Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.432
Filter
2.
Cells ; 13(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38891028

ABSTRACT

Cervical cancer (CC) remains among the most frequent cancers worldwide despite advances in screening and the development of vaccines against human papillomavirus (HPV), involved in virtually all cases of CC. In mid-income countries, a substantial proportion of the cases are diagnosed in advanced stages, and around 40% of them are diagnosed in women under 49 years, just below the global median age. This suggests that members of this age group share common risk factors, such as chronic inflammation. In this work, we studied samples from 46 patients below 45 years old, searching for a miRNA profile regulating cancer pathways. We found 615 differentially expressed miRNAs between tumor samples and healthy tissues. Through bioinformatic analysis, we found that several of them targeted elements of the JAK/STAT pathway and other inflammation-related pathways. We validated the interactions of miR-30a and miR-34c with JAK1 and STAT3, respectively, through dual-luciferase and expression assays in cervical carcinoma-derived cell lines. Finally, through knockdown experiments, we observed that these miRNAs decreased viability and promoted proliferation in HeLa cells. This work contributes to understanding the mechanisms through which HPV regulates inflammation, in addition to its canonical oncogenic function, and brings attention to the JAK/STAT signaling pathway as a possible diagnostic marker for CC patients younger than 45 years. To our knowledge to date, there has been no previous description of a panel of miRNAs or even ncRNAs in young women with locally advanced cervical cancer.


Subject(s)
Gene Expression Regulation, Neoplastic , Inflammation , MicroRNAs , STAT3 Transcription Factor , Signal Transduction , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/virology , MicroRNAs/genetics , MicroRNAs/metabolism , Signal Transduction/genetics , Adult , Inflammation/genetics , Inflammation/pathology , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , HeLa Cells , Janus Kinase 1/metabolism , Janus Kinase 1/genetics , Cell Proliferation/genetics , Cell Line, Tumor , Middle Aged
3.
CNS Neurosci Ther ; 30(6): e14796, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38867395

ABSTRACT

AIMS: The extent of perihematomal edema following intracerebral hemorrhage (ICH) significantly impacts patient prognosis, and disruption of the blood-brain barrier (BBB) exacerbates perihematomal edema. However, the role of peripheral IL-10 in mitigating BBB disruption through pathways that link peripheral and central nervous system signals remains poorly understood. METHODS: Recombinant IL-10 was administered to ICH model mice via caudal vein injection, an IL-10-inhibiting adeno-associated virus and an IL-10 receptor knockout plasmid were delivered intraventricularly, and neurobehavioral deficits, perihematomal edema, BBB disruption, and the expression of JAK1 and STAT3 were evaluated. RESULTS: Our study demonstrated that the peripheral cytokine IL-10 mitigated BBB breakdown, perihematomal edema, and neurobehavioral deficits after ICH and that IL-10 deficiency reversed these effects, likely through the IL-10R/JAK1/STAT3 signaling pathway. CONCLUSIONS: Peripheral IL-10 has the potential to reduce BBB damage and perihematomal edema following ICH and improve patient prognosis.


Subject(s)
Brain Edema , Cerebral Hemorrhage , Interleukin-10 , Janus Kinase 1 , Receptors, Interleukin-10 , STAT3 Transcription Factor , Signal Transduction , Animals , STAT3 Transcription Factor/metabolism , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/drug therapy , Cerebral Hemorrhage/metabolism , Brain Edema/etiology , Brain Edema/drug therapy , Janus Kinase 1/metabolism , Janus Kinase 1/antagonists & inhibitors , Interleukin-10/metabolism , Signal Transduction/drug effects , Signal Transduction/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism
4.
Bioorg Chem ; 149: 107506, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38833989

ABSTRACT

Janus kinases (JAKs), a kind of non-receptor tyrosine kinases, the function has been implicated in the regulation of cell proliferation, differentiation and apoptosis, immune, inflammatory response and malignancies. Among them, JAK1 represents an essential target for modulating cytokines involved in inflammation and immune function. Rheumatoid arthritis, atopic dermatitis, ulcerative colitis and psoriatic arthritis are areas where approved JAK1 drugs have been applied for the treatment. In the review, we provided a brief introduction to JAK1 inhibitors in market and clinical trials. The structures of high active JAK1 compounds (IC50 ≤ 0.1 nM) were highlighted, with primary focus on structure-activity relationship and selectivity. Moreover, the druggability processes of approved drugs and high active compounds were analyzed. In addition, the issues involved in JAK1 compounds clinical application as well as strategies to surmount these challenges, were discussed.


