Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 395
Filter
1.
Birth Defects Res ; 116(5): e2345, 2024 May.
Article in English | MEDLINE | ID: mdl-38716582

ABSTRACT

BACKGROUND: Abrocitinib is a Janus kinase (JAK) 1 selective inhibitor approved for the treatment of atopic dermatitis. Female reproductive tissues were unaffected in general toxicity studies, but an initial female rat fertility study resulted in adverse effects at all doses evaluated. A second rat fertility study was conducted to evaluate lower doses and potential for recovery. METHODS: This second study had 4 groups of 20 females each administered abrocitinib (0, 3, 10, or 70 mg/kg/day) 2 weeks prior to cohabitation through gestation day (GD) 7. In addition, 2 groups of 20 rats (0 or 70 mg/kg/day) were dosed for 3 weeks followed by a 4-week recovery period before mating. All mated females were evaluated on GD 14. RESULTS: No effects were observed at ≤10 mg/kg/day. At 70 mg/kg/day (29x human exposure), decreased pregnancy rate, implantation sites, and viable embryos were observed. All these effects reversed 4 weeks after the last dose. CONCLUSIONS: Based on these data and literature on the potential role of JAK signaling in implantation, we hypothesize that these effects may be related to JAK1 inhibition and, generally, that peri-implantation effects such as these, in the absence of cycling or microscopic changes in nonpregnant female reproductive tissues, are anticipated to be reversible.


Subject(s)
Fertility , Janus Kinase 1 , Pyrimidines , Sulfonamides , Female , Animals , Pregnancy , Rats , Fertility/drug effects , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 1/metabolism , Pyrimidines/pharmacology , Sulfonamides/pharmacology , Rats, Sprague-Dawley , Embryo Implantation/drug effects , Janus Kinase Inhibitors/pharmacology , Pregnancy Rate
2.
Cells ; 13(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38727296

ABSTRACT

Derangement of the epidermal barrier lipids and dysregulated immune responses are key pathogenic features of atopic dermatitis (AD). The Th2-type cytokines interleukin IL-4 and IL-13 play a prominent role in AD by activating the Janus Kinase/Signal Transduction and Activator of Transcription (JAK/STAT) intracellular signaling axis. This study aimed to investigate the role of JAK/STAT in the lipid perturbations induced by Th2 signaling in 3D epidermal equivalents. Tofacitinib, a low-molecular-mass JAK inhibitor, was used to screen for JAK/STAT-mediated deregulation of lipid metabolism. Th2 cytokines decreased the expression of elongases 1, 3, and 4 and serine-palmitoyl-transferase and increased that of sphingolipid delta(4)-desaturase and carbonic anhydrase 2. Th2 cytokines inhibited the synthesis of palmitoleic acid and caused depletion of triglycerides, in association with altered phosphatidylcholine profiles and fatty acid (FA) metabolism. Overall, the ceramide profiles were minimally affected. Except for most sphingolipids and very-long-chain FAs, the effects of Th2 on lipid pathways were reversed by co-treatment with tofacitinib. An increase in the mRNA levels of CPT1A and ACAT1, reduced by tofacitinib, suggests that Th2 cytokines promote FA beta-oxidation. In conclusion, pharmacological inhibition of JAK/STAT activation prevents the lipid disruption caused by the halted homeostasis of FA metabolism.


Subject(s)
Cytokines , Janus Kinases , Lipid Metabolism , STAT Transcription Factors , Th2 Cells , Humans , Th2 Cells/metabolism , Th2 Cells/drug effects , STAT Transcription Factors/metabolism , Janus Kinases/metabolism , Cytokines/metabolism , Lipid Metabolism/drug effects , Epidermis/metabolism , Epidermis/drug effects , Signal Transduction/drug effects , Piperidines/pharmacology , Pyrimidines/pharmacology , Janus Kinase Inhibitors/pharmacology , Interleukin-4/metabolism , Fatty Acids/metabolism
3.
J Am Chem Soc ; 146(19): 13317-13325, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38700457

ABSTRACT

We describe the synthesis and biological testing of ruthenium-bipyridine ruxolitinib (RuBiRuxo), a photoreleasable form of ruxolitinib, a JAK inhibitor used as an antitumoral agent in cutaneous T-cell lymphomas (CTCL). This novel caged compound is synthesized efficiently, is stable in aqueous solution at room temperature, and is photoreleased rapidly by visible light. Irradiation of RuBiRuxo reduces cell proliferation and induces apoptosis in a light- and time-dependent manner in a CTCL cell line. This effect is specific and is mediated by a decreased phosphorylation of STAT proteins. Our results demonstrate the potential of ruthenium-based photocompounds and light-based therapeutic approaches for the potential treatment of cutaneous lymphomas and other pathologies.


