Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 124
Filter
1.
Genes (Basel) ; 15(5)2024 May 05.
Article in English | MEDLINE | ID: mdl-38790216

ABSTRACT

The R2R3-MYB gene family, encoding plant transcriptional regulators, participates in many metabolic pathways of plant physiology and development, including flavonoid metabolism and anthocyanin synthesis. This study proceeded as follows: the JrR2R3-MYB gene family was analyzed genome-wide, and the family members were identified and characterized using the high-quality walnut reference genome "Chandler 2.0". All 204 JrR2R3-MYBs were established and categorized into 30 subgroups via phylogenetic analysis. JrR2R3-MYBs were unevenly distributed over 16 chromosomes. Most JrR2R3-MYBs had similar structures and conservative motifs. The cis-acting elements exhibit multiple functions of JrR2R3-MYBs such as light response, metabolite response, and stress response. We found that the expansion of JrR2R3-MYBs was mainly caused by WGD or segmental duplication events. Ka/Ks analysis indicated that these genes were in a state of negative purifying selection. Transcriptome results suggested that JrR2R3-MYBs were widely entangled in the process of walnut organ development and differentially expressed in different colored varieties of walnuts. Subsequently, we identified 17 differentially expressed JrR2R3-MYBs, 9 of which may regulate anthocyanin biosynthesis based on the results of a phylogenetic analysis. These genes were present in greater expression levels in 'Zijing' leaves than in 'Lvling' leaves, as revealed by the results of qRT-PCR experiments. These results contributed to the elucidation of the functions of JrR2R3-MYBs in walnut coloration. Collectively, this work provides a foundation for exploring the functional characteristics of the JrR2R3-MYBs in walnuts and improving the nutritional value and appearance quality of walnuts.


Subject(s)
Anthocyanins , Gene Expression Regulation, Plant , Juglans , Multigene Family , Phylogeny , Plant Proteins , Transcription Factors , Juglans/genetics , Juglans/metabolism , Juglans/growth & development , Anthocyanins/biosynthesis , Anthocyanins/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome/genetics , Genome, Plant , Gene Expression Profiling/methods , Genome-Wide Association Study
2.
Int J Mol Sci ; 25(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732208

ABSTRACT

The current study investigated the impact of cold stress on the morphological, physiological, and phytochemical properties of Juglans regia L. (J. regia) using in vitro microclone cultures. The study revealed significant stress-induced changes in the production of secondary antioxidant metabolites. According to gas chromatography-mass spectrometry (GC-MS) analyses, the stress conditions profoundly altered the metabolism of J. regia microclones. Although the overall spectrum of metabolites was reduced, the production of key secondary antioxidant metabolites significantly increased. Notably, there was a sevenfold (7×) increase in juglone concentration. These findings are crucial for advancing walnut metabolomics and enhancing our understanding of plant responses to abiotic stress factors. Additionally, study results aid in identifying the role of individual metabolites in these processes, which is essential for developing strategies to improve plant resilience and tolerance to adverse conditions.


Subject(s)
Antioxidants , Cold-Shock Response , Juglans , Phytochemicals , Juglans/metabolism , Juglans/chemistry , Phytochemicals/metabolism , Antioxidants/metabolism , Secondary Metabolism , Metabolomics/methods , Gas Chromatography-Mass Spectrometry , Metabolome , Naphthoquinones
3.
Plant Physiol Biochem ; 210: 108548, 2024 May.
Article in English | MEDLINE | ID: mdl-38552263

ABSTRACT

Salt stress is an important abiotic stress that seriously affects plant growth. In order to research the salt tolerance of walnut rootstocks so as to provide scientific basis for screening salt-tolerant walnut rootstocks, two kinds of black walnut seedlings, Juglans microcarpa L. (JM) and Juglans nigra L. (JN), were treated under salt stress with different concentrations of NaCl (0, 50, 100, and 200 mM) and the growth situation of seedlings were observed. The physiological indexes of JM and JN seedlings were also measured in different days after treatment. Our study showed salt stress inhibited seedlings growth and limited biomass accumulation. Walnut mainly increased osmotic adjustment ability by accumulation Pro and SS. Furthermore, with the duration of treatment time increased, SOD and APX activities decreased, TPC and TFC contents increased. Walnut accumulated Na mostly in roots and transported more K and Ca to aboveground parts. The growth and physiological response performance differed between JM and JN, specifically, the differences occurred in the ability to absorb minerals, regulate osmotic stress, and scavenge ROS. Salt tolerance of JM and JN was assessed by principal component analysis (PCA) and resulted in JN > JM. In conclusion, our results indicated that JN has higher salt tolerance than JM, and JN might be used as a potential germplasm resource for the genetic breeding of walnuts.