Subject(s)
Janus Kinase 1 , Protein Kinase Inhibitors , Structure-Activity Relationship , Humans , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 1/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Molecular Structure , Animals , Dose-Response Relationship, Drug
5.
Bioorg Med Chem Lett ; 109: 129838, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38838918

ABSTRACT

Aberrant activation of the JAK-STAT pathway is evident in various human diseases including cancers. Proteolysis targeting chimeras (PROTACs) provide an attractive strategy for developing novel JAK-targeting drugs. Herein, a series of CRBN-directed JAK-targeting PROTACs were designed and synthesized utilizing a JAK1/JAK2 dual inhibitor-momelotinib as the warhead. The most promising compound 10c exhibited both good enzymatic potency and cellular antiproliferative effects. Western blot analysis revealed that compound 10c effectively and selectively degraded JAK1 in a proteasome-dependent manner (DC50 = 214 nM). Moreover, PROTAC 10c significantly suppressed JAK1 and its key downstream signaling. Together, compound 10c may serve as a novel lead compound for antitumor drug discovery.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Janus Kinase 1 , Proteolysis , Humans , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 1/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Proteolysis/drug effects , Cell Proliferation/drug effects , Structure-Activity Relationship , Cell Line, Tumor , Drug Screening Assays, Antitumor , Drug Discovery , Molecular Structure , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Dose-Response Relationship, Drug , Janus Kinase 2/antagonists & inhibitors , Janus Kinase 2/metabolism , Proteasome Endopeptidase Complex/metabolism
6.
Nat Commun ; 15(1): 5292, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38906855

ABSTRACT

Ewing sarcoma is a pediatric bone and soft tissue tumor treated with chemotherapy, radiation, and surgery. Despite intensive multimodality therapy, ~50% patients eventually relapse and die of the disease due to chemoresistance. Here, using phospho-profiling, we find Ewing sarcoma cells treated with chemotherapeutic agents activate TAM (TYRO3, AXL, MERTK) kinases to augment Akt and ERK signaling facilitating chemoresistance. Mechanistically, chemotherapy-induced JAK1-SQ phosphorylation releases JAK1 pseudokinase domain inhibition allowing for JAK1 activation. This alternative JAK1 activation mechanism leads to STAT6 nuclear translocation triggering transcription and secretion of the TAM kinase ligand GAS6 with autocrine/paracrine consequences. Importantly, pharmacological inhibition of either JAK1 by filgotinib or TAM kinases by UNC2025 sensitizes Ewing sarcoma to chemotherapy in vitro and in vivo. Excitingly, the TAM kinase inhibitor MRX-2843 currently in human clinical trials to treat AML and advanced solid tumors, enhances chemotherapy efficacy to further suppress Ewing sarcoma tumor growth in vivo. Our findings reveal an Ewing sarcoma chemoresistance mechanism with an immediate translational value.


Subject(s)
Intercellular Signaling Peptides and Proteins , Janus Kinase 1 , Receptor Protein-Tyrosine Kinases , Sarcoma, Ewing , Signal Transduction , Sarcoma, Ewing/drug therapy , Sarcoma, Ewing/metabolism , Sarcoma, Ewing/pathology , Sarcoma, Ewing/genetics , Humans , Janus Kinase 1/metabolism , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 1/genetics , Cell Line, Tumor , Animals , Signal Transduction/drug effects , Receptor Protein-Tyrosine Kinases/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Mice , Intercellular Signaling Peptides and Proteins/metabolism , Axl Receptor Tyrosine Kinase , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/antagonists & inhibitors , Bone Neoplasms/drug therapy , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Bone Neoplasms/genetics , Xenograft Model Antitumor Assays , c-Mer Tyrosine Kinase/metabolism , c-Mer Tyrosine Kinase/genetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Phosphorylation/drug effects , Female , STAT6 Transcription Factor
7.
Int Immunopharmacol ; 137: 112523, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38909500

ABSTRACT

BACKGROUND: APLNR is a G protein-coupled receptor and our previous study had revealed that APLNR could inhibit nasopharyngeal carcinoma (NPC) growth and metastasis. However, the role of APLNR in regulating PD-L1 expression and immune escape in NPC is unknown. METHODS: We analyzed the expression and correlation of APLNR and PD-L1 in NPC tissues and cells. We investigated the effect of APLNR on PD-L1 expression and the underlying mechanism in vitro and in vivo. We also evaluated the therapeutic potential of targeting APLNR in combination with PD-L1 antibody in a nude mouse xenograft model. RESULTS: We found that APLNR was negatively correlated with PD-L1 in NPC tissues and cells. APLNR could inhibit PD-L1 expression by binding to the FERM domain of JAK1 and blocking the interaction between JAK1 and IFNGR1, thus suppressing IFN-γ-mediated activation of the JAK1/STAT1 pathway. APLNR could also inhibit NPC immune escape by enhancing IFN-γ secretion and CD8+ T-cell infiltration and reducing CD8+ T-cell apoptosis and dysfunction. Moreover, the best effect was achieved in inhibiting NPC growth in nude mice when APLNR combined with PD-L1 antibody. CONCLUSIONS: Our study revealed a novel mechanism of APLNR regulating PD-L1 expression and immune escape in NPC and suggested that APLNR maybe a potential therapeutic target for NPC immunotherapy.


