Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 780
Filter
1.
PLoS One ; 19(5): e0302689, 2024.
Article in English | MEDLINE | ID: mdl-38722854

ABSTRACT

The states of Kansas and Oklahoma, in the central Great Plains, lie at the western periphery of the geographic distributions of several tick species. As the focus of most research on ticks and tick-borne diseases has been on Lyme disease which commonly occurs in areas to the north and east, the ticks of this region have seen little research attention. Here, we report on the phenology and activity patterns shown by tick species observed at 10 sites across the two states and explore factors associated with abundance of all and life specific individuals of the dominant species. Ticks were collected in 2020-2022 using dragging, flagging and carbon-dioxide trapping techniques, designed to detect questing ticks. The dominant species was A. americanum (24098, 97%) followed by Dermacentor variabilis (370, 2%), D. albipictus (271, 1%), Ixodes scapularis (91, <1%) and A. maculatum (38, <1%). Amblyomma americanum, A. maculatum and D. variabilis were active in Spring and Summer, while D. albipictus and I. scapularis were active in Fall and Winter. Factors associated with numbers of individuals of A. americanum included day of year, habitat, and latitude. Similar associations were observed when abundance was examined by life-stage. Overall, the picture is one of broadly distributed tick species that shows seasonal limitations in the timing of their questing activity.


Subject(s)
Seasons , Animals , Oklahoma , Kansas , Ticks/growth & development , Ticks/physiology , Ixodes/physiology , Ixodes/growth & development , Female , Dermacentor/physiology , Dermacentor/growth & development , Ixodidae/physiology , Ixodidae/growth & development , Male , Ecosystem , Amblyomma/growth & development , Amblyomma/physiology
2.
PLoS One ; 19(5): e0302874, 2024.
Article in English | MEDLINE | ID: mdl-38722910

ABSTRACT

Lyme disease is the most common wildlife-to-human transmitted disease reported in North America. The study of this disease requires an understanding of the ecology of the complex communities of ticks and host species involved in harboring and transmitting this disease. Much of the ecology of this system is well understood, such as the life cycle of ticks, and how hosts are able to support tick populations and serve as disease reservoirs, but there is much to be explored about how the population dynamics of different host species and communities impact disease risk to humans. In this study, we construct a stage-structured, empirically-informed model with host dynamics to investigate how host population dynamics can affect disease risk to humans. The model describes a tick population and a simplified community of three host species, where primary nymph host populations are made to fluctuate on an annual basis, as commonly observed in host populations. We tested the model under different environmental conditions to examine the effect of environment on the interactions of host dynamics and disease risk. Results show that allowing for host dynamics in the model reduces mean nymphal infection prevalence and increases the maximum annual prevalence of nymphal infection and the density of infected nymphs. Effects of host dynamics on disease measures of nymphal infection prevalence were nonlinear and patterns in the effect of dynamics on amplitude in nymphal infection prevalence varied across environmental conditions. These results highlight the importance of further study of the effect of community dynamics on disease risk. This will involve the construction of further theoretical models and collection of robust field data to inform these models. With a more complete understanding of disease dynamics we can begin to better determine how to predict and manage disease risk using these models.


Subject(s)
Lyme Disease , Population Dynamics , Lyme Disease/epidemiology , Animals , Humans , Ixodes/microbiology , Ixodes/physiology , Models, Theoretical , Ticks/microbiology , Ticks/physiology , Models, Biological , Borrelia burgdorferi/physiology , Borrelia burgdorferi/pathogenicity , Host-Parasite Interactions , Nymph
3.
J Therm Biol ; 121: 103853, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38626664