Subject(s)
Juglans , Salt Tolerance , Seedlings , Juglans/physiology , Juglans/metabolism , Juglans/drug effects , Seedlings/drug effects , Seedlings/physiology , Seedlings/metabolism , Plant Roots/metabolism , Plant Roots/drug effects , Plant Roots/physiology , Superoxide Dismutase/metabolism , Sodium Chloride/pharmacology
4.
Food Chem ; 447: 138947, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38492294

ABSTRACT

Walnut dreg (WD) active peptides are an important source of dietary antioxidants; however, the products of conventional hydrolysis have limited industrial output owing to poor flavour and low bioactivity. To this end, in this study, we aimed to employ bvLAP, an aminopeptidase previously identified in our research, as well as commercially available Alcalase for bi-enzyme digestion. The flavour, antioxidant activity, and structures of products resulting from various digestion methods were compared. The results showed that the bi-enzyme digestion products had enhanced antioxidant activity, increased ß-sheet content, and reduced bitterness intensity from 9.65 to 6.93. Moreover, bi-enzyme hydrolysates showed a more diverse amino acid composition containing 1640 peptides with distinct sequences. These results demonstrate that bi-enzyme hydrolysis could be a potential process for converting WD into functional food ingredients. Additionally, our results provide new concepts that can be applied in waste processing and high-value utilisation of WD.


Subject(s)
Antioxidants , Juglans , Hydrolysis , Antioxidants/chemistry , Juglans/metabolism , Protein Hydrolysates/chemistry , Peptides/chemistry , Subtilisins/metabolism
5.
Food Funct ; 15(4): 2295-2313, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38323487

ABSTRACT

NLRP3 inflammasome activation plays a key role in the development of diabetes-induced cognitive impairment. However, strategies to inhibit NLRP3 inflammasome activation remain elusive. Herein, we evaluated the impact of a walnut-derived peptide, TWLPLPR (TW-7), on cognitive impairment in high-fat diet/streptozotocin-induced type 2 diabetes mellitus (T2DM) mice and explored its underlying mechanisms in high glucose-induced HT-22 cells. In the Morris water maze test, TW-7 alleviated cognitive deficits in mice; this was confirmed at the level of synaptic structure and dendritic spine density in the mouse hippocampus using transmission electron microscopy and Golgi staining. TW-7 increased the expression of synaptic plasticity-related proteins and suppressed the NEK7/NLRP3 inflammatory pathway, as determined by western blotting and immunofluorescence analysis. The mechanism of action of TW-7 was verified in an HT-22 cell model of high glucose-induced insulin resistance. Collectively, TW-7 could regulate T2DM neuroinflammation and synaptic function-induced cognitive impairment by inhibiting NLRP3 inflammasome activation and improving synaptic plasticity.


Subject(s)
Cognitive Dysfunction , Diabetes Mellitus, Type 2 , Juglans , Mice , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Diabetes Mellitus, Type 2/drug therapy , Juglans/metabolism , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Glucose
6.
Plant Foods Hum Nutr ; 79(1): 48-58, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37962805

ABSTRACT

Angiotensin I-converting enzyme (ACE)-inhibiting peptides were isolated from walnut protein isolate (WPI) using ultrasound-assisted extraction. This study aimed to assess the impact of ultrasonic pretreatment on the physicochemical properties of WPI. The optimal extraction conditions for WPI were determined as a 15-min ultrasonic treatment at 400 W. Subsequently, the hydrolysate exhibiting the highest in vitro ACE-inhibiting activity underwent further processing and separation steps, including ultrafiltration, ion exchange chromatography, liquid chromatography-tandem mass spectrometry, ADMET screening, and molecular docking. As a result of this comprehensive process, two previously unidentified ACE-inhibiting peptides, namely Tyr-Ile-Gln (YIQ) and Ile-Tyr-Gln (IYQ), were identified. In addition, a novel peptide, Ile-Lys-Gln (IKQ), was synthesized, demonstrating superior ACE-inhibiting activity and temperature stability. In silico analysis estimated an in vivo utilization rate of 21.7% for IKQ. These peptides were observed to inhibit ACE through an anti-competitive mechanism, with molecular docking simulations suggesting an interaction mechanism involving hydrogen bonding. Notably, both IYQ and IKQ peptides exhibited no discernible toxicity to HUVECs cells and promoted nitric oxide (NO) generation. These findings underscore the potential of ultrasonicated WPI in the separation of ACE-inhibiting peptides and their utility in the development of novel ACE inhibitors for functional food applications.