Subject(s)
Antineoplastic Agents , Apoptosis , Cell Proliferation , Nitriles , Pyrazoles , Pyrimidines , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Proliferation/drug effects , Nitriles/chemistry , Nitriles/pharmacology , Nitriles/chemical synthesis , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrimidines/chemical synthesis , Apoptosis/drug effects , Pyrazoles/pharmacology , Pyrazoles/chemistry , Pyrazoles/chemical synthesis , Cell Line, Tumor , Janus Kinase Inhibitors/pharmacology , Janus Kinase Inhibitors/chemistry , Janus Kinase Inhibitors/chemical synthesis , Ruthenium/chemistry , Ruthenium/pharmacology , Light , Molecular Structure , Janus Kinases/antagonists & inhibitors , Janus Kinases/metabolism
4.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731900

ABSTRACT

Psoriasis is a highly prevalent dermatological disease associated with an increased systemic inflammatory response. In addition, joint involvement is also present in around 20% of patients. Therefore, treatment modalities used in this condition should be simultaneously effective at improving skin manifestations, reducing inflammation, and addressing psoriatic arthritis when present. Twenty years ago, the introduction of biologic treatments for psoriasis was a turning point in the management of this condition, offering an effective and reasonably safe option for patients whose disease could not be adequately controlled with conventional therapies. At the moment, Janus Kinase inhibitors (JAKis) are a new class of promising molecules in the management of psoriasis. They are orally administered and can show benefits in patients who failed biologic therapy. We conducted a scoping review in order to identify randomized-controlled trials that investigated different JAKis in patients with plaque psoriasis and psoriatic arthritis, with an emphasis on molecules that have been approved by the European Medicines Agency and the Food and Drug Administration. The added value of this study is that it collected information about JAKis approved for two different indications, plaque psoriasis and psoriatic arthritis, in order to provide an integrated understanding of the range of effects that JAKis have on the whole spectrum of psoriasis manifestations.


Subject(s)
Janus Kinase Inhibitors , Janus Kinases , Psoriasis , STAT Transcription Factors , Signal Transduction , Humans , Psoriasis/drug therapy , Psoriasis/metabolism , Janus Kinase Inhibitors/therapeutic use , Janus Kinase Inhibitors/pharmacology , Janus Kinases/metabolism , Janus Kinases/antagonists & inhibitors , Signal Transduction/drug effects , STAT Transcription Factors/metabolism , Arthritis, Psoriatic/drug therapy , Arthritis, Psoriatic/metabolism
5.
Exp Dermatol ; 33(5): e15099, 2024 May.
Article in English | MEDLINE | ID: mdl-38794814

ABSTRACT

Suitable human models for the development and characterization of topical compounds for inflammatory skin diseases such as atopic dermatitis are not readily available to date. We describe here the development of a translational model involving healthy human skin mimicking major aspects of AD and its application for the characterization of topical Janus kinase inhibitors. Full thickness human abdominal skin obtained from plastic surgery stimulated in vitro with IL4 and IL13 shows molecular features of AD. This is evidenced by STAT6 phosphorylation assessed by immunohistochemistry and analysis of skin lysates. Broad transcriptome changes assessed by AmpliSeq followed by gene set variation analysis showed a consistent upregulation of gene signatures characterizing AD in this model. Topical application of experimental formulations of compounds targeting the JAK pathway to full thickness skin normalizes the molecular features of AD induced by IL4 and IL13 stimulation. The inhibitory effects of topical JAK inhibitors on molecular features of AD are supported by pharmacokinetic analysis. The model described here is suited for the characterization of topical compounds for AD and has the potential to be extended to other inflammatory skin diseases and pathophysiological pathways.


Subject(s)
Dermatitis, Atopic , Janus Kinase Inhibitors , Skin , Humans , Dermatitis, Atopic/drug therapy , Skin/metabolism , Skin/drug effects , Janus Kinase Inhibitors/pharmacology , STAT6 Transcription Factor/metabolism , Interleukin-4/metabolism , Interleukin-13/metabolism , Phosphorylation , Transcriptome , Models, Biological , Pyrimidines/pharmacology , Administration, Topical , Piperidines
6.
Expert Opin Drug Metab Toxicol ; 20(5): 297-305, 2024 May.
Article in English | MEDLINE | ID: mdl-38712496

ABSTRACT

INTRODUCTION: Janus kinases (JAK) are enzymes involved in signaling pathways that activate the immune system. Upadacitinib, an oral small molecule, is the first JAK inhibitor approved by FDA and EMA for the treatment of moderately to severely active Crohn's disease (CD), following successful phase II and III trials. Compared to other JAK inhibitors, upadacitinib has a high selectivity toward JAK1. This characteristic could improve its efficacy and safety. AREAS COVERED: This review provides an overview of the available knowledge on the pharmacokinetics of upadacitinib as induction and maintenance therapy for CD. EXPERT OPINION: The approval of newer targeted small molecules drug, including JAK inhibitors, marked a significant advancement in terms of effectiveness. In fact, the oral administration, the rapid absorption, the excellent bioavailability and the short serum time of maximum concentration are some of the advantages compared to biologics. The selective inhibition of JAK1 by upadacitinib allows for high efficacy while maintaining a reliable safety profile.