ABSTRACT

Warming winters will change patterns of behaviour in temperate and polar arthropods, but we know little about the drivers of winter activity in animals such as ticks. Any changes in behaviour are likely to arise from a combination of both abiotic (e.g. temperature) and biotic (e.g. infection) drivers, and will have important consequences for survival and species interactions. Blacklegged ticks, Ixodes scapularis, have invaded Atlantic Canada and high proportions (30-50%) are infected with the bacteria causing Lyme disease, Borrelia burgdorferi. Infection is correlated with increased overwintering survival of adult females, and ticks are increasingly active in the winter, but it is unclear if infection is associated with activity. Further, we know little about how temperature drives the frequency of winter activity. Here, we exposed wild-caught, adult, female Ixodes scapularis ticks to three different winter temperature regimes (constant low temperatures, increased warming, and increased warming + variability) to determine the thermal and infection conditions that promote or suppress activity. We used automated behaviour monitors to track daily activity in individual ticks and repeated the study with fresh ticks over three years. Following exposure to winter conditions we determined whether ticks were infected with the bacteria B. burgdorferi and if infection was responsible for any patterns in winter activity. Warming conditions promoted increased activity throughout the overwintering period but infection with B. burgdorferi had no impact on the frequency or overall number of ticks active throughout the winter. Individual ticks varied in their levels of activity throughout the winter, such that some were largely dormant for several weeks, while others were active almost daily; however, we do not yet know the drivers behind this individual variation in behaviour. Overall, warming winters will heighten the risk of tick-host encounters.


Subject(s)
Borrelia burgdorferi , Ixodes , Seasons , Animals , Ixodes/microbiology , Ixodes/physiology , Borrelia burgdorferi/physiology , Female , Lyme Disease/transmission , Lyme Disease/microbiology , Temperature , Behavior, Animal
4.
Ticks Tick Borne Dis ; 15(4): 102341, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38593668

ABSTRACT

The nidicolous tick Ixodes laguri is a nest-dwelling parasite of small mammals that mainly infest rodents of the families Cricetidae, Gliridae, Muridae and Sciuridae. There is no proven vectorial role for I. laguri, although it is suggested that it is a vector of Francisella tularensis. In this study, a first map depicting the entire geographical distribution of I. laguri based on georeferenced locations is presented. For this purpose, a digital data set of 142 georeferenced locations from 16 countries was compiled. Particular attention is paid to the description of the westernmost record of I. laguri in the city of Vienna, Austria. There, I. laguri is specifically associated with its main hosts, the critically endangered European hamster (Cricetus cricetus) and the European ground squirrel (Spermophilus citellus). These two host species have also been mapped in the present paper to estimate the potential distribution of I. laguri in the Vienna metropolitan region. The range of I. laguri extends between 16-108∘ E and 38-54∘ N, i.e. from Vienna in the east of Austria to Ulaanbaatar, the capital of Mongolia. In contrast to tick species that are expanding their range and are also becoming more abundant as a result of global warming, I. laguri has become increasingly rare throughout its range. However, I. laguri is not threatened by climate change, but by anthropogenic influences on its hosts and their habitats, which are typically open grasslands and steppes. Rural habitats are threatened by the intensification of agriculture and semi-urban habitats are increasingly being destroyed by urban development.


Subject(s)
Animal Distribution , Ixodes , Tick Infestations , Animals , Austria , Ixodes/growth & development , Ixodes/physiology , Tick Infestations/veterinary , Tick Infestations/epidemiology , Tick Infestations/parasitology , Endangered Species , Sciuridae/parasitology , Cricetinae , Rodent Diseases/parasitology , Rodent Diseases/epidemiology
5.
J Med Entomol ; 61(3): 686-700, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38491994

ABSTRACT

Forest management practices designed to meet varied landowner objectives affect wildlife habitat and may interrupt the life-cycle stages of disease vectors, including the black-legged tick, Ixodes scapularis Say (Acari: Ixodidae). Ixodes scapularis transmits multiple pathogens including Borrelia burgdorferi, the causative agent of Lyme disease, which is the most common tick-borne disease in the United States. There is evidence that a range of active forest management practices (e.g., invasive plant removal, prescribed burning) can alter tick densities and pathogen transmission. However, few studies have investigated relationships between forest stand structural variables commonly manipulated by timber harvesting and tick ecology. Foresters may harvest timber to create certain forest structural conditions like the mean number of trees, or basal area, per hectare. This study used a spatially replicated experiment in a blocked design to compare forest stands with a range of overstory structures and document variations in the midstory, understory, and forest floor, as well as microclimate conditions within tick off-host habitat. Greater numbers of trees or basal area per hectare correlated with greater canopy closure but less understory cover, stabilized microclimate temperature, higher microclimate humidity, and greater I. scapularis nymph densities. A random forest model identified understory forest structure as the strongest predictor of nymph densities. There was no relationship between the number of trees or basal area per hectare and daily deer (Odocoileus virginianus Zimmermann) activity or nymphal infection prevalence. These findings provide a deeper understanding of tick-habitat associations within a forest stand and have the potential to inform forest management decisions.


