Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Commun Biol ; 6(1): 644, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37322081

ABSTRACT

Voltage-gated potassium (Kv) channels in the KCNQ subfamily serve essential roles in the nervous system, heart, muscle and epithelia. Different heteromeric KCNQ complexes likely serve distinct functions in the brain but heteromer subtype-specific small molecules for research or therapy are lacking. Rosemary (Salvia rosmarinus) is an evergreen plant used medicinally for millennia for neurological and other disorders. Here, we report that rosemary extract is a highly efficacious opener of heteromeric KCNQ3/5 channels, with weak effects on KCNQ2/3. Using functional screening we find that carnosic acid, a phenolic diterpene from rosemary, is a potent, highly efficacious, PIP2 depletion-resistant KCNQ3 opener with lesser effects on KCNQ5 and none on KCNQ1 or KCNQ2. Carnosic acid is also highly selective for KCNQ3/5 over KCNQ2/3 heteromers. Medicinal chemistry, in silico docking, and mutagenesis reveal that carboxylate-guanidinium ionic bonding with an S4-5 linker arginine underlies the KCNQ3 opening proficiency of carnosic acid, the effects of which on KCNQ3/5 suggest unique therapeutic potential and a molecular basis for ancient neurotherapeutic use of rosemary.


Subject(s)
Plants, Medicinal , Rosmarinus , KCNQ3 Potassium Channel/chemistry , KCNQ2 Potassium Channel/chemistry , Protein Isoforms
2.
J Biol Chem ; 299(2): 102819, 2023 02.
Article in English | MEDLINE | ID: mdl-36549648

ABSTRACT

Zinc (Zn) is an essential trace element; it serves as a cofactor for a great number of enzymes, transcription factors, receptors, and other proteins. Zinc is also an important signaling molecule, which can be released from intracellular stores into the cytosol or extracellular space, for example, during synaptic transmission. Amongst cellular effects of zinc is activation of Kv7 (KCNQ, M-type) voltage-gated potassium channels. Here, we investigated relationships between Kv7 channel inhibition by Ca2+/calmodulin (CaM) and zinc-mediated potentiation. We show that Zn2+ ionophore, zinc pyrithione (ZnPy), can prevent or reverse Ca2+/CaM-mediated inhibition of Kv7.2. In the presence of both Ca2+ and Zn2+, the Kv7.2 channels lose most of their voltage dependence and lock in an open state. In addition, we demonstrate that mutations that interfere with CaM binding to Kv7.2 and Kv7.3 reduced channel membrane abundance and activity, but these mutants retained zinc sensitivity. Moreover, the relative efficacy of ZnPy to activate these mutants was generally greater, compared with the WT channels. Finally, we show that zinc sensitivity was retained in Kv7.2 channels assembled with mutant CaM with all four EF hands disabled, suggesting that it is unlikely to be mediated by CaM. Taken together, our findings indicate that zinc is a potent Kv7 stabilizer, which may protect these channels from physiological inhibitory effects of neurotransmitters and neuromodulators, protecting neurons from overactivity.


Subject(s)
Calcium , Calmodulin , Intracellular Space , KCNQ Potassium Channels , Zinc , Calcium Signaling , Calmodulin/metabolism , KCNQ Potassium Channels/antagonists & inhibitors , KCNQ Potassium Channels/chemistry , KCNQ Potassium Channels/genetics , KCNQ Potassium Channels/metabolism , Mutation , Protein Binding/genetics , Zinc/pharmacology , Zinc/metabolism , Intracellular Space/metabolism , Calcium/metabolism , KCNQ2 Potassium Channel/antagonists & inhibitors , KCNQ2 Potassium Channel/chemistry , KCNQ2 Potassium Channel/genetics , KCNQ2 Potassium Channel/metabolism , KCNQ3 Potassium Channel/antagonists & inhibitors , KCNQ3 Potassium Channel/chemistry , KCNQ3 Potassium Channel/genetics , KCNQ3 Potassium Channel/metabolism
3.
Pflugers Arch ; 474(7): 721-732, 2022 07.
Article in English | MEDLINE | ID: mdl-35459955

