Colorimetry , Food Contamination , Ivermectin , Metal Nanoparticles , Silver , Smartphone , Silver/chemistry , Colorimetry/methods , Metal Nanoparticles/chemistry , Food Contamination/analysis , Ivermectin/analogs & derivatives , Ivermectin/chemistry , Ivermectin/analysis , Limit of Detection , Calixarenes/chemistry , Humans , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry
10.
ACS Appl Mater Interfaces ; 16(17): 22558-22570, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38637157

ABSTRACT

The development of nanopesticides provides new avenues for pesticide reduction and efficiency improvement. However, the size effect of nanopesticides remains unclear, and its underlying mechanisms of influence have become a major obstacle in the design and application of pesticide nanoformulations. In this research, the noncarrier-coated emamectin benzoate (EB) solid dispersions (Micro-EB and Nano-EB) were produced under a constant surfactant-to-active ingredient ratio by a self-emulsifying-carrier solidification technique. The particle size of Micro-EB was 162 times that of spherical Nano-EB. The small size and large specific surface area of Nano-EB facilitated the adsorption of surfactants on the surface of the particles, thereby improving its dispersibility, suspensibility, and stability. The pinning effect of nanoparticles significantly suppressed droplet retraction and rebounding. Moreover, Nano-EB exhibited a 25% higher retention of the active ingredient on cabbage leaves and a 70% higher washing resistance than Micro-EB, and both were significantly different. The improvement of abilities in wetting, spreading, and retention of Nano-EB on crop leaves contributed to the increase in foliar utilization, which further resulted in a 1.6-fold enhancement of bioactivity against target Spodoptera exigua compared to Micro-EB. Especially, Nano-EB did not exacerbate the safety risk to the nontarget organism zebrafish with no significant difference. This study elaborates the size effect on the effectiveness and safety of pesticide formulations and lays a theoretical foundation for the development and rational utilization of efficient and environmentally friendly nanopesticides.


Subject(s)
Ivermectin , Ivermectin/analogs & derivatives , Nanoparticles , Particle Size , Spodoptera , Ivermectin/pharmacology , Ivermectin/chemistry , Animals , Spodoptera/drug effects , Nanoparticles/chemistry , Insecticides/pharmacology , Insecticides/chemistry , Plant Leaves/chemistry , Plant Leaves/metabolism , Surface-Active Agents/chemistry , Surface-Active Agents/pharmacology , Brassica/drug effects
11.
Pest Manag Sci ; 80(6): 2827-2838, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38329149

ABSTRACT

BACKGROUND: Widespread application of controlled-release pesticide delivery systems is a feasible and effective method to improve the utilization efficiency of pesticides. However, owing to the high cost and complicated preparation technologies of controlled-release pesticide delivery systems, their applications in agricultural production have been seriously hindered. RESULTS: This study aimed to construct inexpensive photothermally controlled-release pesticide delivery systems using chitosan (CS) and sodium lignosulfonate (LS) as the wall materials, and a coordination assembly strategy of LS with transition metal ions to encapsulate a model pesticide, avermectin (AVM). The resulting complex or nanoparticle photothermal layers in these systems effectively achieved photothermal conversions, and replaced the use of common photothermal agents. In the prepared pesticide-delivery systems, two systems had remarkable photothermal conversion performance and photothermal stabilities with a photothermal conversion efficiency (η) of 24.03% and 28.82%, respectively, under 808 nm, 2 W near-infrared irradiation. The slow-release and ultraviolet-shielding performance of these two systems were markedly enhanced compared with other formulations. The insecticidal activities of these two systems against Plutella xylostella under irradiation with light-emitting diode (LED)-simulated sunlight were also enhanced by 5.20- and 5.06-fold, respectively, compared with that without irradiation of LED-simulated sunlight. CONCLUSION: Because of their convenient preparations, inexpensive and renewable raw materials, and excellent photothermally controlled-release performance, these on-demand pesticide delivery systems might have significant potential in improving the utilization efficiency of pesticides in modern agriculture. © 2024 Society of Chemical Industry.