Subject(s)
Forestry , Forests , Ixodes , Microclimate , Population Density , Animals , Ixodes/growth & development , Ixodes/physiology , Nymph/growth & development , Nymph/physiology
6.
J Med Entomol ; 61(3): 798-801, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38493309

ABSTRACT

The hard tick, Ixodes keiransi Beati, Nava, Venzal, & Guglielmone, formerly the North American lineage of Ixodes affinis Neumann, is expanding its range northward along the US East Coast. In July 2023, we collected I. keiransi adult female and nymph in a single sampling event, suggesting its range now includes southern New Jersey. In this area, I. keiransi is sympatric with northern populations of Ixodes scapularis Say (Acari: Ixodidae), the primary vector of Lyme disease. Given its status as an enzootic vector of spirochaetes in the Borrelia burgdorferi sensu lato complex, proper differentiation of these 2 species will be critical for accurate estimates of entomological risk. Targeted surveillance should be implemented to monitor further I. keiransi expansion and to elucidate the phenology and enzootic role of this and other understudied Ixodes spp. in the northeastern United States.


Subject(s)
Animal Distribution , Ixodes , Nymph , Animals , Ixodes/growth & development , Ixodes/physiology , New Jersey , Female , Nymph/growth & development
7.
J Exp Biol ; 227(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38372197

ABSTRACT

Both male and female ticks have a strong innate drive to find and blood-feed on hosts. Carbon dioxide (CO2) is considered a critical behavioral activator and attractant for ticks and an essential sensory cue to find hosts. Yet, how CO2 activates and promotes host seeking in ticks is poorly understood. CO2 responses were studied in the black-legged tick Ixodes scapularis, the primary vector for Lyme disease in North America. Adult males and females were exposed to 1%, 2%, 4% or 8% CO2, and changes in walking behavior and foreleg movement were analyzed. CO2 is a potent stimulant for adult I. scapularis, even at lower concentrations (1%). Behavioral reactions depended on the animal's state: walking ticks increased their walking speed, while stationary ticks started to wave their forelegs and began to quest - both behaviors resembling aspects of host seeking. Only in sporadic cases did stationary animals start to walk when exposed to CO2, supporting the hypothesis that CO2 acts as an activator rather than an attractant. Furthermore, I. scapularis did not show a clear concentration preference and was not tuned more robustly to breath-like CO2 concentrations (∼4%) than to the other concentrations tested. Moreover, convincing evidence is provided showing that the foreleg Haller's organ is not necessary for CO2 detection. Even with a disabled or amputated Haller's organ, I. scapularis responded robustly to CO2, signifying that there must be CO2-sensitive structures important for tick host seeking that have not yet been identified.


Subject(s)
Ixodes , Animals , Male , Female , Ixodes/physiology , Carbon Dioxide , North America
8.
Ticks Tick Borne Dis ; 15(1): 102279, 2024 01.
Article in English | MEDLINE | ID: mdl-37972499

ABSTRACT

Guinea pigs repeatedly exposed to Ixodes scapularis develop acquired resistance to the ticks (ATR). The molecular mechanisms of ATR have not been fully elucidated, and partially involves immune responses to proteins in tick saliva. In this study, we examined the metabolome of sera of guinea pigs during the development of ATR. Induction of components of the tyrosine metabolic pathway, including hydroxyphenyllactic acid (HPLA), were associated with ATR. We therefore administered HPLA to mice, an animal that does not develop ATR, and exposed the animals to I. scapularis. We also administered nitisinone, a known inhibitor of tyrosine degradation, to another group of mice. The mortality of I. scapularis that fed on mice given HPLA or nitisinone was 26 % and 72 % respectively, compared with 2 % mortality among ticks that fed on control animals. These data indicate that tick bites alter the guinea pig metabolome, and that the tyrosine metabolism pathway can potentially be targeted for I. scapularis control.