Subject(s)
Crohn Disease , Heterocyclic Compounds, 3-Ring , Janus Kinase 1 , Janus Kinase Inhibitors , Severity of Illness Index , Humans , Janus Kinase Inhibitors/pharmacokinetics , Janus Kinase Inhibitors/administration & dosage , Janus Kinase Inhibitors/pharmacology , Janus Kinase Inhibitors/adverse effects , Crohn Disease/drug therapy , Heterocyclic Compounds, 3-Ring/pharmacokinetics , Heterocyclic Compounds, 3-Ring/administration & dosage , Heterocyclic Compounds, 3-Ring/pharmacology , Janus Kinase 1/antagonists & inhibitors , Biological Availability , Administration, Oral , Animals
7.
Int J Rheum Dis ; 27(5): e15164, 2024 May.
Article in English | MEDLINE | ID: mdl-38706209

ABSTRACT

BACKGROUND: JAK inhibitors are well known for the treatment of rheumatoid arthritis (RA), but whether they can be used to treat pulmonary fibrosis, a common extra-articular disease of RA, remains to be clarified. METHODS: A jak2 inhibitor, CEP33779 (CEP), was administered to a rat model of RA-associated interstitial lung disease to observe the degree of improvement in both joint swelling and pulmonary fibrosis. HFL1 cells were stimulated with TGF-ß1 to observe the expression of p-JAK2. Then, different concentrations of related gene inhibitors (JAK2, TGFß-R1/2, and p-STAT3) or silencers (STAT3, JAK2) were administered to HFL1 cells, and the expression levels of related proteins were detected to explore the underlying mechanisms of action. RESULTS: CEP not only reduced the degree of joint swelling and inflammation in rats but also improved lung function, inhibited the pro-inflammatory factors IL-1ß and IL-6, reduced lung inflammation and collagen deposition, and alleviated lung fibrosis. CEP decreased the expression levels of TGFß-R2, p-SMAD, p-STAT3, and ECM proteins in rat lung tissues. TGF-ß1 induced HFL1 cells to highly express p-JAK2, with the most pronounced expression at 48 h. The levels of p-STAT3, p-SMAD3, and ECM-related proteins were significantly reduced after inhibition of either JAK2 or STAT3. CONCLUSION: JAK2 inhibitors may be an important and novel immunotherapeutic drug that can improve RA symptoms while also delaying or blocking the development of associated pulmonary fibrotic disease. The mechanism may be related to the downregulation of p-STAT3 protein via inhibition of the JAK2/STAT signaling pathway, which affects the phosphorylation of SMAD3.


Subject(s)
Isoquinolines , Janus Kinase Inhibitors , Lung , Pulmonary Fibrosis , Pyridines , Pyrroles , Signal Transduction , Smad3 Protein , Animals , Humans , Male , Rats , Anti-Inflammatory Agents/pharmacology , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Arthritis, Experimental/enzymology , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Cell Line , Disease Models, Animal , Down-Regulation , Janus Kinase 2/metabolism , Janus Kinase 2/antagonists & inhibitors , Janus Kinase Inhibitors/pharmacology , Janus Kinase Inhibitors/therapeutic use , Lung/drug effects , Lung/metabolism , Lung/pathology , Lung/enzymology , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects , Smad3 Protein/metabolism , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/antagonists & inhibitors
8.
ACS Appl Bio Mater ; 7(5): 3179-3189, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38581305

ABSTRACT

Ruxolitinib (RXL) is a Janus kinase inhibitor used for treating intermediate- or high-risk myelofibrosis. This study presents an electrode modified with electrochemically polymerized taurine on a carbon paste electrode via cyclic voltammetry (CV). The surface characterization of the poly(taurine)-CP electrode was evaluated by using electrochemical (electrochemical impedance spectroscopy─EIS, CV), morphological (scanning electron microscope─SEM), and spectroscopic (Fourier-transform infrared spectroscopy─FT-IR) techniques. Under optimized conditions, RXL exhibited good linearity within the 0.01-1.0 µM concentration range, with a limit of detection (LOD) of 0.005 µM. The proposed electrochemical sensor demonstrated excellent selectivity, accuracy, precision, and repeatability. Furthermore, it effectively detected RXL in human urine and pharmaceutical samples.


Subject(s)
Carbon , Electrochemical Techniques , Electrodes , Materials Testing , Nitriles , Pyrazoles , Pyrimidines , Taurine , Nitriles/chemistry , Nitriles/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology , Carbon/chemistry , Humans , Pyrazoles/chemistry , Pyrazoles/pharmacology , Taurine/chemistry , Taurine/analogs & derivatives , Taurine/pharmacology , Particle Size , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Janus Kinase Inhibitors/chemistry , Janus Kinase Inhibitors/pharmacology , Polymerization , Molecular Structure
9.
Am J Physiol Renal Physiol ; 326(6): F931-F941, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38634132