Subject(s)
Juglans , Juglans/chemistry , Juglans/metabolism , Peptidyl-Dipeptidase A/metabolism , Molecular Docking Simulation , Peptides/pharmacology , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Protein Hydrolysates/chemistry
7.
J Microbiol Biotechnol ; 34(3): 634-643, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38111312

ABSTRACT

Juglans mandshurica Maxim. walnut (JMW) is well-known for the treatment of dermatosis, cancer, gastritis, diarrhea, and leukorrhea in Korea. However, the molecular mechanism underlying its anti-obesity activity remains unknown. In the current study, we aimed to determine whether JMW can influence adipogenesis in 3T3-L1 preadipocytes and high-fat diet rats and determine the antioxidant activity. The 20% ethanol extract of JMW (JMWE) had a total polyphenol content of 133.33 ± 2.60 mg GAE/g. Considering the antioxidant capacity, the ABTS and DPPH values of 200 µg/ml of JMWE were 95.69 ± 0.94 and 79.38 ± 1.55%, respectively. To assess the anti-obesity activity of JMWE, we analyzed the cell viability, fat accumulation, and adipogenesis-related factors, including CCAAT-enhancer-binding protein alpha (C/EBPα), sterol regulatory element-binding protein-1c (SREBP1c), peroxisome proliferator-activated receptor-gamma (PPARγ), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC). We found that total lipid accumulation and triglyceride levels were reduced, and the fat accumulation rate decreased in a dose-dependent manner. Furthermore, JMWE suppressed adipogenesis-related factors C/EBPα, PPARγ, and SREBP1c, as well as FAS and ACC, both related to lipogenesis. Moreover, animal experiments revealed that JMWE could be employed to prevent and treat obesity-related diseases. Hence, JMWE could be developed as a healthy functional food and further explored as an anti-obesity drug.


Subject(s)
Anti-Obesity Agents , Juglans , Mice , Rats , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Juglans/metabolism , 3T3-L1 Cells , Diet, High-Fat/adverse effects , PPAR gamma/metabolism , Adipocytes , Obesity/drug therapy , Obesity/metabolism , Adipogenesis , Anti-Obesity Agents/chemistry , CCAAT-Enhancer-Binding Protein-alpha/metabolism , CCAAT-Enhancer-Binding Protein-alpha/pharmacology , CCAAT-Enhancer-Binding Protein-alpha/therapeutic use , Acetyl-CoA Carboxylase/metabolism , Plant Extracts/metabolism
8.
Nutrients ; 15(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38068724

ABSTRACT

The objective of this research was to explore the protective impact of walnut peptides (WP) against ethanol-induced acute gastric mucosal injury in mice and to investigate the underlying defense mechanisms. Sixty male BALB-c mice were divided into five groups, and they were orally administered distilled water, walnut peptides (200 and 400 mg/kg bw), and omeprazole (20 mg/kg bw) for 24 days. Acute gastric mucosal injury was then induced with 75% ethanol in all groups of mice except the blank control group. Walnut peptides had significant protective and restorative effects on tissue indices of ethanol-induced gastric mucosal damage, with potential gastric anti-ulcer effects. Walnut peptides significantly inhibited the excessive accumulation of alanine aminotransferase (ALT), aspartate transferase (AST), and malondialdehyde (MDA), while promoting the expression of reduced glutathione (GSH), total antioxidant capacity (T-AOC), glutathione disulfide (GSSG), and mouse epidermal growth factor (EGF). Furthermore, the Western blot analysis results revealed that walnut peptides significantly upregulated the expression of HO-1 and NQO1 proteins in the Nrf2 signaling pathway. The defensive impact of walnut peptides on the gastric mucosa may be achieved by mitigating the excessive generation of lipid peroxides and by boosting cellular antioxidant activity.