Subject(s)
Ixodes , Animals , Mice , Guinea Pigs , Ixodes/physiology , Saliva , Tyrosine
9.
Ann Agric Environ Med ; 30(4): 617-622, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38153063

ABSTRACT

INTRODUCTION AND OBJECTIVE: The common tick Ixodes ricinus is one of Europe's most important vectors of tick-borne diseases. The increased risk of attacks by this tick suggests the need for identification of factors contributing to the transmission of tick-borne pathogens, and the routes of pathogen circulation in nature. MATERIAL AND METHODS: Polymerase chain reaction was used to investigate the prevalence of four pathogens, i.e. Borrelia burgdorferi s.l. (Bb), Anaplasma phagocytophilum (Ap), Babesia spp. (Bs), and Bartonella spp. (Ba) in I. ricinus females and males mating on dogs in south-central Poland. RESULTS: The study revealed the presence of three pathogens: Bb, Ap, and Bs in 9.4%, 5.4%, and 5.4% of all I. ricinus adults in copula, respectively. Co-infection with two pathogens was detected in one tick specimen. Borrelia burgdorferi spirochetes were isolated in two females and two males in copula, but the sexual transfer of the spirochetes between these specimens could not be clearly confirmed. CONCLUSIONS: By increasing the feeding dynamics in females, the copulation of I. ricinus males with females attached to the host's skin may stimulate pathogen replication in tick tissues and migration from the gut to the salivary glands. Further investigations of the I. ricinus copulation on the host on female feeding and pathogen transmission may contribute to the elucidation of the eco-epidemiology of tick-borne diseases transmitted by this tick species.


Subject(s)
Ixodes , Tick-Borne Diseases , Animals , Dogs/parasitology , Female , Male , Borrelia burgdorferi , Copulation , Ixodes/microbiology , Ixodes/physiology , Tick-Borne Diseases/epidemiology , Sexual Behavior, Animal
10.
Parasit Vectors ; 16(1): 443, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38017525

ABSTRACT

BACKGROUND: Ixodes ricinus ticks are infected with a large diversity of vertically and horizontally transmitted symbionts. While horizontally transmitted symbionts rely on a vertebrate host for their transmission, vertically transmitted symbionts rely more on the survival of their invertebrate host for transmission. We therefore hypothesized horizontally transmitted symbionts to be associated with increased tick activity to increase host contact rate and vertically transmitted symbionts to be associated with higher tick weight and lipid fraction to promote tick survival. METHODS: We used a behavioural assay to record the questing activity of I. ricinus ticks. In addition, we measured weight and lipid fraction and determined the presence of ten symbiont species in these ticks using qPCR, of which six were vertically transmitted and four horizontally transmitted. RESULTS: Vertically transmitted symbionts (e.g. Midichloria mitochondrii) were associated with an increase in tick weight, whereas horizontally transmitted symbionts (e.g. Borrelia burgdorferi sensu lato) were often associated with lower weight and lipid fraction of ticks. Moreover, horizontally transmitted symbionts (e.g. B. burgdorferi s.l.) were associated with increased tick activity, which may benefit pathogen transmission and increases tick-borne disease hazard. CONCLUSIONS: Our study shows that horizontally and vertically transmitted symbionts differentially influence the behaviour and physiology of I. ricinus and warrants future research to study the underlying mechanisms and effects on transmission dynamics of tick-borne pathogens.


Subject(s)
Borrelia burgdorferi , Ixodes , Tick-Borne Diseases , Animals , Ixodes/physiology , Lipids
11.
Front Cell Infect Microbiol ; 13: 1253670, 2023.
Article in English | MEDLINE | ID: mdl-37965264

ABSTRACT

Tick serine protease inhibitors (serpins) play crucial roles in tick feeding and pathogen transmission. We demonstrate that Ixodes scapularis (Ixs) nymph tick saliva serpin (S) 41 (IxsS41), secreted by Borrelia burgdorferi (Bb)-infected ticks at high abundance, is involved in regulating tick evasion of host innate immunity and promoting host colonization by Bb. Recombinant (r) proteins were expressed in Pichia pastoris, and substrate hydrolysis assays were used to determine. Ex vivo (complement and hemostasis function related) and in vivo (paw edema and effect on Bb colonization of C3H/HeN mice organs) assays were conducted to validate function. We demonstrate that rIxsS41 inhibits chymase and cathepsin G, pro-inflammatory proteases that are released by mast cells and neutrophils, the first immune cells at the tick feeding site. Importantly, stoichiometry of inhibition analysis revealed that 2.2 and 2.8 molecules of rIxsS41 are needed to 100% inhibit 1 molecule of chymase and cathepsin G, respectively, suggesting that findings here are likely events at the tick feeding site. Furthermore, chymase-mediated paw edema, induced by the mast cell degranulator, compound 48/80 (C48/80), was blocked by rIxsS41. Likewise, rIxsS41 reduced membrane attack complex (MAC) deposition via the alternative and lectin complement activation pathways and dose-dependently protected Bb from complement killing. Additionally, co-inoculating C3H/HeN mice with Bb together with rIxsS41 or with a mixture (rIxsS41 and C48/80). Findings in this study suggest that IxsS41 markedly contributes to tick feeding and host colonization by Bb. Therefore, we conclude that IxsS41 is a potential candidate for an anti-tick vaccine to prevent transmission of the Lyme disease agent.


