Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Bioorg Chem ; 99: 103851, 2020 06.
Article in English | MEDLINE | ID: mdl-32334196

ABSTRACT

Selective inhibition of janus kinase (JAK) has been identified as an important strategy for the treatment of autoimmune disorders. Optimization at the C2 and C4-positions of pyrimidine ring of Cerdulatinib led to the discovery of a potent and orally bioavailable 2,4-diaminopyrimidine-5-carboxamide based JAK3 selective inhibitor (11i). A cellular selectivity study further confirmed that 11i preferentially inhibits JAK3 over JAK1, in JAK/STAT signaling pathway. Compound 11i showed good anti-arthritic activity, which could be correlated with its improved oral bioavailability. In the repeat dose acute toxicity study, 11i showed no adverse changes related to gross pathology and clinical signs, indicating that the new class JAK3 selective inhibitor could be viable therapeutic option for the treatment of rheumatoid arthritis.


Subject(s)
Antirheumatic Agents/pharmacology , Arthritis, Experimental/drug therapy , Drug Discovery , Janus Kinase 3/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Animals , Antirheumatic Agents/chemical synthesis , Antirheumatic Agents/chemistry , Arthritis, Experimental/blood , Cell Line , Dose-Response Relationship, Drug , Humans , Janus Kinase 3/blood , Janus Kinase 3/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Rats , Structure-Activity Relationship
2.
Beijing Da Xue Xue Bao Yi Xue Ban ; 48(6): 977-981, 2016 12 18.
Article in Chinese | MEDLINE | ID: mdl-27987500

ABSTRACT

OBJECTIVE: The ionotropic glutamate receptorantagonists include two types: MK-801, antagonist of N-methyl-D-asparticacid (NMDA) receptor, and NBQX, antagonist of non-NMDA receptor.The above-mentioned ionotropic antagonists can block the glutamate and its corresponding receptor binding to produce analgesic effect. The objective of this research was to study two antagonists in analgesic effect on rat behavior,as well as to investigate the down-regulation and up-regulation of cyclooxygenase-2 (COX-2) and Janus-activated kinase (Jak3) in collagen-induced arthritis (CIA) rat serum and tissue fluid after the application of these antagonists, that is, the effect on molecular biology. METHODS: This study used the ionotropic glutamate receptors as the target and established CIA rat model. Vivo studies were used to observe changes in behavior and molecular biology of the CIA rat.Behavioral assessment includedmechanical allodynia and joint swelling in the CIA rat,where themechanical allodynia was measured using the paw-withdrawal threshold (PWT) with VonFrey filaments according to the "Up-Down" method,and the drainage volume was used to assess joint swelling. Then the blood samples taken from the heart of the rat and the tissue homogenate were collected to detect the down-regulation and up-regulation of COX-2 and Jak3 in the serum and tissue fluid after the antagonists wereused. RESULTS: Using MK-801, NBQX alone or using the combination of these two antagonists,these three methods all could alleviate pain(P<0.01).The analgesic effect lasted more than 24 h.Both antagonists reached the peak of analgesia at the end of 4 hours post-injection. NBQX had stronger analgesic effect than MK-801 (P<0.05).Whether alone or combined use of these two antagonists,could not change the CIA rats' swelling of the joint (P>0.05). MK-801 could decrease the expression of COX-2 (P<0.01).At the same time, NBQX did not have this effect (P>0.05). Using MK-801, NBQX alone or combination of these two antagonists could not affect the increased expression of Jak3 caused by the CIA (P>0.05). CONCLUSION: MK-801 and NBQX could both alleviate pain, NBQX was much better than MK-801. Neither MK-801 nor NBQX had the effect on the swelling of the joint. NMDA receptor and COX-2 inflammatory pathways had certain interactions. For Jak3, it could not be found to have cross-function with ionotropic glutamate signaling pathways by this experiment.


Subject(s)
Analgesics/pharmacology , Analgesics/therapeutic use , Arthritis, Experimental/drug therapy , Cyclooxygenase 2/drug effects , Dizocilpine Maleate/pharmacology , Dizocilpine Maleate/therapeutic use , Janus Kinase 3/drug effects , Quinoxalines/pharmacology , Quinoxalines/therapeutic use , Animals , Arthritis, Experimental/physiopathology , Cyclooxygenase 2/blood , Edema/chemically induced , Edema/drug therapy , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Amino Acid Antagonists/therapeutic use , Gene Expression Regulation/drug effects , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Janus Kinase 3/blood , Male , Pain/chemically induced , Pain/drug therapy , Rats , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...