Subject(s)
Delayed-Action Preparations , Insecticides , Lignin , Moths , Lignin/chemistry , Lignin/analogs & derivatives , Animals , Moths/drug effects , Insecticides/chemistry , Ivermectin/analogs & derivatives , Ivermectin/chemistry , Capsules , Chitosan/chemistry , Pesticides/chemistry , Drug Delivery Systems
12.
Int J Biol Macromol ; 254(Pt 3): 127996, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37949281

ABSTRACT

Nano pesticides offer an effective means of improving the bioavailability of pesticide due to their excellent solubility and wettability, superior foliar adhesion, and permeability to target insects. By using high-speed homogenization and ultrasonic dispersion technology, an emamectin-sodium alginate nano-formulation (EB@SA) with a particle size ranging from 30 to 50 nm was successfully fabricated using electrostatic self-assembly. The microscopic morphology and structure of EB@SA were further analyzed through transmission electron microscopy, dynamic light scattering, infrared spectroscopy, and 1H NMR. The photolysis resistance behavior of EB@SA demonstrated an improved anti-photolysis ability more than double that of conventional formulations while also exhibiting good sustained-release properties. Not only does EB@SA maintain the inherent insecticidal toxicity of emamectin benzoate (EB), but it also significantly prolongs its insecticidal duration. At a concentration of 20 mg/L, the lethality rate against Armyworms remains above 70 % over a period of 16 days compared to <50 % for general emamectin emulsifiable concentrate. Furthermore, EB@SA greatly enhances the systemic translocation of EB in corn plants by exhibiting favorable bidirectional systemic translocation characteristics. This research presents an efficient and environmentally friendly pesticide nano-formulation that can be effectively utilized for field pest control.


Subject(s)
Alginates , Insecticides , Photolysis , Ivermectin/pharmacology , Ivermectin/chemistry , Insecticides/pharmacology
13.
Ther Deliv ; 14(6): 391-399, 2023 06.
Article in English | MEDLINE | ID: mdl-37535333

ABSTRACT

Purpose: To describe application of the Quicksol™ solvent-free approach to solubilize ivermectin (IVM). Methods: Lyophilized IVM complexed with hydroxypropyl-ß-cyclodextrin (HP-ß-CD) was resolubilized in aqueous polysorbate-80, generating Soluvec™. Lyophilizate was examined by Fourier-transform infrared spectroscopy and differential scanning calorimetry; Soluvec, by dynamic light scattering. Pharmacokinetics was evaluated in dogs allocated to subcutaneous (SC) or intramuscular (IM) Soluvec or oral IVM. Results: IVM in Soluvec was tightly bound by HPßCD, forming nearly monodisperse 28 nm particles with solubility ∼2500-times that of free IVM. SC and IM Soluvec increased IVM exposure, peak IVM and extended duration of IVM exposure, versus oral dosing. Conclusion: The Quicksol method generated Soluvec, a concentrated aqueous parenteral IVM formulation with pharmacokinetic properties suitable for veterinary or human use.


Ivermectin (IVM) kills insects and worms that cause disease. Because it doesn't dissolve well, blood IVM can be low. We found a new way to dissolve IVM, using simple, common materials. Dogs receiving our IVM (Soluvec™) had high blood IVM levels for longer, compared with tablet IVM. Next, we hope to learn the best ways to dose Soluvec in animals and people.


Subject(s)
Ivermectin , Animals , Humans , Dogs , Ivermectin/chemistry , Ivermectin/pharmacokinetics , Solvents , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Solubility
14.
Int J Pharm ; 639: 122965, 2023 May 25.
Article in English | MEDLINE | ID: mdl-37084836