Subject(s)
B7-H1 Antigen , Mice, Nude , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Tumor Escape , B7-H1 Antigen/metabolism , B7-H1 Antigen/immunology , Animals , Humans , Nasopharyngeal Carcinoma/immunology , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/immunology , Nasopharyngeal Neoplasms/pathology , Cell Line, Tumor , Tumor Escape/drug effects , Mice , Xenograft Model Antitumor Assays , Down-Regulation , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/immunology , Mice, Inbred BALB C , CD8-Positive T-Lymphocytes/immunology , Female , STAT1 Transcription Factor/metabolism , Janus Kinase 1/metabolism , Male , Interferon-gamma/metabolism , Receptors, Interferon/genetics , Receptors, Interferon/metabolism , Gene Expression Regulation, Neoplastic/drug effects
8.
Science ; 384(6702): eadf1329, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38900877

ABSTRACT

Persistent inflammation driven by cytokines such as type-one interferon (IFN-I) can cause immunosuppression. We show that administration of the Janus kinase 1 (JAK1) inhibitor itacitinib after anti-PD-1 (programmed cell death protein 1) immunotherapy improves immune function and antitumor responses in mice and results in high response rates (67%) in a phase 2 clinical trial for metastatic non-small cell lung cancer. Patients who failed to respond to initial anti-PD-1 immunotherapy but responded after addition of itacitinib had multiple features of poor immune function to anti-PD-1 alone that improved after JAK inhibition. Itacitinib promoted CD8 T cell plasticity and therapeutic responses of exhausted and effector memory-like T cell clonotypes. Patients with persistent inflammation refractory to itacitinib showed progressive CD8 T cell terminal differentiation and progressive disease. Thus, JAK inhibition may improve the efficacy of anti-PD-1 immunotherapy by pivoting T cell differentiation dynamics.


Subject(s)
CD8-Positive T-Lymphocytes , Carcinoma, Non-Small-Cell Lung , Immune Checkpoint Inhibitors , Janus Kinase 1 , Janus Kinase Inhibitors , Lung Neoplasms , Programmed Cell Death 1 Receptor , Animals , Female , Humans , Mice , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/therapy , CD8-Positive T-Lymphocytes/immunology , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/methods , Janus Kinase 1/antagonists & inhibitors , Janus Kinase Inhibitors/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Lung Neoplasms/therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors
10.
Sci Rep ; 14(1): 13146, 2024 06 07.
Article in English | MEDLINE | ID: mdl-38849434

ABSTRACT

Multiple sclerosis (MS) is an autoimmune demyelinating disease affecting the central nervous system (CNS). T helper (Th) 17 cells are involved in the pathogenesis of MS and its animal model of experimental autoimmune encephalomyelitis (EAE) by infiltrating the CNS and producing effector molecules that engage resident glial cells. Among these glial cells, astrocytes have a central role in coordinating inflammatory processes by responding to cytokines and chemokines released by Th17 cells. In this study, we examined the impact of pathogenic Th17 cells on astrocytes in vitro and in vivo. We identified that Th17 cells reprogram astrocytes by driving transcriptomic changes partly through a Janus Kinase (JAK)1-dependent mechanism, which included increased chemokines, interferon-inducible genes, and cytokine receptors. In vivo, we observed a region-specific heterogeneity in the expression of cell surface cytokine receptors on astrocytes, including those for IFN-γ, IL-1, TNF-α, IL-17, TGFß, and IL-10. Additionally, these receptors were dynamically regulated during EAE induced by adoptive transfer of myelin-reactive Th17 cells. This study overall provides evidence of Th17 cell reprogramming of astrocytes, which may drive changes in the astrocytic responsiveness to cytokines during autoimmune neuroinflammation.