Subject(s)
Juglans , Stomach Ulcer , Mice , Male , Animals , Ethanol/pharmacology , Juglans/metabolism , Peptides/pharmacology , Peptides/metabolism , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/prevention & control , Gastric Mucosa , Glutathione/metabolism , Antioxidants/pharmacology
9.
Physiol Plant ; 175(5): e14002, 2023.
Article in English | MEDLINE | ID: mdl-37882294

ABSTRACT

The escalating global climate change significantly threatens plant growth, development, and production through salinity stress. Flavonoids, a crucial category of secondary metabolites, have been extensively studied for their role in modulating plant growth and development mechanisms in the face of biological and abiotic stress. The flavonol synthetase (FLS) gene plays a key role in the biosynthesis and accumulation of flavonoids. To investigate the correlation between salt tolerance and flavonol synthesis, JsFLS5 was overexpressed in the callus of Juglans sigillata cv. "Qianhe-7." This study shows that the upregulation of JsFLS5 significantly elevates the overall flavonoid content by modulating the expression of genes associated with flavonoid synthesis under salinity stress conditions. Additionally, the overexpressing callus exhibited enhanced resistance to salt stress compared to the wild-type callus, as evidenced by reduced levels of reactive oxygen species accumulation, electrolyte leakage, and malondialdehyde content in the overexpressing callus relative to the wild type (WT). Moreover, the overexpressing callus showed higher antioxidant enzyme activity and a more efficient ascorbic acid-glutathione cycle. Furthermore, the concentration of Na+ in the overexpressing callus was lower than WT, resulting in a decreased Na+ /K+ ratio. These findings suggest that JsFLS5 overexpression in calli effectively mitigates the oxidative damage induced by osmotic stress and reduces Na+ toxicity by enhancing flavonoid synthesis under salt stress conditions. Consequently, this study offers a novel perspective for comprehending the role of JsFLS5 in the response to abiotic stress in J. sigillata.


Subject(s)
Juglans , Salt Tolerance , Reactive Oxygen Species/metabolism , Salt Tolerance/genetics , Juglans/genetics , Juglans/metabolism , Plants, Genetically Modified/genetics , Antioxidants/metabolism , Stress, Physiological/genetics , Ions/metabolism , Sodium/metabolism , Flavonoids/metabolism , Flavonols/metabolism , Flavonols/pharmacology , Salinity , Gene Expression Regulation, Plant
10.
Int J Mol Sci ; 24(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37108407

ABSTRACT

AT-hook motif nuclear localization (AHL) proteins play essential roles in various plant biological processes. Yet, a comprehensive understanding of AHL transcription factors in walnut (Juglans regia L.) is missing. In this study, 37 AHL gene family members were first identified in the walnut genome. Based on the evolutionary analysis, JrAHL genes were grouped into two clades, and their expansion may occur due to segmental duplication. The stress-responsive nature and driving of developmental activities of JrAHL genes were revealed by cis-acting elements and transcriptomic data, respectively. Tissue-specific expression analysis showed that JrAHLs had a profound transcription in flower and shoot tip, JrAHL2 in particular. Subcellular localization showed that JrAHL2 is anchored to the nucleus. Overexpression of JrAHL2 in Arabidopsis adversely affected hypocotyl elongation and delayed flowering. Our study, for the first time, presented a detailed analysis of JrAHL genes in walnut and provided theoretical knowledge for future genetic breeding programs.


Subject(s)
Arabidopsis , Juglans , Juglans/genetics , Juglans/metabolism , Hypocotyl/genetics , Hypocotyl/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , AT-Hook Motifs/genetics , Plant Breeding , Flowers/genetics , Flowers/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Gene Expression Regulation, Plant
11.
J Chem Neuroanat ; 130: 102271, 2023 07.
Article in English | MEDLINE | ID: mdl-37019342