ABSTRACT

Ivermectin (IVM) is a potent antiparasitic widely used in human and veterinary medicine. However, the low oral bioavailability of IVM restricts its therapeutic potential in many parasitic infections, highlighting the need for novel formulation approaches. In this study, poly(ε-caprolactone) (PCL) nanocapsules containing IVM were successfully developed using the nanoprecipitation method. Pumpkin seed oil (PSO) was used as an oily core in the developed nanocapsules. Previously, PSO was chemically analyzed by headspace solid-phase microextraction coupled to gas chromatography/mass spectrometry (HS-SPME/GC-MS). The solubility of IVM in PSO was found to be 4266.5 ± 38.6 µg/mL. In addition, the partition coefficient of IVM in PSO/water presented a logP of 2.44. A number of nanocapsule batches were produced by factorial design resulting in an optimized formulation. Negatively charged nanocapsules measuring around 400 nm demonstrated unimodal size distribution, and presented regular spherical morphology under transmission electron microscopy. High encapsulation efficiency (98-100%) was determined by HPLC. IVM-loaded capsules were found to be stable in nanosuspensions at 4 °C and 25 °C, with no significant variations in particle size observed over a period of 150 days. Nanoencapsulated IVM (0.3 mM) presented reduced toxicity to J774 macrophages and L929 fibroblasts compared to free IVM. Moreover, IVM-loaded nanocapsules also demonstrated enhanced in vitro anthelmintic activity against Strongyloides venezuelensis in comparison to free IVM. Collectively, the present findings demonstrate the promising potential of PCL-PSO nanocapsules to improve the antiparasitic effects exerted by IVM.


Subject(s)
Ivermectin , Nanocapsules , Humans , Ivermectin/pharmacology , Ivermectin/chemistry , Antiparasitic Agents/pharmacology , Antiparasitic Agents/chemistry , Nanocapsules/chemistry , Polymers , Polyesters/chemistry
15.
Int J Biol Macromol ; 240: 124450, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37060972

ABSTRACT

Controlled release formulations (CRFs) are a key technical approach for the sustainable development of pesticides. In this study, a CRF conjugate (emamectin-alkaline lignin, EB-AL) was successfully prepared using alkaline lignin as the substrate, with amide bond connecting emamectin and alkaline lignin. The structure and morphology of the conjugate were characterized using IR, 1HNMR, elemental analysis, SEM and TG. The release of EB-AL showed that the conjugate maintained its original structure when released in 50 % methanol-water and soil column, and the amide bond remained intact. The anti-photolysis test revealed that EB-AL had a 3.5 times higher photolysis half-life T0.5 than the general emamectin suspension concentrate (EB-SC). Bioactivity tests in the greenhouse demonstrated that EB-AL possessed a longer insecticidal duration and good biosafety. Ostrinia nubilalis lethality rate remained above 70 % for 19 days, while EB-EC, the control, had a rate of <50 % after 11 days of application. Additionally, EB-AL conjugate demonstrated excellent systemic translocation in plants, likely due to its ability to mediate alkaline lignin.


Subject(s)
Insecticides , Lignin , Lignin/pharmacology , Ivermectin/pharmacology , Ivermectin/chemistry , Insecticides/pharmacology , Amides
16.
ACS Chem Neurosci ; 14(6): 1156-1165, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36821490

ABSTRACT

The α7 nicotinic acetylcholine receptor (α7nAChR) mediates signaling in the central nervous system and cholinergic anti-inflammatory pathways. Ivermectin is a positive allosteric modulator of a full-length α7nAChR and an agonist of the α7nAChR construct containing transmembrane (TMD) and intracellular (ICD) domains, but structural insights of the binding have not previously been determined. Here, combining nuclear magnetic resonance as a primary experimental tool with Rosetta comparative modeling and molecular dynamics simulations, we have revealed details of ivermectin binding to the α7nAChR TMD + ICD and corresponding structural changes in an ivermectin-induced desensitized state. Ivermectin binding was stabilized predominantly by hydrophobic interactions from interfacial residues between adjacent subunits near the extracellular end of the TMD, where the inter-subunit gap was substantially expanded in comparison to the apo structure. The ion-permeation pathway showed a profile distinctly different from the resting-state profile but similar to profiles of desensitized α7nAChR. The ICD also exhibited structural changes, including reorientation of the MX and h3 helices relative to the channel axis. The resulting structures of the α7nAChR TMD + ICD in complex with ivermectin provide opportunities for discovering new modulators of therapeutic potential and exploring the structural basis of cytoplasmic signaling under different α7nAChR functional states.


