Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.107
Filter
1.
Cancer Discov ; 14(5): 701-703, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38690601

ABSTRACT

SUMMARY: Dunbar, Bowman, and colleagues present here a novel genetic mouse model with inducible and reversible expression of the JAK2V617F mutation in the endogenous locus. Results from this study clearly demonstrate an absolute requirement for myeloproliferative neoplasm-initiating cells for this mutation in their survival and imply that more efficacious inhibitors could be curative for these patients even in the setting of additional cooperating mutations. See related article by Dunbar et al., p. 737 (8).


Subject(s)
Janus Kinase 2 , Myeloproliferative Disorders , Janus Kinase 2/genetics , Janus Kinase 2/antagonists & inhibitors , Animals , Mice , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/drug therapy , Humans , Mutation , Disease Models, Animal , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology
3.
Cell Commun Signal ; 22(1): 272, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750472

ABSTRACT

BACKGROUND: In the tumor immune microenvironment (TIME), triggering receptor expressed on myeloid cells 2 (trem2) is widely considered to be a crucial molecule on tumor-associated macrophages(TAMs). Multiple studies have shown that trem2 may function as an immune checkpoint in various malignant tumors, mediating tumor immune evasion. However, its specific molecular mechanisms, especially in glioma, remain elusive. METHODS: Lentivirus was transfected to establish cells with stable knockdown of trem2. A Transwell system was used for segregated coculture of glioma cells and microglia. Western blotting, quantitative real-time polymerase chain reaction (qRT‒PCR), and immunofluorescence (IF) were used to measure the expression levels of target proteins. The proliferation, invasion, and migration of cells were detected by colony formation, cell counting kit-8 (CCK8), 5-ethynyl-2'-deoxyuridine (EdU) and transwell assays. The cell cycle, apoptosis rate and reactive oxygen species (ROS) level of cells were assessed using flow cytometry assays. The comet assay and tube formation assay were used to detect DNA damage in glioma cells and angiogenesis activity, respectively. Gl261 cell lines and C57BL/6 mice were used to construct the glioma orthotopic transplantation tumor model. RESULTS: Trem2 was highly overexpressed in glioma TAMs. Knocking down trem2 in microglia suppressed the growth and angiogenesis activity of glioma cells in vivo and in vitro. Mechanistically, knockdown of trem2 in microglia promoted proinflammatory microglia and inhibited anti-inflammatory microglia by activating jak2/stat1 and inhibiting the NF-κB p50 signaling pathway. The proinflammatory microglia produced high concentrations of nitric oxide (NO) and high levels of the proinflammatory cytokines TNF-α, IL-6, and IL-1ß, and caused further DNA damage and promoted the apoptosis rate of tumor cells. CONCLUSIONS: Our findings revealed that trem2 in microglia plays a significant role in the TIME of gliomas. Knockdown of trem2 in microglia might help to improve the efficiency of inhibiting glioma growth and delaying tumor progression and provide new ideas for further treatment of glioma.


Subject(s)
Glioma , Janus Kinase 2 , Membrane Glycoproteins , Microglia , NF-kappa B , Receptors, Immunologic , STAT3 Transcription Factor , Signal Transduction , Glioma/genetics , Glioma/pathology , Glioma/metabolism , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Microglia/metabolism , Microglia/pathology , Animals , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , NF-kappa B/metabolism , Mice , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Signal Transduction/genetics , Cell Line, Tumor , Mice, Inbred C57BL , Gene Knockdown Techniques , Cell Proliferation/genetics , Humans , Inflammation/genetics , Inflammation/pathology , Apoptosis/genetics , Disease Progression , Cell Movement/genetics
4.
Clin Exp Med ; 24(1): 106, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771542