ABSTRACT

BACKGROUND: Neurodegenerative illnesses like Parkinson's and Alzheimer's are largely caused by the accumulation of aggregated proteins. Heat shock proteins (HSPs), which are molecular chaperons, have been linked with the modulation of ß-glucocerebrosidase (GCase) function encoded by GBA1 and Synucleinopathies. Herein, the chaperonic properties of African walnut ethanolic extract (WNE) in manganese-induced Parkinsonian neuropathology in the hippocampus was examined. METHODOLOGY: 48 adult male rats weighing 185 g ± 10 g were randomly assigned into 6 (A - F) groups (n = 8) and treated orally as follows: A-PBS (1 ml daily for 28 days), B-WNE (200 mg/kg daily for 28 days), C- WNE (400 mg/kg daily for 28 days), D-Mn (100 mg/kg daily for 28 days), E-Mn plus WNE (100 mg/kg Mn + 200 mg/kg WNE daily concomitantly for 28 days), F-Mn plus WNE (100 mg/kg Mn + 400 mg/kg WNE daily concomitantly for 28 days). RESULTS: Rats treated with WNE showed increased levels of HSP70 and HSP90 in comparison with the Mn-intoxicated group. GCase activity also increased significantly in animals treated with WNE. Our results further revealed the therapeutic tendencies of WNE against Mn toxicity by modulating oligomeric α-synuclein levels, redox activity, and glucose bioenergetics. Furthermore, immunohistochemical evaluation revealed reduced expression of neurofibrillary tangles, and reactive astrogliosis following WNE treatment. CONCLUSION: The ethanolic extract of African Walnut induced the activation of HSPs and increased the expression of GBA1 gene in the hippocampus. Activated heat shock proteins suppressed neurodegenerative changes due to Manganese toxicity. WNE was also shown to modulate neuroinflammatory, bioenergetics and neural redox balance in Parkinson-like neuropathology. This study was limited to the use of crude walnut extract and the evaluation of non-motor cascades of Parkinson's disease.


Subject(s)
Juglans , Parkinson Disease , Male , Rats , Animals , Parkinson Disease/metabolism , Juglans/metabolism , Glucosylceramidase/genetics , Glucosylceramidase/metabolism , Heat-Shock Proteins/metabolism , Manganese , alpha-Synuclein/metabolism , Hippocampus/metabolism , Plant Extracts/pharmacology
12.
Fish Shellfish Immunol ; 135: 108656, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36868534

ABSTRACT

The dietary effects of walnut leaf extract (WLE) on the growth, immunity, and resistance of Oreochromis niloticus to bacterial infection have been investigated. Five diets were prepared with various WLE doses of 0, 250, 500, 750, and 1000 mg/kg, termed as Con (control), WLE250, WLE500, WLE750, and WLE1000, respectively. Fish (11.67 ± 0.21 g) were fed these diets for 60 days and then challenged with Plesiomonas shigelloides. Before the challenge, it was observed that dietary WLE did not significantly affect the growth, blood proteins (globulin, albumin, and total protein), and liver function enzymes (ALT and AST) activities. The WLE250 group significantly increased serum SOD and CAT activities more than other groups. The serum immunological indices (lysozyme and myeloperoxidase activities) and hematological parameters (phagocytic activity %, phagocytic index, respiratory burst activity, and potential activity) were significantly increased in the WLE groups compared with the Con group. The expression of IgM heavy chain, IL-1ß, and IL-8 genes were significantly upregulated in all WLE-supplemented groups in comparison with the Con group. The fish survival rates (SR; %) post challenge in the Con, WLE250, WLE500, WLE750 and WLE1000 groups were 40.0%, 49.3%, 86.7%, 73.3%, and 70.7%, respectively. The Kaplan-Meier survivorship curves illustrated that the highest SR% was found in the WLE500 group (86.7%) amongst the other groups. Accordingly, we can suggest that feeding O. niloticus with a diet supplied with WLE at a dose rate of 500 mg/kg over 60 days could enrich haemato-immune responses and increase the fish survival against the challenge with P. shigelloides. These results recommend using WLE as a herbal dietary supplement to substitute antibiotic use in aquafeed.