ABSTRACT

Coronavirus disease 2019 (COVID-19) induces respiratory dysfunction as well as kidney injury. Although the kidney is considered a target organ of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and affected by the COVID-19-induced cytokine storm, the mechanisms of renal reaction in SARS-CoV-2 infection are unknown. In this study, a murine COVID-19 model was induced by nasal infection with mouse-adapted SARS-CoV-2 (MA10). MA10 infection induced body weight loss along with lung inflammation in mice 4 days after infection. Serum creatinine levels and the urinary albumin/creatinine ratio increased on day 4 after MA10 infection. Measurement of the urinary neutrophil gelatinase-associated lipocalin/creatinine ratio and hematoxylin and eosin staining revealed tubular damage in MA10-infected murine kidneys, indicating kidney injury in the murine COVID-19 model. Interferon (IFN)-γ and interleukin-6 upregulation in the sera of MA10-infected mice, along with the absence of MA10 in the kidneys, implied that the kidneys were affected by the MA10 infection-induced cytokine storm rather than by direct MA10 infection of the kidneys. RNA-sequencing analysis revealed that antiviral genes, such as the IFN/Janus kinase (JAK) pathway, were upregulated in MA10-infected kidneys. Upon administration of the JAK inhibitor baricitinib on days 1-3 after MA10 infection, an antiviral pathway was suppressed, and MA10 was detected more frequently in the kidneys. Notably, JAK inhibition upregulated the hypoxia response and exaggerated kidney injury. These results suggest that endogenous antiviral activity protects against SARS-CoV-2-induced kidney injury in the early phase of infection, providing valuable insights into the pathogenesis of COVID-19-associated nephropathy.NEW & NOTEWORTHY Patients frequently present with acute kidney injury or abnormal urinary findings after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Here, we investigated how the kidneys respond during SARS-CoV-2 infection using a murine coronavirus disease 2019 (COVID-19) model and showed that Janus kinase-mediated endogenous antiviral activity protects against kidney injury in the early phase of SARS-CoV-2 infection. These findings provide valuable insights into the renal pathophysiology of COVID-19.


Subject(s)
COVID-19 , Janus Kinase Inhibitors , Purines , Pyrazoles , SARS-CoV-2 , Sulfonamides , Animals , COVID-19/complications , Janus Kinase Inhibitors/pharmacology , Janus Kinase Inhibitors/therapeutic use , Sulfonamides/pharmacology , Mice , Purines/pharmacology , Pyrazoles/pharmacology , Disease Models, Animal , Acute Kidney Injury/virology , Acute Kidney Injury/etiology , Acute Kidney Injury/metabolism , Azetidines/pharmacology , Azetidines/therapeutic use , Janus Kinases/metabolism , Janus Kinases/antagonists & inhibitors , Kidney/pathology , Kidney/virology , Kidney/metabolism , Kidney/drug effects , COVID-19 Drug Treatment , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Male , Mice, Inbred C57BL
10.
Molecules ; 29(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38675621

ABSTRACT

Allogeneic hematopoietic cell transplantation (allo-HCT) is a highly effective, well-established treatment for patients with various hematologic malignancies and non-malignant diseases. The therapeutic benefits of allo-HCT are mediated by alloreactive T cells in donor grafts. However, there is a significant risk of graft-versus-host disease (GvHD), in which the donor T cells recognize recipient cells as foreign and attack healthy organs in addition to malignancies. We previously demonstrated that targeting JAK1/JAK2, mediators of interferon-gamma receptor (IFNGR) and IL-6 receptor signaling, in donor T cells using baricitinib and ruxolitinib results in a significant reduction in GvHD after allo-HCT. Furthermore, we showed that balanced inhibition of JAK1/JAK2 while sparing JAK3 is important for the optimal prevention of GvHD. Thus, we have generated novel JAK1/JAK2 inhibitors, termed WU derivatives, by modifying baricitinib. Our results show that WU derivatives have the potential to mitigate GvHD by upregulating regulatory T cells and immune reconstitution while reducing the frequencies of antigen-presenting cells (APCs) and CD80 expression on these APCs in our preclinical mouse model of allo-HCT. In addition, WU derivatives effectively downregulated CXCR3 and T-bet in primary murine T cells. In summary, we have generated novel JAK inhibitors that could serve as alternatives to baricitinib or ruxolitinib.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Pyrazoles , Transplantation, Homologous , Animals , Mice , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/drug effects , Antigen-Presenting Cells/metabolism , Azetidines/pharmacology , Disease Models, Animal , Graft vs Host Disease/prevention & control , Graft vs Host Disease/drug therapy , Hematopoietic Stem Cell Transplantation/adverse effects , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 1/metabolism , Janus Kinase 2/metabolism , Janus Kinase 2/antagonists & inhibitors , Janus Kinase Inhibitors/pharmacology , Mice, Inbred C57BL , Purines/pharmacology , Pyrazoles/pharmacology , Sulfonamides/pharmacology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects
11.
Int J Pharm ; 657: 124127, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38621611