ABSTRACT

Typical BCR::ABL1-negative myeloproliferative neoplasms (MPN) are mainly referred to as polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofbrosis (PMF). Granulocytes in MPN patients are involved in their inflammation and form an important part of the pathophysiology of MPN patients. It has been shown that the immunophenotype of granulocytes in MPN patients is altered. We used flow cytometry to explore the immunophenotype of MPN patients and correlate it with clinical parameters. The results showed that PMF patients and PV patients had higher CD15+CD11b+ granulocytes than ET patients and normal controls. When grouped by gene mutation, changes in the granulocyte immunophenotype of MPN patients were independent of the JAK2V617F and CALR mutations. There was no significant heterogeneity in immunophenotype between ET patients and Pre-PMF, and between Overt-PMF and Pre-PMF patients. Granulocytes from some MPN patients showed an abnormal CD13/CD16 phenotype with a significant increase in mature granulocytes on molecular and cytomorphological grounds, and this abnormal pattern occurred significantly more frequently in PMF patients than in ET patients. CD15-CD11b- was negatively correlated with WBC and Hb and positively correlated with DIPSS score, whereas high CD10+ granulocytes were significantly and negatively associated with prognostic system IPSS and DIPSS scores in PMF patients. In conclusion, this study demonstrates the landscape of bone marrow granulocyte immunophenotypes in MPN patients. MPN patients, especially those with PMF, have a significant granulocyte developmental overmaturation phenotype. CD10+ granulocytes may be involved in the prognosis of PMF patients.


Subject(s)
Flow Cytometry , Fusion Proteins, bcr-abl , Granulocytes , Immunophenotyping , Myeloproliferative Disorders , Humans , Male , Middle Aged , Female , Granulocytes/pathology , Adult , Aged , Fusion Proteins, bcr-abl/genetics , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/immunology , Myeloproliferative Disorders/pathology , Janus Kinase 2/genetics , Thrombocythemia, Essential/genetics , Thrombocythemia, Essential/pathology , Aged, 80 and over , China , Young Adult , Calreticulin/genetics , CD11b Antigen/genetics , Polycythemia Vera/genetics , Polycythemia Vera/pathology , Polycythemia Vera/immunology , Mutation , Asian People/genetics , East Asian People
5.
Nat Commun ; 15(1): 3976, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729948

ABSTRACT

Bleeding and thrombosis are known as common complications of polycythemia for a long time. However, the role of coagulation system in erythropoiesis is unclear. Here, we discover that an anticoagulant protein tissue factor pathway inhibitor (TFPI) plays an essential role in erythropoiesis via the control of heme biosynthesis in central macrophages. TFPI levels are elevated in erythroblasts of human erythroblastic islands with JAK2V617F mutation and hypoxia condition. Erythroid lineage-specific knockout TFPI results in impaired erythropoiesis through decreasing ferrochelatase expression and heme biosynthesis in central macrophages. Mechanistically, the TFPI interacts with thrombomodulin to promote the downstream ERK1/2-GATA1 signaling pathway to induce heme biosynthesis in central macrophages. Furthermore, TFPI blockade impairs human erythropoiesis in vitro, and normalizes the erythroid compartment in mice with polycythemia. These results show that erythroblast-derived TFPI plays an important role in the regulation of erythropoiesis and reveal an interplay between erythroblasts and central macrophages.


Subject(s)
Erythroblasts , Erythropoiesis , GATA1 Transcription Factor , Heme , Lipoproteins , Macrophages , Polycythemia , Polycythemia/metabolism , Polycythemia/genetics , Polycythemia/pathology , Erythroblasts/metabolism , Heme/metabolism , Humans , Animals , Lipoproteins/metabolism , Macrophages/metabolism , Mice , GATA1 Transcription Factor/metabolism , GATA1 Transcription Factor/genetics , Janus Kinase 2/metabolism , Janus Kinase 2/genetics , Thrombomodulin/metabolism , Thrombomodulin/genetics , Mice, Knockout , Ferrochelatase/metabolism , Ferrochelatase/genetics , Male , MAP Kinase Signaling System , Mice, Inbred C57BL , Female
6.
Nature ; 629(8014): 1149-1157, 2024 May.
Article in English | MEDLINE | ID: mdl-38720070