Subject(s)
Cichlids , Fish Diseases , Juglans , Animals , Disease Resistance , Juglans/metabolism , Diet/veterinary , Dietary Supplements , Gene Expression , Plant Extracts/pharmacology , Plant Extracts/metabolism , Animal Feed/analysis
13.
J Sci Food Agric ; 103(10): 4908-4918, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-36929026

ABSTRACT

BACKGROUND: Native walnut protein is an alkali-soluble protein that seriously limits the application of walnut protein. The pH-shifting method could improve the solubility of walnut proteins and enable the encapsulation of active ingredients. The present study aimed to prepare water-soluble nanoparticles of curcumin using walnut protein and evaluate the process of walnut protein self-assembly, interaction between walnut protein and curcumin, encapsulation properties, and stability of nanoparticles. RESULTS: The solubility of native walnut protein was poor, but the solubility of walnut protein nanoparticles (WPNP) formed by walnut protein after pH-shifting significantly improved to 91.5 ± 1.2%. This is because, during the process of pH changing from 7 to 12 and back to 7, walnut protein first unfolded under alkaline conditions and then refolded under pH drive, finally forming an internal hydrophobic and external hydrophilic shell-core structures. The quenching type of walnut protein and curcumin was static quenching, and the quenching constant was 2.0 × 1014 mol-1 L-1 s-1 , indicating that the interaction between walnut protein and curcumin was non-covalent. Adding curcumin resulted in the formation of nanoparticles with small particle size compared with the no-load. The loading capacity of curcumin-loaded walnut protein nanoparticles (WPNP-C) was 222 mg g-1 walnut protein isolate. Under the same mass, the curcumin equivalent concentration in aqueous solution of WPNP-C was 17 000 times higher than that of the native curcumin. CONCLUSION: The solubility of the self-assembled WPNP significantly increased after pH-shifting treatment. The walnut protein carrier could improve the stability of the encapsulated curcumin. Therefore, walnut proteins could be used as water-soluble carriers for hydrophobic drugs. © 2023 Society of Chemical Industry.


Subject(s)
Curcumin , Juglans , Nanoparticles , Curcumin/chemistry , Drug Carriers/chemistry , Juglans/metabolism , Nanoparticles/chemistry , Water/chemistry , Particle Size , Solubility
14.
Food Chem ; 416: 135808, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-36893647

ABSTRACT

Walnut oil with very high proportion of polyunsaturated fatty acids exhibits many health beneficial effects. We hypothesized that the oil composition is led by a special pattern/mechanism for triacylglycerol (TAG) biosynthesis as well as accumulation in walnut kernel during embryo development. To test this hypothesis, shotgun lipidomics was performed for class-targeted lipid analysis (including TAG, phosphatidylcholine, phosphatidylethanolamine, phosphatidic acid, phosphatidylglycerol, phosphatidylinositol, and lysophosphatidylcholine species) in walnut kernels from three cultivar collected at three critical stages of embryo development. The results indicated that TAG synthesis in the kernel happened before 84 days after flowering (DAF) and was significantly enhanced between 84 and 98 DAF. Moreover, TAG profile was changing along with DAFs due to the increased composition of 18:1 FA in TAG pool. Moreover, lipidomics also demonstrated that the enhanced acyl editing was responsible for the flux of FA through phosphatidylcholine for eventual TAG synthesis. Therefore, TAG biosynthesis in walnut kernel was characterized directly from lipid metabolism.


Subject(s)
Juglans , Juglans/genetics , Juglans/metabolism , Lipidomics , Nuts/metabolism , Fatty Acids, Unsaturated/metabolism , Phosphatidylcholines/metabolism , Triglycerides/metabolism
15.
BMC Plant Biol ; 23(1): 80, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36740678

ABSTRACT

BACKGROUND: Late Embryogenesis Abundant (LEA) proteins are a class of proteins associated with plant stress resistance. Two Juglans species, Juglans regia and J. mandshurica, are both diploid (2n = 32), monoecious perennial economic tree species with high edible, pharmaceutical, and timber value. The identification, characterization, and expression patterns of LEA proteins in J. regia and its wild relative, J. mandshurica, would not only provide the genetic basis of this gene family, but it would also supply clues for further studies of the evolution and regulating mechanisms of LEA proteins in other tree species. RESULTS: In this study, we identified 25 and 20 members of the LEA gene family in Juglans regia and its wild relative, Juglans mandshurica, respectively. The results of phylogenetic analysis showed that the LEA members were divided into eight main subgroups. Predictions of their physicochemical properties showed the variable characteristics of LEA proteins, and the subcellular localization analysis indicated that most LEA proteins are localized in the nucleus. Chromosomal localization analysis and gene replication pattern prediction indicated that WGD is the predominant duplication mode of LEA genes. The results of the comparative analysis indicated a high level of collinearity between the two Juglans species. Analysis of cis-acting elements indicated that LEA genes had a relatively wide range of responses to abiotic stresses and phytohormonal processes, particularly in two phytohormones, methyl jasmonate and abscisic acid. Transcriptome profiling and qRT-PCR experiments showed that JrLEAs are commonly expressed in leaves, green husks, and male and female flowers, and most JmLEAs are more highly expressed in male flowers. We also hypothesized that JrLEAs are involved in the process of anthracnose resistance. Anthracnose-resistant varieties of JrLEAs presented relatively high expression levels at later stages. CONCLUSION: In this study, we provide a theoretical basis for the functional study of LEA genes in J. regia and J. mandshurica. Analysis of cis-acting elements and gene expression indicated that JrLEAs and JmLEAs play important roles in resistance to biotic stresses in these species.