ABSTRACT

Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening clinical syndrome characterized by a positive feedback loop between cytokine storm and macrophages and lymphocytes overactivation, which could serve as a valid therapeutic target for HLH treatment. In this study, the clinically extensively used JAK1/2 inhibitor ruxolitinib was encapsulated into macrophage membrane-coated nanoparticles (M@NP-R) with high drug-loading efficiency for targeted HLH treatment. In vitro and in vivo studies demonstrated that M@NP-R not only efficiently adsorbed extracellular proinflammation cytokines, like IFN-γ and IL-6 to alleviate the cytokine storm, but also effectively dampened macrophage activation and proliferation by intracellular JAK/STAT signaling pathway inhibition. M@NP-R treatment significantly ameliorated the clinical and laboratory manifestations of HLH in mouse models, including trilineage cytopenia, hypercytokinemia, organomegaly, hepatorenal dysfunction, and tissue inflammation. Importantly, M@NP-R significantly enhanced the survival of the lethal HLH mice. Altogether, M@NP-R successfully blocked the positive feedback loop between the cytokine storm and macrophage overactivation by depleting extracellular inflammatory cytokines and inhibiting the intracellular JAK/STAT signaling pathway, both of which worked synergistically in HLH treatment. As ruxolitinib has already been extensively used in clinics with favorable safety, and M@NP is biodegradable and highly biocompatible, M@NP-R has good prospects for clinical translation.


Subject(s)
Cytokine Release Syndrome , Cytokines , Lymphohistiocytosis, Hemophagocytic , Macrophages , Nanoparticles , Nitriles , Pyrazoles , Pyrimidines , Animals , Lymphohistiocytosis, Hemophagocytic/drug therapy , Pyrazoles/administration & dosage , Pyrazoles/pharmacology , Pyrimidines/administration & dosage , Pyrimidines/pharmacology , Mice , Cytokines/metabolism , Cytokine Release Syndrome/drug therapy , Macrophages/drug effects , Macrophage Activation/drug effects , Mice, Inbred C57BL , Signal Transduction/drug effects , RAW 264.7 Cells , Disease Models, Animal , Male , Janus Kinase Inhibitors/pharmacology , Janus Kinase Inhibitors/administration & dosage , Humans
12.
J Cardiovasc Pharmacol Ther ; 29: 10742484241248046, 2024.
Article in English | MEDLINE | ID: mdl-38656132

ABSTRACT

Atherosclerosis is now widely considered to be a chronic inflammatory disease, with increasing evidence suggesting that lipid alone is not the main factor contributing to its development. Rather, atherosclerotic plaques contain a significant amount of inflammatory cells, characterized by the accumulation of monocytes and lymphocytes on the vessel wall. This suggests that inflammation may play a crucial role in the occurrence and progression of atherosclerosis. As research deepens, other pathological factors have also been found to influence the development of the disease. The Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway is a recently discovered target of inflammation that has gained attention in recent years. Numerous studies have provided evidence for the causal role of this pathway in atherosclerosis, and its downstream signaling factors play a significant role in this process. This brief review aims to explore the crucial role of the JAK/STAT pathway and its representative downstream signaling factors in the development of atherosclerosis. It provides a new theoretical basis for clinically affecting the development of atherosclerosis by interfering with the JAK/STAT signaling pathway.


Subject(s)
Atherosclerosis , Janus Kinases , STAT Transcription Factors , Signal Transduction , Humans , Atherosclerosis/metabolism , Atherosclerosis/drug therapy , STAT Transcription Factors/metabolism , Janus Kinases/metabolism , Animals , Janus Kinase Inhibitors/therapeutic use , Janus Kinase Inhibitors/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Inflammation Mediators/metabolism
13.
Phys Chem Chem Phys ; 26(17): 13420-13431, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38647171

ABSTRACT

Autoimmune inflammatory diseases, such as rheumatoid arthritis (RA) and ulcerative colitis, are associated with an uncontrolled production of cytokines leading to the pronounced inflammatory response of these disorders. Their therapy is currently focused on the inhibition of cytokine receptors, such as the Janus kinase (JAK) protein family. Tofacitinib and peficitinib are JAK inhibitors that have been recently approved to treat rheumatoid arthritis. In this study, an in-depth analysis was carried out through quantum biochemistry to understand the interactions involved in the complexes formed by JAK1 and tofacitinib or peficitinib. Computational analyses provided new insights into the binding mechanisms between tofacitinib or peficitinib and JAK1. The essential amino acid residues that support the complex are also identified and reported. Additionally, we report new interactions, such as van der Waals; hydrogen bonds; and alkyl, pi-alkyl, and pi-sulfur forces, that stabilize the complexes. The computational results revealed that peficitinib presents a similar affinity to JAK1 compared to tofacitinib based on their interaction energies.


Subject(s)
Adamantane/analogs & derivatives , Janus Kinase 1 , Niacinamide , Niacinamide/analogs & derivatives , Piperidines , Pyrimidines , Pyrimidines/chemistry , Pyrimidines/pharmacology , Piperidines/chemistry , Piperidines/pharmacology , Piperidines/therapeutic use , Niacinamide/chemistry , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 1/metabolism , Janus Kinase 1/chemistry , Humans , Quantum Theory , Autoimmune Diseases/drug therapy , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Hydrogen Bonding , Janus Kinase Inhibitors/chemistry , Janus Kinase Inhibitors/therapeutic use , Janus Kinase Inhibitors/pharmacology , Adamantane/chemistry , Pyrroles/chemistry , Pyrroles/pharmacology , Molecular Docking Simulation
14.
Eur Rev Med Pharmacol Sci ; 28(5): 1864-1872, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38497869