Subject(s)
Astrocytes , Encephalomyelitis, Autoimmune, Experimental , Janus Kinase 1 , Myelin-Oligodendrocyte Glycoprotein , Receptors, Cytokine , Th17 Cells , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Animals , Astrocytes/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Mice , Receptors, Cytokine/metabolism , Receptors, Cytokine/genetics , Janus Kinase 1/metabolism , Mice, Inbred C57BL , Cytokines/metabolism , Cellular Reprogramming , Female , Cells, Cultured
11.
Expert Rev Clin Immunol ; 20(7): 695-702, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38879876

ABSTRACT

INTRODUCTION: Vitiligo is a chronic, autoimmune condition characterized by skin depigmentation caused by inflammatory-mediated melanocyte degradation. Treatment of vitiligo is challenging due to the chronic nature of the condition. Ruxolitinib cream 1.5% was recently approved by the Food and Drug Administration (FDA) as a Janus kinase 1 and 2 inhibitor for use in nonsegmental vitiligo for those 12 years and older. AREAS COVERED: The purpose of this review is to describe the role of ruxolitinib in treating nonsegmental vitiligo.We searched PubMed using search terms nonsegmental vitiligo, jak inhibitor, and ruxolitinib. Clinicaltrials.gov was used to identify clinical trial data including efficacy, pharmacodynamics, pharmacokinetics, safety, and tolerability. EXPERT OPINION: In both phase II and phase III (TRuE-V1 and TRuE-V2) trials, ruxolitinib cream 1.5% improved repigmentation with minimal adverse effects. Topical ruxolitinib is a much needed new vitiligo treatment option.  Real life efficacy may not match that seen in clinical trials if the hurdle of poor adherence to topical treatment is not surmounted.


Subject(s)
Nitriles , Pyrazoles , Pyrimidines , Vitiligo , Humans , Vitiligo/drug therapy , Pyrimidines/therapeutic use , Pyrazoles/therapeutic use , Skin Pigmentation/drug effects , Janus Kinase 1/antagonists & inhibitors , Skin Cream/therapeutic use , Janus Kinase 2/antagonists & inhibitors , Janus Kinase Inhibitors/therapeutic use
12.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2188-2196, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812234

ABSTRACT

This study aims to investigate the protective effect of salidroside(SAL) on renal damage in diabetic nephropathy(DN) mice based on the receptor for advanced glycation end products/janus activated kinase 1/signal transduction and activator of transcription 3(RAGE/JAK1/STAT3) signaling pathway. The mouse DN model was established by high-fat/high-sucrose diets combined with intraperitoneal injection of streptozocin(STZ). Mice were randomly divided into normal group, model group, low-dose SAL group(20 mg·kg~(-1)), high-dose SAL group(100 mg·kg~(-1)), and metformin group(140 mg·kg~(-1)), with 12 mice in each group. After establishing the DN model, mice were given drugs or solvent intragastrically, once a day for consecutive 10 weeks. Body weight, daily water intake, and fasting blood glucose(FBG) were measured every two weeks. After the last dose, the glucose tolerance test was performed, and the samples of 24-hour urine, serum, and kidney tissue were collected. The levels of 24 hours urinary total protein(24 h-UTP), serum creatinine(Scr), blood urea nitrogen(BUN), triglyceride(TG), total cholesterol(TC), low density lipoprotein cholesterol(LDL-C), and high density lipoprotein cholesterol(HDL-C) were detected by biochemical tests. Periodic acid-schiff(PAS) staining was used to observe the pathological changes in the kidney tissue. The protein expressions of α-smooth muscle actin(α-SMA), vimentin, and advanced glycation end products(AGEs) in kidneys were detected by immunohistochemical staining. The activities of superoxide dismutase(SOD), catalase(CAT), glutathione peroxidase(GSH-PX), and the level of malondialdehyde(MDA) in kidneys were detected by using a corresponding detection kit. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of AGEs, carboxymethyllysine(CML), and carboxyethyllysine(CEL) in serum. The protein expressions of RAGE and the phosphorylation level of JAK1 and STAT3 in kidneys were detected by Western blot. Compared with the normal group, the levels of FBG, the area under the curve of glucose(AUCG), water intake, kidney index, 24 h-UTP, tubular injury score, extracellular matrix deposition ratio of the renal glomerulus, the serum levels of Scr, BUN, TG, LDL-C, AGEs, CEL, and CML, the level of MDA, the protein expressions of α-SMA, vimentin, AGEs, and RAGE, and the phosphorylation level of JAK1 and STAT3 in kidney tissue were increased significantly(P<0.01), while the level of HDL-C in serum and the activity of SOD, CAT, and GSH-PX in kidney tissue were decreased significantly(P<0.01). Compared with the model group, the above indexes of the high-dose SAL group were reversed significantly(P<0.05 or P<0.01). In conclusion, this study suggests that SAL can alleviate oxidative stress and renal fibrosis by inhibiting the activation of AGEs-mediated RAGE/JAK1/STAT3 signaling axis, thus playing a potential role in the treatment of DN.