ABSTRACT

In somatic tissue differentiation, chromatin accessibility changes govern priming and precursor commitment towards cellular fates1-3. Therefore, somatic mutations are likely to alter chromatin accessibility patterns, as they disrupt differentiation topologies leading to abnormal clonal outgrowth. However, defining the impact of somatic mutations on the epigenome in human samples is challenging due to admixed mutated and wild-type cells. Here, to chart how somatic mutations disrupt epigenetic landscapes in human clonal outgrowths, we developed genotyping of targeted loci with single-cell chromatin accessibility (GoT-ChA). This high-throughput platform links genotypes to chromatin accessibility at single-cell resolution across thousands of cells within a single assay. We applied GoT-ChA to CD34+ cells from patients with myeloproliferative neoplasms with JAK2V617F-mutated haematopoiesis. Differential accessibility analysis between wild-type and JAK2V617F-mutant progenitors revealed both cell-intrinsic and cell-state-specific shifts within mutant haematopoietic precursors, including cell-intrinsic pro-inflammatory signatures in haematopoietic stem cells, and a distinct profibrotic inflammatory chromatin landscape in megakaryocytic progenitors. Integration of mitochondrial genome profiling and cell-surface protein expression measurement allowed expansion of genotyping onto DOGMA-seq through imputation, enabling single-cell capture of genotypes, chromatin accessibility, RNA expression and cell-surface protein expression. Collectively, we show that the JAK2V617F mutation leads to epigenetic rewiring in a cell-intrinsic and cell type-specific manner, influencing inflammation states and differentiation trajectories. We envision that GoT-ChA will empower broad future investigations of the critical link between somatic mutations and epigenetic alterations across clonal populations in malignant and non-malignant contexts.


Subject(s)
Chromatin , Epigenesis, Genetic , Genotype , Mutation , Single-Cell Analysis , Animals , Female , Humans , Male , Mice , Antigens, CD34/metabolism , Cell Differentiation/genetics , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , Epigenesis, Genetic/genetics , Epigenome/genetics , Genome, Mitochondrial/genetics , Genotyping Techniques , Hematopoiesis/genetics , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , Inflammation/genetics , Inflammation/pathology , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Megakaryocytes/metabolism , Megakaryocytes/pathology , Membrane Proteins/genetics , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/metabolism , Myeloproliferative Disorders/pathology , RNA/genetics , Clone Cells/metabolism
7.
Nat Commun ; 15(1): 3800, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714703

ABSTRACT

Clonal hematopoiesis (CH) is characterized by the acquisition of a somatic mutation in a hematopoietic stem cell that results in a clonal expansion. These driver mutations can be single nucleotide variants in cancer driver genes or larger structural rearrangements called mosaic chromosomal alterations (mCAs). The factors that influence the variations in mCA fitness and ultimately result in different clonal expansion rates are not well understood. We used the Passenger-Approximated Clonal Expansion Rate (PACER) method to estimate clonal expansion rate as PACER scores for 6,381 individuals in the NHLBI TOPMed cohort with gain, loss, and copy-neutral loss of heterozygosity mCAs. Our mCA fitness estimates, derived by aggregating per-individual PACER scores, were correlated (R2 = 0.49) with an alternative approach that estimated fitness of mCAs in the UK Biobank using population-level distributions of clonal fraction. Among individuals with JAK2 V617F clonal hematopoiesis of indeterminate potential or mCAs affecting the JAK2 gene on chromosome 9, PACER score was strongly correlated with erythrocyte count. In a cross-sectional analysis, genome-wide association study of estimates of mCA expansion rate identified a TCL1A locus variant associated with mCA clonal expansion rate, with suggestive variants in NRIP1 and TERT.


Subject(s)
Chromosome Aberrations , Clonal Hematopoiesis , Mosaicism , Humans , Clonal Hematopoiesis/genetics , Male , Female , Genome-Wide Association Study , Janus Kinase 2/genetics , Telomerase/genetics , Telomerase/metabolism , Loss of Heterozygosity , Cross-Sectional Studies , Mutation , Middle Aged , Hematopoietic Stem Cells/metabolism , Polymorphism, Single Nucleotide , Aged
8.
Dis Markers ; 2024: 2906566, 2024.
Article in English | MEDLINE | ID: mdl-38716474

ABSTRACT

Background: Chronic myeloid leukemia (CML) or chronic granulocytic leukemia is a myeloproliferative neoplasm indicated by the presence of the Philadelphia (Ph+) chromosome. First-line tyrosine kinase inhibitor, imatinib, is the gold standard for treatment. However, there has been known unresponsiveness to treatment, especially due to the involvement of other genes, such as the Janus kinase 2 (JAK2) gene. This study aimed to evaluate the relationships between JAK2 levels and complete hematological response (CHR), as well as early molecular response (EMR) after 3 months of imatinib treatment in patients with chronic phase CML. Methods: Patients with Ph+ CML in the chronic phase (n = 40; mean age, 40 ± 11 years) were recruited to complete assessments consisting of clinical examination and blood test, including evaluation of complete blood counts and the JAK2 levels, at baseline and following 3 months of therapy with imatinib (at an oral dose of 400 mg per day). Subjects were divided into two groups according to the presence of CHR and EMR. Results: JAK2 gene levels, phosphorylated, and total JAK2 proteins at baseline were significantly lower in the group with the presence of CHR and EMR. In addition, baseline JAK2 levels, including JAK2 gene expression, phosphorylated, and total JAK2 proteins, were negatively correlated with the presence of CHR and EMR. Conclusions: Based on these findings, JAK2 levels may be a potential indicator for evaluating treatment response on imatinib due to its role in the pathophysiology of CML.