ABSTRACT

Vasculitis is the inflammation of blood vessels caused by autoimmunity and/or autoinflammation, and its etiology and pathogenesis remain largely unknown. The Janus kinase (JAK) and Signal transduction Transcription Activator (STAT) signal transduction pathways are a group of molecules involved in the major pathways by which many cytokines exert and integrate their functions, and their dysregulation has been implicated in the pathogenesis of a variety of autoimmune diseases. However, current data supporting the role of the JAK/STAT pathway in the development of vasculitis is limited. In terms of treatment, glucocorticoids and immunosuppressants have been the standard therapy. However, because of the huge burden of treatment side effects, people have long waited for new treatment options. JAK inhibitors reduce the production of multiple cytokines and inhibit inflammation by targeting the JAK/STAT pathway, and have the advantage of rapidly acting in oral formulations, reducing glucocorticoid dependence and associated adverse events, especially in refractory cases. Therefore, JAK inhibitors are expected to be a promising drug for the treatment of vasculitis.


Subject(s)
Autoimmune Diseases , Janus Kinase Inhibitors , Vasculitis , Humans , Janus Kinases , Janus Kinase Inhibitors/pharmacology , Janus Kinase Inhibitors/therapeutic use , STAT Transcription Factors , Signal Transduction , Vasculitis/drug therapy , Inflammation/drug therapy , Cytokines , Glucocorticoids/therapeutic use , Transcription Factors
15.
Cell Mol Life Sci ; 81(1): 152, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528207

ABSTRACT

Monocyte-derived macrophages play a key pathogenic role in inflammatory diseases. In the case of rheumatoid arthritis (RA), the presence of specific synovial tissue-infiltrating macrophage subsets is associated with either active disease or inflammation resolution. JAK inhibitors (JAKi) are the first targeted synthetic disease-modifying antirheumatic drugs (tsDMARD) approved for treatment of RA with comparable efficacy to biologics. However, the effects of JAKi on macrophage specification and differentiation are currently unknown. We have analyzed the transcriptional and functional effects of JAKi on human peripheral blood monocyte subsets from RA patients and on the differentiation of monocyte-derived macrophages promoted by granulocyte-macrophage colony-stimulating factor (GM-CSF), a factor that drives the development and pathogenesis of RA. We now report that JAKi Upadacitinib restores the balance of peripheral blood monocyte subsets in RA patients and skewed macrophages towards the acquisition of an anti-inflammatory transcriptional and functional profile in a dose-dependent manner. Upadacitinib-treated macrophages showed a strong positive enrichment of the genes that define synovial macrophages associated to homeostasis/inflammation resolution. Specifically, Upadacitinib-treated macrophages exhibited significantly elevated expression of MAFB and MAFB-regulated genes, elevated inhibitory phosphorylation of GSK3ß, and higher phagocytic activity and showed an anti-inflammatory cytokine profile upon activation by pathogenic stimuli. These outcomes were also shared by macrophages exposed to other JAKi (baricitinib, tofacitinib), but not in the presence of the TYK2 inhibitor deucravacitinib. As a whole, our results indicate that JAKi promote macrophage re-programming towards the acquisition of a more anti-inflammatory/pro-resolution profile, an effect that correlates with the ability of JAKi to enhance MAFB expression.


Subject(s)
Arthritis, Rheumatoid , Janus Kinase Inhibitors , Humans , Janus Kinase Inhibitors/pharmacology , Janus Kinase Inhibitors/metabolism , Janus Kinase Inhibitors/therapeutic use , Macrophages/metabolism , Arthritis, Rheumatoid/pathology , Inflammation/drug therapy , Inflammation/metabolism , Anti-Inflammatory Agents/metabolism , MafB Transcription Factor/genetics , MafB Transcription Factor/metabolism
16.
Antimicrob Agents Chemother ; 68(4): e0135023, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38470034

ABSTRACT

Influenza remains a significant threat to public health. In severe cases, excessive inflammation can lead to severe pneumonia or acute respiratory distress syndrome, contributing to patient morbidity and mortality. While antivirals can be effective if administered early, current anti-inflammatory drugs have limited success in treating severe cases. Therefore, discovering new anti-inflammatory agents to inhibit influenza-related inflammatory diseases is crucial. Herein, we screened a drug library with known targets using a human monocyte U937 infected with the influenza virus to identify novel anti-inflammatory agents. We also evaluated the anti-inflammatory effects of the hit compounds in an influenza mouse model. Our research revealed that JAK inhibitors exhibited a higher hit rate and more potent inhibition effect than inhibitors targeting other drug targets in vitro. Of the 22 JAK inhibitors tested, 15 exhibited robust anti-inflammatory activity against influenza virus infection in vitro. Subsequently, we evaluated the efficacy of 10 JAK inhibitors using an influenza mouse model and observed that seven provided protection ranging from 40% to 70% against lethal influenza virus infection. We selected oclacitinib as a representative compound for an extensive study to further investigate the in vivo therapeutic potential of JAK inhibitors for severe influenza-associated inflammation. Our results revealed that oclacitinib effectively suppressed neutrophil and macrophage infiltration, reduced pro-inflammatory cytokine production, and ultimately mitigated lung injury in mice infected with lethal influenza virus without impacting viral titer. These findings suggest that JAK inhibitors can modulate immune responses to influenza virus infection and may serve as potential treatments for influenza.IMPORTANCEAntivirals exhibit limited efficacy in treating severe influenza when not administered promptly during the infection. Current steroidal and nonsteroidal anti-inflammatory drugs demonstrate restricted effectiveness against severe influenza or are associated with significant side effects. Therefore, there is an urgent need for novel anti-inflammatory agents that possess high potency and minimal adverse reactions. In this study, 15 JAK inhibitors were identified through a screening process based on their anti-inflammatory activity against influenza virus infection in vitro. Remarkably, 7 of the 10 selected inhibitors exhibited protective effects against lethal influenza virus infection in mice, thereby highlighting the potential therapeutic value of JAK inhibitors for treating influenza.