Subject(s)
Borrelia burgdorferi , Ixodes , Lyme Disease , Serpins , Mice , Animals , Ixodes/physiology , Chymases , Nymph , Cathepsin G , Saliva/metabolism , Mice, Inbred C3H , Inflammation , Serpins/metabolism , Complement System Proteins , Edema
12.
Exp Appl Acarol ; 91(3): 477-485, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37819593

ABSTRACT

Artificial electromagnetic radiation is a new environmental factor that affects animals. Experiments with the effect of radio frequency electromagnetic radiation were focused on both vertebrates and invertebrates. Ticks showed a significant affinity to radiation. Our study is a continuation of this research and its aim was to monitor the effect of radiation on the behavior of four tick species: Ixodes ricinus, Dermacentor reticulatus, Dermacentor marginatus and Haemaphysalis inermis. In total 1,200 ticks, 300 of each species, were tested in modules allowing the choice of an exposed or shielded area. During the test, the ticks were exposed to electro-magnetic radiation of 900 MHz for 24 h. The position of the individuals was recorded and we evaluated the obtained data statistically. We observed a significant preference to the exposed area in both sexes of I. ricinus. Males of D. reticulatus and D. marginatus also showed an affinity to radiation, but not females of both species, nor females and males of H. inermis. The results of the study support the assumption that ticks perceive the electromagnetic field and the observed differences in their response have the potential to help understand the mechanism of perception.


Subject(s)
Dermacentor , Ixodes , Ixodidae , Humans , Male , Female , Animals , Dermacentor/physiology , Ixodes/physiology , Radio Waves/adverse effects , Electromagnetic Fields
13.
Ecol Lett ; 26(12): 2029-2042, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37882483

ABSTRACT

Although the role of host movement in shaping infectious disease dynamics is widely acknowledged, methodological separation between animal movement and disease ecology has prevented researchers from leveraging empirical insights from movement data to advance landscape scale understanding of infectious disease risk. To address this knowledge gap, we examine how movement behaviour and resource utilization by white-tailed deer (Odocoileus virginianus) determines blacklegged tick (Ixodes scapularis) distribution, which depend on deer for dispersal in a highly fragmented New York City borough. Multi-scale hierarchical resource selection analysis and movement modelling provide insight into how deer's movements contribute to the risk landscape for human exposure to the Lyme disease vector-I. scapularis. We find deer select highly vegetated and accessible residential properties which support blacklegged tick survival. We conclude the distribution of tick-borne disease risk results from the individual resource selection by deer across spatial scales in response to habitat fragmentation and anthropogenic disturbances.


Subject(s)
Communicable Diseases , Deer , Ixodes , Tick Infestations , Humans , Animals , Animals, Wild , New York City , Tick Infestations/epidemiology , Tick Infestations/veterinary , Ixodes/physiology
14.
PLoS Biol ; 21(10): e3002331, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37862360

ABSTRACT

Arthropod-borne pathogens cause some of the most important human and animal infectious diseases. Many vectors acquire or transmit pathogens through the process of blood feeding. Here, we report adiponectin, the most abundant adipocyte-derived hormone circulating in human blood, directly or indirectly inhibits acquisition of the Lyme disease agent, Borrelia burgdorferi, by Ixodes scapularis ticks. Rather than altering tick feeding or spirochete viability, adiponectin or its associated factors induces host histamine release when the tick feeds, which leads to vascular leakage, infiltration of neutrophils and macrophages, and inflammation at the bite site. Consistent with this, adiponectin-deficient mice have diminished pro-inflammatory responses, including interleukin (IL)-12 and IL-1ß, following a tick bite, compared with wild-type animals. All these factors mediated by adiponectin or associated factors influence B. burgdorferi survival at the tick bite site. These results suggest a host adipocyte-derived hormone modulates pathogen acquisition by a blood-feeding arthropod.