Subject(s)
Ivermectin , alpha7 Nicotinic Acetylcholine Receptor , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Ivermectin/pharmacology , Ivermectin/chemistry , Ivermectin/metabolism , Molecular Dynamics Simulation , Signal Transduction
17.
Epilepsia ; 64(3): 553-566, 2023 03.
Article in English | MEDLINE | ID: mdl-36645121

ABSTRACT

There are only a few drugs that can seriously lay claim to the title of "wonder drug," and ivermectin, the world's first endectocide and forerunner of a completely new class of antiparasitic agents, is among them. Ivermectin, a mixture of two macrolytic lactone derivatives (avermectin B1a and B1b in a ratio of 80:20), exerts its highly potent antiparasitic effect by activating the glutamate-gated chloride channel, which is absent in vertebrate species. However, in mammals, ivermectin activates several other Cys-loop receptors, including the inhibitory γ-aminobutyric acid type A and glycine receptors and the excitatory nicotinic acetylcholine receptor of brain neurons. Based on these effects on vertebrate receptors, ivermectin has recently been proposed to constitute a multifaceted wonder drug for various novel neurological indications, including alcohol use disorders, motor neuron diseases, and epilepsy. This review critically discusses the preclinical and clinical evidence of antiseizure effects of ivermectin and provides several arguments supporting that ivermectin is not a suitable candidate drug for the treatment of epilepsy. First, ivermectin penetrates the mammalian brain poorly, so it does not exert any pharmacological effects via mammalian ligand-gated ion channels in the brain unless it is used at high, potentially toxic doses or the blood-brain barrier is functionally impaired. Second, ivermectin is not selective but activates numerous inhibitory and excitatory receptors. Third, the preclinical evidence for antiseizure effects of ivermectin is equivocal, and at least in part, median effective doses in seizure models are in the range of the median lethal dose. Fourth, the only robust clinical evidence of antiseizure effects stems from the treatment of patients with onchocerciasis, in which the reduction of seizures is due to a reduction in microfilaria densities but not a direct antiseizure effect of ivermectin. We hope that this critical analysis of available data will avert the unjustified hype associated with the recent use of ivermectin to control COVID-19 from recurring in neurological diseases such as epilepsy.


Subject(s)
Anticonvulsants , Antiparasitic Agents , Epilepsy , Ivermectin , Antiparasitic Agents/chemistry , Antiparasitic Agents/pharmacokinetics , Antiparasitic Agents/therapeutic use , Antiparasitic Agents/toxicity , Ivermectin/chemistry , Ivermectin/pharmacokinetics , Ivermectin/therapeutic use , Ivermectin/toxicity , Epilepsy/drug therapy , Humans , Cysteine Loop Ligand-Gated Ion Channel Receptors/agonists , Anticonvulsants/chemistry , Anticonvulsants/pharmacokinetics , Anticonvulsants/therapeutic use , Anticonvulsants/toxicity , Brain/metabolism , Animals , Mice
18.
Carbohydr Polym ; 300: 120260, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36372488

ABSTRACT

Inefficient use of traditional pesticides causes serious environmental pollution. Stimuli-responsive pesticide formulations improve the utilization efficiency of target pests and reduce harm to non-target organisms and the environment. Herein, multi-stimuli-responsive avermectin (AVM) polyurea microcapsules (AVM@CM-SS-PU) are prepared by interfacial polymerization with modified carboxymethyl cellulose CMC-SS-NH2 as the wall material and hexadecane as the temperature-responsive core. The microcapsules are 3.90 µm in size and the encapsulation efficiency of AVM is 88.23 %. The photostability of AVM@CM-SS-PU is 5-times that of AVM solution. The insecticidal effect of AVM solution and AVM emulsifiable concentrate (EC) decreases to 13.3 % and 16.6 %, respectively, after UV irradiation for 180 min, whereas that of AVM@CM-SS-PU still remains at 50.0 %. AVM@CM-SS-PU has better foliar affinity and releases under the stimuli of temperature, glutathione, pH, cellulase, and urease. Hence, it has high insecticidal activity and biosafety. This smart controlled-release pesticide formulation provides a promising solution for green agriculture.