Subject(s)
Communicable Diseases , Influenza, Human , Janus Kinase Inhibitors , Orthomyxoviridae Infections , Orthomyxoviridae , Pyrimidines , Sulfonamides , Humans , Animals , Mice , Influenza, Human/drug therapy , Janus Kinase Inhibitors/pharmacology , Janus Kinase Inhibitors/therapeutic use , Cytokines , Orthomyxoviridae Infections/drug therapy , Inflammation/drug therapy , Communicable Diseases/drug therapy , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Disease Models, Animal , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , Lung
17.
Immunol Rev ; 322(1): 311-328, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38306168

ABSTRACT

Inborn errors of immunity (IEIs) encompass a diverse spectrum of genetic disorders that disrupt the intricate mechanisms of the immune system, leading to a variety of clinical manifestations. Traditionally associated with an increased susceptibility to recurrent infections, IEIs have unveiled a broader clinical landscape, encompassing immune dysregulation disorders characterized by autoimmunity, severe allergy, lymphoproliferation, and even malignancy. This review delves into the intricate interplay between IEIs and the JAK-STAT signaling pathway, a critical regulator of immune homeostasis. Mutations within this pathway can lead to a wide array of clinical presentations, even within the same gene. This heterogeneity poses a significant challenge, necessitating individually tailored therapeutic approaches to effectively manage the diverse manifestations of these disorders. Additionally, JAK-STAT pathway defects can lead to simultaneous susceptibility to both infection and immune dysregulation. JAK inhibitors, with their ability to suppress JAK-STAT signaling, have emerged as powerful tools in controlling immune dysregulation. However, questions remain regarding the optimal selection and dosing regimens for each specific condition. Hematopoietic stem cell transplantation (HSCT) holds promise as a curative therapy for many JAK-STAT pathway disorders, but this procedure carries significant risks. The use of JAK inhibitors as a bridge to HSCT has been proposed as a potential strategy to mitigate these risks.


Subject(s)
Immune System Diseases , Janus Kinase Inhibitors , Humans , Signal Transduction , Janus Kinase Inhibitors/therapeutic use , Janus Kinase Inhibitors/pharmacology , Janus Kinases/metabolism , STAT Transcription Factors/metabolism
18.
Rev Med Suisse ; 20(859): 241-246, 2024 Jan 31.
Article in French | MEDLINE | ID: mdl-38299954

ABSTRACT

Janus kinase inhibitors (JAKi) are small molecules which prevent the phosphorylation of JAKs, thereby blocking the intracellular phosphorylation cascade required for the transcription of several cytokines. In addition to approved indications that have been extensively studied, including atopic dermatitis, alopecia areata, vitiligo and psoriasis, JAKi are also proposed off-label, included topically, in several dermatological conditions where standard treatments are often disappointing, such as hidradenitis suppurativa (HS), extensive morphea, cutaneous sarcoidosis and lichen planus. On the other hand, the wide mechanism of action on cytokine blockade implies a safety profile that requires a case-by-case assessment of the risk/benefit ratio before their introduction.


Les inhibiteurs de Janus kinases (JAKi) sont de petites molécules empêchant la phosphorylation des JAK et bloquant ainsi la cascade de phosphorylation intracellulaire nécessaire à la transcription de plusieurs cytokines. Au-delà des indications approuvées ayant fait sujets de larges études, dont la dermatite atopique, la pelade, le vitiligo et le psoriasis, les JAKi sont aussi proposés off-label y compris en formulation topique dans plusieurs pathologies dermatologiques où les traitements habituellement utilisés sont souvent décevants : maladie de Verneuil, morphées étendues, sarcoïdose cutanée, lichen plan. En revanche, le mécanisme d'action assez large sur le blocage cytokinique implique un profil de sécurité nécessitant une évaluation cas pour cas du ratio risques/bénéfices avant leur introduction.