Subject(s)
Diabetic Nephropathies , Glucosides , Janus Kinase 1 , Kidney , Phenols , Receptor for Advanced Glycation End Products , STAT3 Transcription Factor , Signal Transduction , Animals , Mice , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Glucosides/pharmacology , Glucosides/administration & dosage , Receptor for Advanced Glycation End Products/metabolism , Receptor for Advanced Glycation End Products/genetics , Signal Transduction/drug effects , Male , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Phenols/pharmacology , Janus Kinase 1/metabolism , Janus Kinase 1/genetics , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Protective Agents/pharmacology , Protective Agents/administration & dosage , Humans , Mice, Inbred C57BL , Blood Glucose/metabolism , Blood Glucose/drug effects
13.
Cell Rep ; 43(5): 114202, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38733583

ABSTRACT

Interleukin-6 (IL-6)-class inflammatory cytokines signal through the Janus tyrosine kinase (JAK)/signal transducer and activator of transcription (STAT) pathway and promote the development of pancreatic ductal adenocarcinoma (PDAC); however, the functions of specific intracellular signaling mediators in this process are less well defined. Using a ligand-controlled and pancreas-specific knockout in adult mice, we demonstrate in this study that JAK1 deficiency prevents the formation of KRASG12D-induced pancreatic tumors, and we establish that JAK1 is essential for the constitutive activation of STAT3, whose activation is a prominent characteristic of PDAC. We identify CCAAT/enhancer binding protein δ (C/EBPδ) as a biologically relevant downstream target of JAK1 signaling, which is upregulated in human PDAC. Reinstating the expression of C/EBPδ was sufficient to restore the growth of JAK1-deficient cancer cells as tumorspheres and in xenografted mice. Collectively, the findings of this study suggest that JAK1 executes important functions of inflammatory cytokines through C/EBPδ and may serve as a molecular target for PDAC prevention and treatment.


Subject(s)
Carcinoma, Pancreatic Ductal , Janus Kinase 1 , Pancreatic Neoplasms , STAT3 Transcription Factor , Animals , Janus Kinase 1/metabolism , Janus Kinase 1/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Humans , Mice , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , STAT3 Transcription Factor/metabolism , CCAAT-Enhancer-Binding Protein-delta/metabolism , CCAAT-Enhancer-Binding Protein-delta/genetics , Disease Progression , Signal Transduction , Cell Line, Tumor , Mice, Knockout
14.
Arch Dermatol Res ; 316(6): 290, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809465

ABSTRACT

Enz_MoriL is a naturally occurring substance extracted from the leaves of Morus alba L. through enzymatic conversion. Historically, M. alba L. has been recognized for its potential to promote hair regrowth. However, the precise mechanism by which Enz_MoriL affects human hair follicle dermal papilla cells (hDPCs) remains unclear. The aim of this study was to investigate the molecular basis of Enz_MoriL's effect on hair growth in hDPCs. Interferon-gamma (IFN-γ) was used to examine the effects of Enz_MoriL on hDPCs during the anagen and catagen phases, as well as under conditions mimicking alopecia areata (AA). Enz_MoriL demonstrated the ability to promote cell proliferation in both anagen and catagen stages. It increased the levels of active ß-catenin in the catagen stage induced by IFN-γ, leading to its nuclear translocation. This effect was achieved by increasing the phosphorylation of GSK3ß and decreasing the expression of DKK-1. This stimulation induced proliferation in hDPCs and upregulated the expression of the Wnt family members 3a, 5a, and 7a at the transcript level. Additionally, Enz_MoriL suppressed JAK1 and STAT3 phosphorylation, contrasting with IFN-γ, which induced them in the catagen stage. In conclusion, Enz_MoriL directly induced signals for anagen re-entry into hDPCs by affecting the Wnt/ß-catenin pathway and enhancing the production of growth factors. Furthermore, Enz_MoriL attenuated and reversed the interferon-induced AA-like environment by blocking the JAK-STAT pathway in hDPCs.