Subject(s)
Juglans , Juglans/genetics , Juglans/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant , Gene Expression Profiling , Gene Expression Regulation, Plant
16.
J Agric Food Chem ; 71(8): 3751-3765, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36802594

ABSTRACT

Autophagy flux plays a significant protective role in type 2 diabetes mellitus (T2DM). However, the mechanisms by which autophagy mediates insulin resistance (IR) to ameliorate T2DM remain unclear. This study explored the hypoglycemic effects and mechanisms of walnut-derived peptides (fraction 3-10 kDa and LP5) in streptozotocin and high-fat-diet-induced T2DM mice. Findings revealed that walnut-derived peptides reduced the levels of blood glucose and FINS and ameliorated IR and dyslipidemia. They also increased SOD and GSH-PX activities and inhibited the secretion of TNF-α, IL-6, and IL-1ß. Additionally, they increased the levels of ATP, COX, SDH, and MMP of liver mitochondria. Western blotting indicated that walnut-derived peptides up-regulated LC3-II/LC3-I and Beclin-1 expression, while they down-regulated p62 expression, which may be associated with the activation of the AMPK/mTOR/ULK1 pathway. Finally, the AMPK activator (AICAR) and inhibitor (Compound C) were used to verify that LP5 could activate autophagy through the AMPK/mTOR/ULK1 pathway in IR HepG2 cells.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Hyperglycemia , Juglans , Animals , Mice , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Autophagy , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Hyperglycemia/drug therapy , Juglans/metabolism , Peptides/pharmacology , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Plant Proteins/pharmacology , Signal Transduction
17.
Food Funct ; 14(6): 2698-2709, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36847209

ABSTRACT

Accumulating evidence has confirmed the health benefits of walnut diets in maintaining brain function with age. Recent studies have indicated that walnut polyphenols (WP) and their active metabolites urolithins may play an important role in the health benefits of walnut diets. In the present study, we evaluated the protective effect of WP and urolithin A (UroA) on H2O2-induced damage in human neuroblastoma (SH-SY5Y) cells, and investigated its mechanisms in the cAMP-response element binding protein (CREB)-mediated signaling pathway, which is tightly involved in neurodegenerative and neurological diseases. The results demonstrated that both WP (50 and 100 µg mL-1) and UroA (5 and 10 µM) treatment significantly reversed the decrease of cell viability, the leakage of extracellular lactate dehydrogenase (LDH), the overload of intracellular calcium and cell apoptosis induced by H2O2 treatment. Moreover, WP and UroA treatment also relieved H2O2-induced oxidative stress including overproduction of intracellular reactive oxygen species (ROS) and reduced activities of superoxide dismutase (SOD) and catalase (CAT). Additionally, western blot analysis showed that WP and UroA treatment significantly increased the activity of cAMP-dependent protein kinase A (PKA) and the expression of pCREB (Ser133) and its downstream molecule brain-derived neurotrophic factor (BDNF), which were decreased by H2O2 treatment. Furthermore, pretreatment with the PKA inhibitor H89 abolished the protective effects of WP and UroA, indicating that up-regulation of the PKA/CREB/BDNF neurotrophic signaling pathway is required for their neuroprotective effects against oxidative stress. The current work provides new perspectives for understanding the beneficial effects of WP and UroA on brain function, which warrants further investigation.