Subject(s)
Alopecia Areata , Dermatitis, Atopic , Dermatology , Janus Kinase Inhibitors , Humans , Janus Kinase Inhibitors/pharmacology , Janus Kinase Inhibitors/therapeutic use , Alopecia Areata/drug therapy , Cytokines
19.
Ann Rheum Dis ; 83(6): 787-798, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38408849

ABSTRACT

OBJECTIVES: To study the molecular pathogenesis of PAPA (pyogenic arthritis, pyoderma gangrenosum and acne) syndrome, a debilitating hereditary autoinflammatory disease caused by dominant mutation in PSTPIP1. METHODS: Gene knock-out and knock-in mice were generated to develop an animal model. THP1 and retrovirally transduced U937 human myeloid leukaemia cell lines, peripheral blood mononuclear cells, small interfering RNA (siRNA) knock-down, site-directed mutagenesis, cytokine immunoassays, coimmunoprecipitation and immunoblotting were used to study inflammasome activation. Cytokine levels in the skin were evaluated by immunohistochemistry. Responsiveness to Janus kinase (JAK) inhibitors was evaluated ex vivo with peripheral blood mononuclear cells and in vivo in five treatment-refractory PAPA patients. RESULTS: The knock-in mouse model of PAPA did not recapitulate the human disease. In a human myeloid cell line model, PAPA-associated PSTPIP1 mutations activated the pyrin inflammasome, but not the NLRP3, NLRC4 or AIM2 inflammasomes. Pyrin inflammasome activation was independent of the canonical pathway of pyrin serine dephosphorylation and was blocked by the p.W232A PSTPIP1 mutation, which disrupts pyrin-PSTPIP1 interaction. IFN-γ priming of monocytes from PAPA patients led to IL-18 release in a pyrin-dependent manner. IFN-γ was abundant in the inflamed dermis of PAPA patients, but not patients with idiopathic pyoderma gangrenosum. Ex vivo JAK inhibitor treatment attenuated IFN-γ-mediated pyrin induction and IL-18 release. In 5/5 PAPA patients, the addition of JAK inhibitor therapy to IL-1 inhibition was associated with clinical improvement. CONCLUSION: PAPA-associated PSTPIP1 mutations trigger a pyrin-IL-18-IFN-γ positive feedback loop that drives PAPA disease activity and is a target for JAK inhibition.


Subject(s)
Acne Vulgaris , Arthritis, Infectious , Disease Models, Animal , Inflammasomes , Interferon-gamma , Pyoderma Gangrenosum , Pyoderma Gangrenosum/genetics , Humans , Animals , Mice , Acne Vulgaris/immunology , Inflammasomes/metabolism , Inflammasomes/immunology , Interferon-gamma/metabolism , Janus Kinase Inhibitors/therapeutic use , Janus Kinase Inhibitors/pharmacology , Mice, Knockout , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Feedback, Physiological , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Pyrin/genetics , Mutation , Phosphoproteins/metabolism , Phosphoproteins/genetics , Gene Knock-In Techniques , Interleukin-18/metabolism , THP-1 Cells
20.
Adv Healthc Mater ; 13(12): e2303256, 2024 May.
Article in English | MEDLINE | ID: mdl-38207170

ABSTRACT

Janus kinase (JAK) inhibitors are approved for many dermatologic disorders, but their use is limited by systemic toxicities including serious cardiovascular events and malignancy. To overcome these limitations, injectable hydrogels are engineered for the local and sustained delivery of baricitinib, a representative JAK inhibitor. Hydrogels are formed via disulfide crosslinking of thiolated hyaluronic acid macromers. Dynamic thioimidate bonds are introduced between the thiolated hyaluronic acid and nitrile-containing baricitinib for drug tethering, which is confirmed with 1H and 13C nuclear magnetic resonance (NMR). Release of baricitinib is tunable over six weeks in vitro and active in inhibiting JAK signaling in a cell line containing a luciferase reporter reflecting interferon signaling. For in vivo activity, baricitinib hydrogels or controls are injected intradermally into an imiquimod-induced mouse model of psoriasis. Imiquimod increases epidermal thickness in mice, which is unaffected when treated with baricitinib or hydrogel alone. Treatment with baricitinib hydrogels suppresses the increased epidermal thickness in mice treated with imiquimod, suggesting that the sustained and local release of baricitinib is important for a therapeutic outcome. This study is the first to utilize a thioimidate chemistry to deliver JAK inhibitors to the skin through injectable hydrogels, which has translational potential for treating inflammatory disorders.


Subject(s)
Azetidines , Hydrogels , Purines , Pyrazoles , Skin , Sulfonamides , Animals , Hydrogels/chemistry , Purines/chemistry , Purines/pharmacology , Sulfonamides/chemistry , Sulfonamides/pharmacology , Sulfonamides/administration & dosage , Mice , Pyrazoles/chemistry , Pyrazoles/pharmacology , Azetidines/chemistry , Azetidines/pharmacology , Skin/drug effects , Skin/metabolism , Skin/pathology , Humans , Psoriasis/drug therapy , Psoriasis/pathology , Psoriasis/chemically induced , Imiquimod/chemistry , Imiquimod/pharmacology , Janus Kinase Inhibitors/chemistry , Janus Kinase Inhibitors/pharmacology , Female
SELECTION OF CITATIONS
SEARCH DETAIL
...