Subject(s)
Antineoplastic Agents , Imatinib Mesylate , Janus Kinase 2 , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Humans , Imatinib Mesylate/therapeutic use , Janus Kinase 2/genetics , Adult , Male , Female , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Middle Aged , Antineoplastic Agents/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Biomarkers, Tumor/genetics , Biomarkers, Tumor/blood , Biomarkers, Tumor/metabolism , Treatment Outcome
10.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791222

ABSTRACT

BRAF mutations are rare in myeloid neoplasms and are reported to be associated with poor treatment outcomes. The purpose of our study is to characterize BRAF mutations in myeloid neoplasms using a next-generation sequencing (NGS) panel based on the experiences of a single cancer center. We conducted a retrospective review of patients with myeloid neoplasms who underwent the HopeSeq studies between January 2018 and September 2023. A total of 14 patients with myeloid neoplasms carrying BRAF mutations were included in our cohort. The clinical, pathological, and molecular features of these patients were investigated. Our study indicates that BRAF mutations are rare in myeloid neoplasms, constituting only 0.53% (14/2632) of all myeloid neoplasm cases, with the most common BRAF mutation being BRAF V600E (4/14; 28.6%). Interestingly, we observed that six out of seven patients with acute myeloid leukemia (AML) exhibited AML with monocytic differentiation, and all the patients with AML exhibited an extremely poor prognosis compared to those without BRAF mutations. TET2 (5/14; 35.7%), ASXL1 (4/14; 28.6%), and JAK2 (4/14; 28.6%) were the three most frequently co-mutated genes in these patients. Moreover, we noted concurrent KMT2A gene rearrangement with BRAF mutations in three patients with AML (3/7; 42.9%). Our study suggests that although BRAF mutations are rare in myeloid neoplasms, they play a crucial role in the pathogenesis of specific AML subtypes. Furthermore, RAS pathway alterations, including BRAF mutations, are associated with KMT2A gene rearrangement in AML. However, these findings warrant further validation in larger studies.


Subject(s)
High-Throughput Nucleotide Sequencing , Mutation , Proto-Oncogene Proteins B-raf , Humans , Proto-Oncogene Proteins B-raf/genetics , High-Throughput Nucleotide Sequencing/methods , Female , Male , Middle Aged , Aged , Adult , Leukemia, Myeloid, Acute/genetics , Retrospective Studies , Janus Kinase 2/genetics , Aged, 80 and over , DNA-Binding Proteins/genetics , Dioxygenases , Proto-Oncogene Proteins/genetics , Repressor Proteins/genetics , Prognosis
11.
Blood ; 143(15): 1441-1443, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38602699
13.
Cancer Med ; 13(7): e7123, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38618943

ABSTRACT

OBJECTIVE: To evaluate the incidence, clinical laboratory characteristics, and gene mutation spectrum of Ph-negative MPN patients with atypical variants of JAK2, MPL, or CALR. METHODS: We collected a total of 359 Ph-negative MPN patients with classical mutations in driver genes JAK2, MPL, or CALR, and divided them into two groups based on whether they had additional atypical variants of driver genes JAK2, MPL, or CALR: 304 patients without atypical variants of driver genes and 55 patients with atypical variants of driver genes. We analyzed the relevant characteristics of these patients. RESULTS: This study included 359 patients with Ph-negative MPNs with JAK2, MPL, or CALR classical mutations and found that 55 (15%) patients had atypical variants of JAK2, MPL, or CALR. Among them, 28 cases (51%) were male, and 27 (49%) were female, with a median age of 64 years (range, 21-83). The age of ET patients with atypical variants was higher than that of ET patients without atypical variants [70 (28-80) vs. 61 (19-82), p = 0.03]. The incidence of classical MPL mutations in ET patients with atypical variants was higher than in ET patients without atypical variants [13.3% (2/15) vs. 0% (0/95), p = 0.02]. The number of gene mutations in patients with atypical variants of driver genes PV, ET, and Overt-PMF is more than in patients without atypical variants of PV, ET, and Overt-PMF [PV: 3 (2-6) vs. 2 (1-7), p < 0.001; ET: 4 (2-8) vs. 2 (1-7), p < 0.05; Overt-PMF: 5 (2-9) vs. 3 (1-8), p < 0.001]. The incidence of SH2B3 and ASXL1 mutations were higher in MPN patients with atypical variants than in those without atypical variants (SH2B3: 16% vs. 6%, p < 0.01; ASXL1: 24% vs. 13%, p < 0.05). CONCLUSION: These data indicate that classical mutations of JAK2, MPL, and CALR may not be completely mutually exclusive with atypical variants of JAK2, MPL, and CALR. In this study, 30 different atypical variants of JAK2, MPL, and CALR were identified, JAK2 G127D being the most common (42%, 23/55). Interestingly, JAK2 G127D only co-occurred with JAK2V617F mutation. The incidence of atypical variants of JAK2 in Ph-negative MPNs was much higher than that of the atypical variants of MPL and CALR. The significance of these atypical variants will be further studied in the future.