Subject(s)
Juglans , Neuroblastoma , Humans , Juglans/metabolism , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Polyphenols/pharmacology , Hydrogen Peroxide/toxicity , Cyclic AMP Response Element-Binding Protein/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Signal Transduction , Oxidative Stress , Apoptosis , Cyclic AMP-Dependent Protein Kinases/metabolism , Cell Line, Tumor
18.
Crit Rev Food Sci Nutr ; 63(26): 8032-8047, 2023.
Article in English | MEDLINE | ID: mdl-35361034

ABSTRACT

Walnut-origin by-products obtained from walnut oil extraction industry are high in proteins with various physiological functions and pharmacological properties and an extensive potential for usage in producing bioactive peptides. This review presents the current research status of bioactive peptides derived from walnut by-products, including preparation, separation, purification, identification, bioactivities, and bioavailability. A plethora of walnut peptides with multiple biological activities, including antioxidative, antihypertensive, neuroprotective, antidiabetic, anticancer, and antihyperuricemia activities, were obtained from walnut-origin by-products by enzymatic hydrolysis, fermentation, and synthesis. Different bioactive peptides show various structural characteristics and amino acid composition due to their diverse mechanism of action. Furthermore, walnut protein and its hydrolysate present a high bioavailability in human gastrointestinal digestive system. Improving the bioavailability of walnut peptides is needful in the development of walnut industry. However, future research still needs to exploit energy conservation, high efficiency, environmentally friendly and low-cost production method of walnut bioactive peptide. The molecular mechanisms of different bioactive walnut peptides still need to be explored at the cell and gene levels. Additionally, the digestion, absorption, and metabolism processes of walnut peptides are also the focus of future research.


Subject(s)
Juglans , Humans , Juglans/chemistry , Juglans/metabolism , Biological Availability , Peptides/chemistry , Nuts/chemistry , Antioxidants/pharmacology
19.
Biochem Genet ; 61(3): 1065-1085, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36422752

ABSTRACT

Lignin deficiency in the endocarp of walnuts causes kernel bare, leads to inconvenient processing and transportation of walnuts, and easily produces insect damage and mildew, thereby affecting the quality of walnuts. Cinnamyl alcohol dehydrogenase (CAD) is one of the key rate-limiting enzymes in lignin synthesis and plays an important role in the synthesis of lignin in the endocarp of walnut. However, knowledge about CAD gene family members and their evolutionary and functional characteristics in walnuts is limited. In this study, all 18 JrCADs were identified, and phylogenetic relationships, gene structure, protein motifs, collinearity analysis, and expression patterns of the JrCADs were also analyzed. All JrCADs could be divided into three groups based on the phylogenetic tree, gene structure, and motif analysis also support this grouping. Transcriptome data demonstrated that JrCADs have different expression patterns in walnut endocarps at different developmental stages. Combined with qRT-PCR data, we finally identified several candidate JrCADs involved in the process of endocarp sclerosis. This study showed that the JrCAD family members are highly conservative in evolutionary characteristics and they might participate in a variety of hormone responses. JrCAD17 and JrCAD18 are highly expressed in all periods of walnut endocarp harding, they are closely related to lignin accumulation.


Subject(s)
Juglans , Juglans/genetics , Juglans/metabolism , Phylogeny , Lignin/metabolism , Alcohol Oxidoreductases/genetics
20.
Food Chem ; 400: 134070, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36084595

ABSTRACT

Ellagitannins, the main components of walnut kernel polyphenols, are easily degraded by heating to produce ellagic acid, precursor in the production of urolithins that show multiple physiological functions. To analyze the conversion of ellagitannins to free ellagic acid in walnut kernels during baking, a quantitative method was developed to investigate the ellagic acid content (EAC) in free phenolic acid (FPA), acid-hydrolyzable phenolic acid (AHPA), and bound phenolic acid (BPA) fractions. The results showed that the EAC in FPA reached its maximum (5.17 ± 0.30 mg/g DW) after baking at 165 °C for 30 min, which increased by 99.52% compared with the control. Meanwhile, the content of ellagitannins (ETC) in AHPA and BPA dropped by 89.14% and 26.08%, respectively. It suggested that baking promoted the conversion of ellagitannins in AHPA and BPA to ellagic acid in FPA. Eight ellagitannins were regarded as the main precursors of ellagic acid in walnut kernels.


Subject(s)
Ellagic Acid , Juglans , Ellagic Acid/metabolism , Hydrolyzable Tannins/metabolism , Hydroxybenzoates , Juglans/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...