Subject(s)
Alopecia Areata , Cell Proliferation , Hair Follicle , Interferon-gamma , Wnt Signaling Pathway , beta Catenin , Humans , Hair Follicle/drug effects , Hair Follicle/cytology , Hair Follicle/metabolism , Cell Proliferation/drug effects , Wnt Signaling Pathway/drug effects , Interferon-gamma/metabolism , beta Catenin/metabolism , Alopecia Areata/metabolism , Alopecia Areata/drug therapy , Alopecia Areata/pathology , Cells, Cultured , Glycogen Synthase Kinase 3 beta/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Janus Kinases/metabolism , Dermis/cytology , Dermis/drug effects , Phosphorylation/drug effects , STAT3 Transcription Factor/metabolism , Hair/drug effects , Hair/growth & development , Wnt-5a Protein/metabolism , Janus Kinase 1/metabolism , Signal Transduction/drug effects , STAT Transcription Factors/metabolism
15.
Nat Commun ; 15(1): 4484, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802340

ABSTRACT

Deciphering the intricate dynamic events governing type I interferon (IFN) signaling is critical to unravel key regulatory mechanisms in host antiviral defense. Here, we leverage TurboID-based proximity labeling coupled with affinity purification-mass spectrometry to comprehensively map the proximal human proteomes of all seven canonical type I IFN signaling cascade members under basal and IFN-stimulated conditions. This uncovers a network of 103 high-confidence proteins in close proximity to the core members IFNAR1, IFNAR2, JAK1, TYK2, STAT1, STAT2, and IRF9, and validates several known constitutive protein assemblies, while also revealing novel stimulus-dependent and -independent associations between key signaling molecules. Functional screening further identifies PJA2 as a negative regulator of IFN signaling via its E3 ubiquitin ligase activity. Mechanistically, PJA2 interacts with TYK2 and JAK1, promotes their non-degradative ubiquitination, and limits the activating phosphorylation of TYK2 thereby restraining downstream STAT signaling. Our high-resolution proximal protein landscapes provide global insights into the type I IFN signaling network, and serve as a valuable resource for future exploration of its functional complexities.


Subject(s)
Interferon Type I , Janus Kinase 1 , Receptor, Interferon alpha-beta , STAT2 Transcription Factor , Signal Transduction , TYK2 Kinase , Ubiquitination , Humans , HEK293 Cells , Interferon Type I/metabolism , Interferon-Stimulated Gene Factor 3, gamma Subunit/metabolism , Interferon-Stimulated Gene Factor 3, gamma Subunit/genetics , Janus Kinase 1/metabolism , Phosphorylation , Proteome/metabolism , Receptor, Interferon alpha-beta/metabolism , STAT1 Transcription Factor/metabolism , STAT2 Transcription Factor/metabolism , TYK2 Kinase/metabolism , Ubiquitin-Protein Ligases/metabolism
16.
Neurosci Lett ; 834: 137831, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38796093

ABSTRACT

Stattic, a commercial inhibitor of STAT3, can drive the development of neuropathic pain. Exploring the connection between Stattic and JAK1/STAT3 signaling may facilitate the understanding of neuropathic pain caused by postherpetic neuralgia (PHN). In the current study, as crucial regulators of inflammation, STAT3 and its associated JAK1/STAT3 pathway were found to be upregulated and activated in the L4-L6 dorsal root ganglion (DRG) of mice in response to resiniferatoxin (RTX)-induced PHN, while subcutaneous administration of Stattic was found to downregulate STAT3 expression and phosphorylation in a PHN model. Stattic administration further attenuated hypersensitivity to mechanical and thermal stimuli in PHN mice, and alleviated inflammation and cell death in the L4-L6 DRG of mice. Overexpression of STAT3 via microinjection of a lentiviral-STAT3 overexpression vector reversed the abnormal decrease of STAT3 at both the mRNA and protein levels in the L4-6 DRGs of PHN mice and significantly promoted hypersensitivity to mechanical stimuli in the mice. Collectively, we found that subcutaneous static administration alleviated RTX-induced neuropathic pain by deactivating JAK1/STAT3 in mice.


Subject(s)
Disease Models, Animal , Ganglia, Spinal , Neuralgia, Postherpetic , STAT3 Transcription Factor , Animals , Neuralgia, Postherpetic/metabolism , Mice , STAT3 Transcription Factor/metabolism , Ganglia, Spinal/metabolism , Male , Neuralgia/metabolism , Inflammation/metabolism , Janus Kinase 1/metabolism , Janus Kinase 1/antagonists & inhibitors , Mice, Inbred C57BL , Injections, Subcutaneous , Signal Transduction , Cyclic S-Oxides , Diterpenes
17.
Cytokine ; 179: 156620, 2024 07.
Article in English | MEDLINE | ID: mdl-38701735