Subject(s)
Laboratories, Clinical , Transcription Factors , Humans , Female , Male , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Mutation , Receptors, Thrombopoietin/genetics , Janus Kinase 2/genetics
14.
J Cell Mol Med ; 28(8): e18332, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38661644

ABSTRACT

The role of KIAA0040 role in glioma development is not yet understood despite its connection to nervous system diseases. In this study, KIAA0040 expression levels were evaluated using qRT-PCR, WB and IHC, and functional assays were conducted to assess its impact on glioma progression, along with animal experiments. Moreover, WB was used to examine the impact of KIAA0040 on the JAK2/STAT3 signalling pathway. Our study found that KIAA0040 was increased in glioma and linked to tumour grade and poor clinical outcomes, serving as an independent prognostic factor. Functional assays showed that KIAA0040 enhances glioma growth, migration and invasion by activating the JAK2/STAT3 pathway. Of course, KIAA0040 enhances glioma growth by preventing tumour cell death and promoting cell cycle advancement. Our findings suggest that targeting KIAA0040 could be an effective treatment for glioma due to its role in promoting aggressive tumour behaviour and poor prognosis.


Subject(s)
Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Glioma , Janus Kinase 2 , STAT3 Transcription Factor , Signal Transduction , Animals , Female , Humans , Male , Mice , Middle Aged , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Glioma/genetics , Glioma/pathology , Glioma/metabolism , Janus Kinase 2/metabolism , Janus Kinase 2/genetics , Mice, Nude , Prognosis , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics
15.
Medicine (Baltimore) ; 103(14): e37751, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38579024

ABSTRACT

The demand for Janus Kinase-2 (JAK2) testing has been disproportionate to the low yield of positive results, which highlights the need for more discerning test strategies. The aim of this study is to introduce an artificial intelligence application as a more rational approach for testing JAK2 mutations in cases of erythrocytosis. Test results were sourced from samples sent to a tertiary hospital's genetic laboratory between 2017 and 2023, meeting 2016 World Health Organization criteria for JAK2V617F mutation testing. The JAK2 Somatic Mutation Screening Kit was used for genetic testing. Machine learning models were trained and tested using Python programming language. Out of 458 cases, JAK2V617F mutation was identified in 13.3%. There were significant differences in complete blood count parameters between mutation carriers and non-carriers. Various models were trained with data, with the random forest (RF) model demonstrating superior precision, recall, F1-score, accuracy, and area under the receiver operating characteristic, all reaching 100%. Gradient boosting (GB) model also showed high scores. When compared with existing algorithms, the RF and GB models displayed superior performance. The RF and GB models outperformed other methods in accurately identifying and classifying erythrocytosis cases, offering potential reductions in unnecessary testing and costs.