Subject(s)
Borrelia burgdorferi Group , Ixodes , Lyme Disease , Tick Bites , Animals , Mice , Humans , Adiponectin , Borrelia burgdorferi Group/physiology , Ixodes/physiology , Mammals
15.
Ticks Tick Borne Dis ; 14(6): 102231, 2023 11.
Article in English | MEDLINE | ID: mdl-37531890

ABSTRACT

The 4-Poster Tick Control Deer Feeder (4-poster) device applies acaricide to white-tailed deer (Odocoileus virginianus) and can reduce populations of the blacklegged tick (Ixodes scapularis), which transmits the agents of Lyme disease, anaplasmosis, babesiosis, and Powassan virus disease in the Northeastern United States. While 4-poster devices have the potential to provide community-wide management of blacklegged ticks in Lyme disease endemic areas, no recent study has assessed their acceptability among residents. We conducted a survey of residents from 16 counties with high annual average Lyme disease incidence (≥ 10 cases per 100,000 persons between 2013 and 2017) in Connecticut and New York to understand perceptions and experiences related to tickborne diseases, support or concerns for placement of 4-poster devices in their community, and opinions on which entities should be responsible for tick control on private properties. Overall, 37% of 1652 respondents (5.5% response rate) would support placement of a 4-poster device on their own property, 71% would support placement on other private land in their community, and 90% would support placement on public land. Respondents who were male, rented their property, resided on larger properties, or were very or extremely concerned about encountering ticks on their property were each more likely to support placement of 4-poster devices on their own property. The primary reason for not supporting placement of a 4-poster device on one's own property was the need for weekly service visits from pest control professionals, whereas the top reason for not supporting placement on other land (private or public) was safety concerns. Most respondents (61%) felt property owners should be responsible for tick control on private properties. Communities considering 4-poster devices as part of a tick management strategy should consider targeting owners of larger properties and placing devices on public lands.


Subject(s)
Deer , Ixodes , Lyme Disease , Tick Infestations , Animals , Male , Humans , Female , Connecticut/epidemiology , New York/epidemiology , Tick Control , Incidence , Tick Infestations/epidemiology , Tick Infestations/prevention & control , Tick Infestations/veterinary , Lyme Disease/epidemiology , Lyme Disease/prevention & control , Ixodes/physiology
16.
Microbiome ; 11(1): 151, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37482606

ABSTRACT

BACKGROUND: Ticks can transmit a broad variety of pathogens of medical importance, including Borrelia afzelii, the causative agent of Lyme borreliosis in Europe. Tick microbiota is an important factor modulating, not only vector physiology, but also the vector competence. Anti-microbiota vaccines targeting keystone taxa of tick microbiota can alter tick feeding and modulate the taxonomic and functional profiles of bacterial communities in the vector. However, the impact of anti-microbiota vaccine on tick-borne pathogen development within the vector has not been tested. RESULTS: Here, we characterized the Ixodes ricinus microbiota modulation in response to B. afzelii infection and found that the pathogen induces changes in the microbiota composition, its beta diversity and structure of bacterial community assembly. Tick microbiota perturbation by anti-microbiota antibodies or addition of novel commensal bacteria into tick midguts causes departures from the B. afzelii-induced modulation of tick microbiota which resulted in a lower load of the pathogen in I. ricinus. Co-occurrence networks allowed the identification of emergent properties of the bacterial communities which better defined the Borrelia infection-refractory states of the tick microbiota. CONCLUSIONS: These findings suggest that Borrelia is highly sensitive to tick microbiota perturbations and that departure from the modulation induced by the pathogen in the vector microbiota pose a high cost to the spirochete. Network analysis emerges as a suitable tool to identify emergent properties of the vector microbiota associated with infection-refractory states. Anti-microbiota vaccines can be used as a tool for microbiota perturbation and control of important vector-borne pathogens. Video Abstract.