Subject(s)
Insecticides , Pesticides , Capsules/chemistry , Pesticides/chemistry , Ivermectin/chemistry , Insecticides/chemistry , Delayed-Action Preparations/chemistry
19.
Pest Manag Sci ; 78(8): 3717-3724, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35622946

ABSTRACT

BACKGROUND: Emamectin benzoate (EMB), a frequently used biopesticide, is poorly soluble in water, making it difficult to wet the leaf surface, is prone to degrade in sunlight and readily loses its bioactivity. Traditional methods such as organic solvent application, pH adjustment and addition of photoprotectants either increase the economic and environmental costs or barely achieve the desired goal. We hypothesized that nanotechnology could improve the solubility, foliar affinity, photostability and bioactivity of EMB. This research set out to prepare a nano-EMB solid powder (nano-EMB-SP) and test this hypothesis. RESULTS: Nano-EMB-SP was prepared using a self-emulsifying method combined with carrier solidification. The mean particle size and Polydispersity index (PDI) of nano-EMB-SP were 14.64 nm and 0.24, respectively. A scanning electron microscopy image showed that EMB nanoparticles were mainly spherical or ellipsoidal in shape. Without organic solvent, the aqueous solubility of EMB in nano-EMB-SP was 4500 mg L-1 , at least 14-fold that of the EMB soluble granule (EMB-SG), which is solubilized by pH adjustment. Excellent foliar affinity of EMB was achieved by nano-EMB-SP, which completely wet and penetrated the superhydrophobic surface of cabbage (Brassica oleracea L.) leaf. Without photoprotectants, up to 82% of EMB content can be protected from ultraviolet (UV) damage in nano-EMB-SP. The combined effects of excellent photostability and foliar affinity of nano-EMB-SP led to the bioactivity of EMB being almost unchanged before and after UV radiation. CONCLUSION: Nano-EMB-SP is an eco-friendly and efficient way to improve the solubility, foliar affinity, photostability and bioactivity of EMB. This research provides a good approach to improving the efficacy of poorly soluble and UV-sensitive pesticides. © 2022 Society of Chemical Industry.


Subject(s)
Ivermectin , Nanoparticles , Ivermectin/analogs & derivatives , Ivermectin/chemistry , Ivermectin/pharmacology , Solubility , Solvents
20.
Molecules ; 27(3)2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35164028

ABSTRACT

Combination therapy of many anthelmintic drugs has been used to achieve fast animal curing. Q-DRENCH is an oral suspension, containing four different active drugs against GIT worms in sheep, commonly used in Australia and New Zeeland. The anti-parasitic drugs are Albendazole (ALB), Levamisole HCl (LEV), Abamectin (ABA), and Closantel (CLO). The main purpose of this study is to present a new simultaneous stability-indicting HPLC-DAD method for the analysis of the four drugs. The recommended liquid system was 1 mL of Triethylamine/L water, adjusting the pH to 3.5 by glacial acetic acid: acetonitrile solvent (20:80, v/v). Isocratic elusion achieved the desired results of separation at a 2 mL/min flow rate using Zorbax C-18 as a stationary phase. Detection was performed at 210 nm. The linearity ranges were 15.15 to 93.75 µg/mL for ALB, 25 to 150 µg/mL for LEV, 30 to 150 µg/mL for ABA, and 11.7 to 140.63 µg/mL for CLO. Moreover, the final greenness score was 0.62 using the AGREE tool, which reflects the eco-friendly nature. Moreover, the four drugs were determined successfully in the presence of their stressful degradation products. This work presents the first chromatographic method for simultaneous analysis for Q-DRENCH oral suspension drugs in the presence of their stressful degradation products.


Subject(s)
Albendazole/analysis , Ivermectin/analogs & derivatives , Levamisole/analysis , Salicylanilides/analysis , Administration, Oral , Albendazole/administration & dosage , Albendazole/chemistry , Albendazole/pharmacokinetics , Animals , Anthelmintics/administration & dosage , Anthelmintics/analysis , Anthelmintics/chemistry , Anthelmintics/pharmacokinetics , Australia , Chromatography, High Pressure Liquid/methods , Drug Stability , Evaluation Studies as Topic , Ivermectin/administration & dosage , Ivermectin/analysis , Ivermectin/chemistry , Ivermectin/pharmacokinetics , Levamisole/administration & dosage , Levamisole/chemistry , Levamisole/pharmacokinetics , Limit of Detection , New Zealand , Salicylanilides/administration & dosage , Salicylanilides/chemistry , Salicylanilides/pharmacokinetics , Sheep , Suspensions
SELECTION OF CITATIONS
SEARCH DETAIL
...