Subject(s)
Artificial Intelligence , Polycythemia , Humans , Machine Learning , Algorithms , Hemoglobins , Janus Kinase 2/genetics
16.
Mol Diagn Ther ; 28(3): 311-318, 2024 May.
Article in English | MEDLINE | ID: mdl-38568469

ABSTRACT

INTRODUCTION: Erythrocytosis is attributed to various clinical and molecular factors. Many cases of JAK2-unmutated erythrocytosis remain undiagnosed. We investigated the characteristics and causes of JAK2-unmutated erythrocytosis. METHODS: We assessed the clinical and laboratory results of patients with erythrocytosis without JAK2 mutations and performed targeted next-generation sequencing (NGS) panels for somatic and germline mutations. RESULTS: In total, 117 patients with JAK2-unmutated erythrocytosis were included. The median hemoglobin and hematocrit levels were 17.9 g/dL and 53.4%, respectively. Erythropoietin levels were not below the reference range. Thrombotic events were reported in 17 patients (14.5%). Among JAK2-unmutated patients, 44 had undergone targeted panel sequencing consisting of myeloid neoplasm-related genes, and 16 had one or more reportable variants in ASXL1 (5/44), TET2, CALR, FLT3, and SH2B3 (2/44). Additional testing for germline causes revealed eight variants in seven genes in eight patients, including NF1, BPGM, EPAS1, PIEZO1, RHAG, SH2B3, and VHL genes. One NF1 pathogenic, one BPGM likely pathogenic, and six variants of undetermined significance were detected. CONCLUSION: Somatic and germline mutations were identified in 36.4% and 33.3 % of the JAK2-unmutated group; most variants had unknown clinical significance. Not all genetic causes have been identified; comprehensive diagnostic approaches are crucial for identifying the cause of erythrocytosis.


Subject(s)
High-Throughput Nucleotide Sequencing , Janus Kinase 2 , Mutation , Polycythemia , Humans , Polycythemia/genetics , Polycythemia/diagnosis , Janus Kinase 2/genetics , Female , Male , Middle Aged , Adult , Aged , Germ-Line Mutation , Tertiary Care Centers , Young Adult , Aged, 80 and over , Adolescent , Genetic Predisposition to Disease
17.
Ann Hematol ; 103(6): 1947-1965, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38652240

ABSTRACT

Janus kinase 2 (JAK2) V617F mutation is present in most patients with polycythemia vera (PV). One persistently puzzling aspect unresolved is the association between JAK2V617F allele burden (also known as variant allele frequency) and the relevant clinical characteristics. Numerous studies have reported associations between allele burden and both hematologic and clinical features. While there are strong indications linking high allele burden in PV patients with symptoms and clinical characteristics, not all associations are definitive, and disparate and contradictory findings have been reported. Hence, this study aimed to synthesize existing data from the literature to better understand the association between JAK2V617F allele burden and relevant clinical correlates. Out of the 1,851 studies identified, 39 studies provided evidence related to the association between JAK2V617F allele burden and clinical correlates, and 21 studies were included in meta-analyses. Meta-analyses of correlation demonstrated that leucocyte and erythrocyte counts were significantly and positively correlated with JAK2V617F allele burden, whereas platelet count was not. Meta-analyses of standardized mean difference demonstrated that leucocyte and hematocrit were significantly higher in patients with higher JAK2V617F allele burden, whereas platelet count was significantly lower. Meta-analyses of odds ratio demonstrated that patients who had higher JAK2V617F allele burden had a significantly greater odds ratio for developing pruritus, splenomegaly, thrombosis, myelofibrosis, and acute myeloid leukemia. Our study integrates data from approximately 5,462 patients, contributing insights into the association between JAK2V617F allele burden and various hematological parameters, symptomatic manifestations, and complications. However, varied methods of data presentation and statistical analyses prevented the execution of high-quality meta-analyses.


Subject(s)
Alleles , Janus Kinase 2 , Polycythemia Vera , Polycythemia Vera/genetics , Polycythemia Vera/blood , Janus Kinase 2/genetics , Humans , Gene Frequency , Amino Acid Substitution , Mutation, Missense
18.
Br J Haematol ; 204(5): 1595-1597, 2024 May.
Article in English | MEDLINE | ID: mdl-38616616

ABSTRACT

The discovery of driver mutations in myeloproliferative neoplasms has significantly contributed to the management of patients with essential thrombocythaemia (ET). High-quality evidence has started to pave the way for targeted therapy. The review by Ferrer-Marín et al. further advances this discussion, highlighting how molecular profiling, including non-driver gene mutations, is set to revolutionize personalized treatment approaches for ET patients. Commentary on: Ferrer-Marín et al. Essential thrombocythemia: a contemporary approach with new drugs on the horizon. Br J Haematol 2024;204:1605-1616.