Subject(s)
Borrelia burgdorferi Group , Ixodes , Lyme Disease , Animals , Ixodes/microbiology , Ixodes/physiology , Borrelia burgdorferi Group/physiology , Lyme Disease/microbiology , Bacteria , Europe
17.
Am J Vet Res ; 84(4)2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36800301

ABSTRACT

OBJECTIVE: To evaluate the safety of repeated applications of permethrin concentrations (0% control, 1.5%, 5%, and 10%) to the necks and faces of horses and assess the efficacy and longevity of permethrin as an equine tick repellent. ANIMALS: 5 healthy adult Quarter Horses. PROCEDURES: Each treatment was applied to the neck of each horse (0.01 m2) 4 times a day, for up to 10 days. An 8-mm biopsy was taken to evaluate postexposure dermal responses. Any treatments that were not withdrawn were applied to a quadrant of the horse's face 4 times a day, for up to 5 days. For tick bioassays, a treatment was applied to 1 leg of a horse and 5 female blacklegged ticks (Ixodes scapularis) were evaluated as "repelled" or "not repelled" by the treatment. The bioassays were repeated up to 5 days, but treatment application took place only on the first day of the experiment. RESULTS: Histological results of neck biopsies indicated that more repeated exposures or higher concentrations resulted in more dermal damage. Tick bioassays showed that 5% and 10% permethrin had the greatest efficacy and longevity as a tick repellent, but the differences in tick repellency were not significant overall. CLINICAL RELEVANCE: While there was a nonsignificant trend of higher permethrin concentrations repelling more ticks with longer-lasting residual repellent effects, higher concentrations also produced greater skin damage after repeated exposures. These opposing findings emphasize the need for better tick prevention and control methods that balance safety and efficacy for the equine community.


Subject(s)
Dog Diseases , Horse Diseases , Ixodes , Horses , Animals , Female , Dogs , Ixodes/physiology , Permethrin/pharmacology , Permethrin/therapeutic use , Dog Diseases/drug therapy
18.
Mol Ecol ; 32(4): 786-799, 2023 02.
Article in English | MEDLINE | ID: mdl-36461660

ABSTRACT

Vector-borne pathogens exist in obligate transmission cycles between vector and reservoir host species. Host and vector shifts can lead to geographic expansion of infectious agents and the emergence of new diseases in susceptible individuals. Three bacterial genospecies (Borrelia afzelii, Borrelia bavariensis, and Borrelia garinii) predominantly utilize two distinct tick species as vectors in Asia (Ixodes persulcatus) and Europe (Ixodes ricinus). Through these vectors, the bacteria can infect various vertebrate groups (e.g., rodents, birds) including humans where they cause Lyme borreliosis, the most common vector-borne disease in the Northern hemisphere. Yet, how and in which order the three Borrelia genospecies colonized each continent remains unclear including the evolutionary consequences of this geographic expansion. Here, by reconstructing the evolutionary history of 142 Eurasian isolates, we found evidence that the ancestors of each of the three genospecies probably have an Asian origin. Even so, each genospecies studied displayed a unique substructuring and evolutionary response to the colonization of Europe. The pattern of allele sharing between continents is consistent with the dispersal rate of the respective vertebrate hosts, supporting the concept that adaptation of Borrelia genospecies to the host is important for pathogen dispersal. Our results highlight that Eurasian Lyme borreliosis agents are all capable of geographic expansion with host association influencing their dispersal; further displaying the importance of host and vector association to the geographic expansion of vector-borne pathogens and potentially conditioning their capacity as emergent pathogens.


Subject(s)
Animal Distribution , Arachnid Vectors , Borrelia , Ixodes , Lyme Disease , Animals , Humans , Asia , Borrelia/genetics , Borrelia/physiology , Borrelia burgdorferi Group/genetics , Borrelia burgdorferi Group/physiology , Ixodes/microbiology , Ixodes/physiology , Lyme Disease/microbiology , Lyme Disease/transmission , Europe , Arachnid Vectors/microbiology , Arachnid Vectors/physiology , Animal Distribution/physiology , Adaptation, Biological/genetics , Adaptation, Biological/physiology
19.
Can J Public Health ; 114(2): 317-324, 2023 04.
Article in English | MEDLINE | ID: mdl-36471231