ABSTRACT

PURPOSE: The emergence of immune checkpoint inhibitors (ICIs) has revolutionized cancer treatment, but these drugs can also cause severe immune-related adverse effects (irAEs), including myocarditis. Researchers have become interested in exploring ways to mitigate this side effect, and one promising avenue is the use of baricitinib, a Janus kinase inhibitor known to have anti-inflammatory properties. This study aimed to examine the potential mechanism by which baricitinib in ICIs-related myocarditis. METHODS: To establish an ICIs-related myocarditis model, BALB/c mice were administered murine cardiac troponin I (cTnI) peptide and anti-mouse programmed death 1 (PD-1) antibodies. Subsequently, baricitinib was administered to the mice via intragastric administration. Echocardiography, HE staining, and Masson staining were performed to evaluate myocardial functions, inflammation, and fibrosis. Immunofluorescence was used to detect macrophages in the cardiac tissue of the mice.In vitro experiments utilized raw264.7 cells to induce macrophage polarization using anti-PD-1 antibodies. Different concentrations of baricitinib were applied to assess cell viability, and the release of pro-inflammatory cytokines was measured. The activation of the JAK1/STAT3 signaling pathway was evaluated through western blot analysis. RESULTS: Baricitinib demonstrated its ability to improve cardiac function and reduce cardiac inflammation, as well as fibrosis induced by ICIs. Mechanistically, baricitinib treatment promoted the polarization of macrophages towards the M2 phenotype. In vitro and in vivo experiments showed that anti-PD-1 promoted the release of inflammatory factors. However, treatment with baricitinib significantly inhibited the phosphorylation of JAK1 and STAT3. Additionally, the use of RO8191 reversed the effects of baricitinib, further confirming our findings. CONCLUSION: Baricitinib demonstrated its potential as a protective agent against ICIs-related myocarditis by modulating macrophage polarization. These findings provide a solid theoretical foundation for the development of future treatments for ICIs-related myocarditis.


Subject(s)
Azetidines , Janus Kinase 1 , Macrophages , Mice, Inbred BALB C , Myocarditis , Purines , Pyrazoles , STAT3 Transcription Factor , Sulfonamides , Animals , Male , Mice , Azetidines/pharmacology , Immune Checkpoint Inhibitors/pharmacology , Janus Kinase 1/metabolism , Macrophage Activation/drug effects , Macrophages/metabolism , Macrophages/drug effects , Myocarditis/chemically induced , Myocarditis/drug therapy , Myocarditis/pathology , Myocarditis/metabolism , Purines/pharmacology , Pyrazoles/pharmacology , RAW 264.7 Cells , Signal Transduction/drug effects , STAT3 Transcription Factor/metabolism , Sulfonamides/pharmacology , Troponin I/metabolism
18.
Anticancer Drugs ; 35(7): 615-622, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38742728

ABSTRACT

Chemotherapy remains the main approach conserving vision during the treatment of retinoblastoma, the most prevalent eye cancer in children. Unfortunately, the development of chemoresistance stands as the primary reason for treatment failure. Within this study, we showed that prolonged exposure to vincristine led to heightened expression of JAK1 and JAK2 in retinoblastoma cells, while the other members of the JAK family exhibited no such changes. Employing a genetic intervention, we demonstrated the efficacy of depleting either JAK1 or JAK2 in countering vincristine-resistant retinoblastoma cells. In addition, the dual depletion of both JAK1 and JAK2 produced a more potent inhibitory outcome compared to the depletion of either gene alone. We further demonstrated that ruxolitinib, a small molecular inhibitor of JAK1/2, effectively reduced viability and colony formation in vincristine-resistant retinoblastoma cells. It also acts synergistically with vincristine in retinoblastoma cells regardless of inherent cellular and genetic heterogeneity. The effectiveness of ruxolitinib as standalone treatment against chemoresistant retinoblastoma, as well as its combination with vincristine, was validated in multiple retinoblastoma mouse models. Importantly, mice exhibited favorable tolerance to ruxolitinib administration. We confirmed that the underlying mechanism of ruxolitinib's action in chemoresistant retinoblastoma cells is the inhibition of Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling. Our study reveals that the underlying mechanism driving ruxolitinib's impact on chemoresistant retinoblastoma cells is the inhibition of JAK/STAT signaling. This study reveals the contribution of JAK1/2 to the development of chemoresistance in retinoblastoma and underscores the effectiveness of targeting JAK1/2 as a strategy to sensitize retinoblastoma to chemotherapy.