Subject(s)
Thrombocythemia, Essential , Thrombocythemia, Essential/genetics , Humans , Mutation , Disease Management , Janus Kinase 2/genetics
19.
Sci Rep ; 14(1): 9389, 2024 04 24.
Article in English | MEDLINE | ID: mdl-38654055

ABSTRACT

BCR::ABL1-negative myeloproliferative neoplasms are hematopoietic disorders characterized by panmyelosis. JAK2 V617F is a frequent variant in these diseases and often occurs in the 46/1 haplotype. The G allele of rs10974944 has been shown to be associated with this variant, specifically its acquisition, correlations with familial cases, and laboratory alterations. This study evaluated the association between the 46/1 haplotype and JAK2 V617F in patients with myeloproliferative neoplasms in a population from the Brazilian Amazon. Clinical, laboratory and molecular sequencing analyses were considered. Carriers of the G allele of rs10974944 with polycythemia vera showed an increase in mean corpuscular volume and mean corpuscular hemoglobin, while in those with essential thrombocythemia, there was an elevation in red blood cells, hematocrit, and hemoglobin. Associations were observed between rs10974944 and the JAK2 V617F, in which the G allele (OR 3.4; p < 0.0001) and GG genotype (OR 4.9; p = 0.0016) were associated with JAK2 V617F + and an increase in variant allele frequency (GG: OR 15.8; p = < 0.0001; G: OR 6.0; p = 0.0002). These results suggest an association between rs10974944 (G) and a status for JAK2 V617F, JAK2 V617F + _VAF ≥ 50%, and laboratory alterations in the erythroid lineage.


Subject(s)
Janus Kinase 2 , Myeloproliferative Disorders , Polymorphism, Single Nucleotide , Humans , Brazil , Female , Male , Janus Kinase 2/genetics , Middle Aged , Myeloproliferative Disorders/genetics , Aged , Adult , Gene Frequency , Alleles , Haplotypes , Polycythemia Vera/genetics , Polycythemia Vera/blood , Genotype , Genetic Predisposition to Disease , Aged, 80 and over
20.
Am J Hematol ; 99(6): 1108-1118, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38563187

ABSTRACT

We investigated using a custom NGS panel of 149 genes the mutational landscape of 64 consecutive adult patients with tyrosine kinase fusion-negative hypereosinophilia (HE)/hypereosinophilic syndrome (HES) harboring features suggestive of myeloid neoplasm. At least one mutation was reported in 50/64 (78%) patients (compared to 8/44 (18%) patients with idiopathic HE/HES/HEUS used as controls; p < .001). Thirty-five patients (54%) had at least one mutation involving the JAK-STAT pathway, including STAT5B (n = 18, among which the hotspot N642H, n = 13), JAK1 (indels in exon 13, n = 5; V658F/L, n = 2), and JAK2 (V617F, n = 6; indels in exon 13, n = 2). Other previously undescribed somatic mutations were also found in JAK2, JAK1, STAT5B, and STAT5A, including three patients who shared the same STAT5A V707fs mutation and features consistent with primary polycythemia. Nearly all JAK-STAT mutations were preceded by (or associated with) myelodysplasia-related gene mutations, especially in RNA-splicing genes or chromatin modifiers. In multivariate analysis, neurologic involvement (hazard ratio [HR] 4.95 [1.87-13.13]; p = .001), anemia (HR 5.50 [2.24-13.49]; p < .001), and the presence of a high-risk mutation (as per the molecular international prognosis scoring system: HR 6.87 [2.39-19.72]; p < .001) were independently associated with impaired overall survival. While corticosteroids were ineffective in all treated JAK-STAT-mutated patients, ruxolitinib showed positive hematological responses including in STAT5A-mutated patients. These findings emphasize the usefulness of NGS for the workup of tyrosine kinase fusion-negative HE/HES patients and support the use of JAK inhibitors in this setting. Updated classifications could consider patients with JAK-STAT mutations and eosinophilia as a new "gene mutated-entity" that could be differentiated from CEL, NOS, and idiopathic HES.


Subject(s)
Hypereosinophilic Syndrome , Mutation , STAT5 Transcription Factor , Humans , Hypereosinophilic Syndrome/genetics , Hypereosinophilic Syndrome/drug therapy , Male , Female , Middle Aged , Adult , Aged , STAT5 Transcription Factor/genetics , Janus Kinase 2/genetics , Signal Transduction , Janus Kinase 1/genetics , Aged, 80 and over , Pyrimidines/therapeutic use , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...