ABSTRACT

OBJECTIVE: In 2021, a first outbreak of anaplasmosis occurred in animals and humans in southern Québec, with 64% of confirmed human cases located in Bromont municipality. Ixodes scapularis ticks and Peromyscus mouse ear biopsies collected in Bromont from 2019 to 2021 were analyzed for Anaplasma phagocytophilum (Ap) with the objective of determining whether an early environmental signal could have been detected before the outbreak. METHODS: Samples were collected for a concurrent study aiming to reduce Lyme disease risk. Between 2019 and 2021, up to 14 experimental sites were sampled for ticks and capture of small mammals took place on three sites in 2021. Samples were screened for Ap using multiplex real-time PCR, and genetic strains were identified using a single-nucleotide polymorphism assay. RESULTS: Analyses showed an increase of 5.7% in Ap prevalence in ticks (CI95: 1.5-9.9) between 2019 and 2020, i.e., one year before the outbreak. A majority of Ap-positive ticks were infected with the zoonotic strain (68.8%; CI95: 50.0-83.9) during the study period. In 2021, 2 of 59 captured Peromycus mice were positive for Ap, for a prevalence of 3.4% (CI95: 0.4-11.7). CONCLUSION: We conclude that data collected in Bromont could have provided an early signal for an anaplasmosis risk increasing in the targeted region. This is a reminder that integrated surveillance of tick-borne diseases through structured One Health programs, i.e. systematically integrating data from humans, animals and the environment, can provide useful and timely information for better preparedness and response in public health.


RéSUMé: OBJECTIF: En 2021, suivant une éclosion d'anaplasmoses chez les animaux et les humains dans le sud du Québec, des tiques de l'espèce Ixodes scapularis et des biopsies de souris Peromyscus spp. échantillonées à Bromont, la municipalité où 64 % des cas humains confirmés était localisé, ont été testées pour Anaplasma phagocytophilum (Ap) avec pour objectif de déterminer si un signal environnemental précoce d'augmentation du risque aurait pu être détecté avant l'éclosion. MéTHODE: L'échantillonnage a été réalisé dans le cadre d'une étude visant à réduire le risque de maladie de Lyme. De 2019 à 2021, 14 sites expérimentaux ont été échantillonnés pour les tiques. En 2021, trois sites ont été sélectionnés pour la capture des micromammifères. Les échantillons ont été testés pour la présence d'Ap à l'aide d'un PCR multiplex en temps réelle et les lignées génétiques ont été identifiées grâce à un test de polymorphisme mononucléotidique. RéSULTATS: Les analyses ont montré une augmentation de 5,7 % (IC95% : 1,5­9,9) de la prévalence de Ap entre 2019 et 2020, c'est-à-dire un an avant l'éclosion. Cette augmentation est associée à la présence d'une majorité d'Ap de la lignée zoonotique (68,8 %; IC95% : 50,0­83,9) sur l'ensemble de la période étudiée. En 2021, deux Peromycus spp. capturées sur 59 étaient positives pour Ap pour une prévalence de 3,4 % (IC95% : 0,4­11,7). CONCLUSION: Les données environnementales échantillonnées à Bromont auraient pu fournir un signal précoce de l'augmentation du risque d'anaplasmose dans la région. C'est un rappel que la surveillance intégrée des maladies transmises par les tiques inspirée de l'approche Une seule santé, intégrant systématiquement des données humaines, animales et environnementales, peut fournir des informations utiles et opportunes aux autorités de santé publique.


Subject(s)
Anaplasma phagocytophilum , Anaplasmosis , Ixodes , One Health , Animals , Humans , Anaplasmosis/epidemiology , Ixodes/physiology , Anaplasma phagocytophilum/genetics , Disease Outbreaks , Mammals
20.
Wien Klin Wochenschr ; 135(7-8): 165-176, 2023 Apr.
Article in English | MEDLINE | ID: mdl-31062185

ABSTRACT

Tick saliva is a complex mixture of peptidic and non-peptidic molecules that aid engorgement. The composition of tick saliva changes as feeding progresses and the tick counters the dynamic host response. Ixodid ticks such as Ixodes ricinus, the most important tick species in Europe, transmit numerous pathogens that cause debilitating diseases, e.g. Lyme borreliosis and tick-borne encephalitis. Tick-borne pathogens are transmitted in tick saliva during blood feeding; however, saliva is not simply a medium enabling pathogen transfer. Instead, tick-borne pathogens exploit saliva-induced modulation of host responses to promote their transmission and infection, so-called saliva-assisted transmission (SAT). Characterization of the saliva factors that facilitate SAT is an active area of current research. Besides providing new insights into how tick-borne pathogens survive in nature, the research is opening new avenues for vaccine development.


Subject(s)
Ixodes , Lyme Disease , Humans , Animals , Saliva , Ixodes/physiology , Europe
SELECTION OF CITATIONS
SEARCH DETAIL
...