Subject(s)
Drug Resistance, Neoplasm , Janus Kinase 1 , Nitriles , Pyrazoles , Pyrimidines , Retinoblastoma , Vincristine , Retinoblastoma/drug therapy , Retinoblastoma/pathology , Nitriles/pharmacology , Pyrimidines/pharmacology , Animals , Vincristine/pharmacology , Pyrazoles/pharmacology , Humans , Mice , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 1/metabolism , Drug Resistance, Neoplasm/drug effects , Janus Kinase 2/antagonists & inhibitors , Janus Kinase 2/metabolism , Janus Kinase Inhibitors/pharmacology , Xenograft Model Antitumor Assays , Cell Line, Tumor , Retinal Neoplasms/drug therapy , Retinal Neoplasms/pathology , Drug Synergism , Cell Proliferation/drug effects , Antineoplastic Combined Chemotherapy Protocols/pharmacology
19.
Int Immunopharmacol ; 136: 112335, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38815349

ABSTRACT

Chlorpyrifos (CPF) is a widely used organophosphate insecticide in agriculture and homes. Exposure to organophosphates is associated with neurotoxicity. Fluoxetine (FLX) is a selective serotonin reuptake inhibitor (SSRI) that is widely prescribed for depression and anxiety disorders. Studies have shown that FLX has neuroprotective, anti-inflammatory, antioxidant, and antiapoptotic effects. The molecular mechanisms underlying FLX are not fully understood. This work aimed to investigate the potential neuroprotective effect of FLX on CPF-induced neurotoxicity and the underlying molecular mechanisms involved. Thirty-two rats were randomly divided into four groups: (I) the vehicle control group; (II) the FLX-treated group (10 mg/kg/day for 28 days, p.o); (III) the CPF-treated group (10 mg/kg for 28 days); and (IV) the FLX+CPF group. FLX attenuated CPF-induced neuronal injury, as evidenced by a significant decrease in Aß and p-Tau levels and attenuation of cerebral and hippocampal histological abrasion injury induced by CPF. FLX ameliorated neuronal oxidative stress, effectively reduced MDA production, and restored SOD and GSH levels through the coactivation of the PPARγ and SIRT1 proteins. FLX counteracted the neuronal inflammation induced by CPF by decreasing MPO, NO, TNF-α, IL-1ß, and IL-6 levels by suppressing NF-κB and JAK1/STAT3 activation. The antioxidant and anti-inflammatory properties of FLX help to prevent CPF-induced neuronal intoxication.


Subject(s)
Chlorpyrifos , Fluoxetine , Janus Kinase 1 , NF-kappa B , Neuroprotective Agents , PPAR gamma , STAT3 Transcription Factor , Signal Transduction , Sirtuin 1 , Animals , STAT3 Transcription Factor/metabolism , Sirtuin 1/metabolism , NF-kappa B/metabolism , PPAR gamma/metabolism , Janus Kinase 1/metabolism , Male , Fluoxetine/pharmacology , Fluoxetine/therapeutic use , Signal Transduction/drug effects , Chlorpyrifos/toxicity , Rats , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Neurons/drug effects , Neurons/pathology , Oxidative Stress/drug effects , Insecticides/toxicity , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Rats, Sprague-Dawley , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Neurotoxicity Syndromes/drug therapy , Neurotoxicity Syndromes/pathology
20.
Birth Defects Res ; 116(5): e2345, 2024 May.
Article in English | MEDLINE | ID: mdl-38716582

ABSTRACT

BACKGROUND: Abrocitinib is a Janus kinase (JAK) 1 selective inhibitor approved for the treatment of atopic dermatitis. Female reproductive tissues were unaffected in general toxicity studies, but an initial female rat fertility study resulted in adverse effects at all doses evaluated. A second rat fertility study was conducted to evaluate lower doses and potential for recovery. METHODS: This second study had 4 groups of 20 females each administered abrocitinib (0, 3, 10, or 70 mg/kg/day) 2 weeks prior to cohabitation through gestation day (GD) 7. In addition, 2 groups of 20 rats (0 or 70 mg/kg/day) were dosed for 3 weeks followed by a 4-week recovery period before mating. All mated females were evaluated on GD 14. RESULTS: No effects were observed at ≤10 mg/kg/day. At 70 mg/kg/day (29x human exposure), decreased pregnancy rate, implantation sites, and viable embryos were observed. All these effects reversed 4 weeks after the last dose. CONCLUSIONS: Based on these data and literature on the potential role of JAK signaling in implantation, we hypothesize that these effects may be related to JAK1 inhibition and, generally, that peri-implantation effects such as these, in the absence of cycling or microscopic changes in nonpregnant female reproductive tissues, are anticipated to be reversible.


Subject(s)
Fertility , Janus Kinase 1 , Pyrimidines , Sulfonamides , Female , Animals , Pregnancy , Rats , Fertility/drug effects , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 1/metabolism , Pyrimidines/pharmacology , Sulfonamides/pharmacology , Rats, Sprague-Dawley , Embryo Implantation/drug effects , Janus Kinase Inhibitors/pharmacology , Pregnancy Rate
SELECTION OF CITATIONS
SEARCH DETAIL
...