ABSTRACT

KCNQ channels participate in the physiology of several cell types. In neurons of the central nervous system, the primary subunits are KCNQ2, 3, and 5. Activation of these channels silence the neurons, limiting action potential duration and preventing high-frequency action potential burst. Loss-of-function mutations of the KCNQ channels are associated with a wide spectrum of phenotypes characterized by hyperexcitability. Hence, pharmacological activation of these channels is an attractive strategy to treat epilepsy and other hyperexcitability conditions as are the evolution of stroke and traumatic brain injury. In this work we show that triclosan, a bactericide widely used in personal care products, activates the KCNQ3 channels but not the KCNQ2. Triclosan induces a voltage shift in the activation, increases the conductance, and slows the closing of the channel. The response is independent of PIP2. Molecular docking simulations together with site-directed mutagenesis suggest that the putative binding site is in the voltage sensor domain. Our results indicate that triclosan is a new activator for KCNQ channels.


Subject(s)
Epilepsy , Triclosan , Epilepsy/metabolism , Humans , KCNQ Potassium Channels/metabolism , KCNQ1 Potassium Channel , KCNQ2 Potassium Channel/chemistry , KCNQ2 Potassium Channel/genetics , KCNQ2 Potassium Channel/metabolism , KCNQ3 Potassium Channel/chemistry , KCNQ3 Potassium Channel/genetics , KCNQ3 Potassium Channel/metabolism , Molecular Docking Simulation , Neurotransmitter Agents , Triclosan/pharmacology
4.
Mol Pharmacol ; 98(3): 192-202, 2020 09.
Article in English | MEDLINE | ID: mdl-32580997

ABSTRACT

Neuronal voltage-gated potassium channels (Kv) are critical regulators of electrical activity in the central nervous system. Mutations in the KCNQ (Kv7) ion channel family are linked to epilepsy and neurodevelopmental disorders. These channels underlie the neuronal "M-current" and cluster in the axon initial segment to regulate the firing of action potentials. There is general consensus that KCNQ channel assembly and heteromerization are controlled by C-terminal helices. We identified a pediatric patient with neurodevelopmental disability, including autism traits, inattention and hyperactivity, and ataxia, who carries a de novo frameshift mutation in KCNQ3 (KCNQ3-FS534), leading to truncation of ∼300 amino acids in the C terminus. We investigated possible molecular mechanisms of channel dysfunction, including haplo-insufficiency or a dominant-negative effect caused by the assembly of truncated KCNQ3 and functional KCNQ2 subunits. We also used a recently recognized property of the KCNQ2-specific activator ICA-069673 to identify assembly of heteromeric channels. ICA-069673 exhibits a functional signature that depends on the subunit composition of KCNQ2/3 channels, allowing us to determine whether truncated KCNQ3 subunits can assemble with KCNQ2. Our findings demonstrate that although the KCNQ3-FS534 mutant does not generate functional channels on its own, large C-terminal truncations of KCNQ3 (including the KCNQ3-FS534 mutation) assemble efficiently with KCNQ2 but fail to promote or stabilize KCNQ2/KCNQ3 heteromeric channel expression. Therefore, the frequent assumption that pathologies linked to KCNQ3 truncations arise from haplo-insufficiency should be reconsidered in some cases. Subtype-specific channel activators like ICA-069673 are a reliable tool to identify heteromeric assembly of KCNQ2 and KCNQ3. SIGNIFICANCE STATEMENT: Mutations that truncate the C terminus of neuronal Kv7/KCNQ channels are linked to a spectrum of seizure disorders. One role of the multifunctional KCNQ C terminus is to mediate subtype-specific assembly of heteromeric KCNQ channels. This study describes the use of a subtype-specific Kv7 activator to assess assembly of heteromeric KCNQ2/KCNQ3 (Kv7.2/Kv7.3) channels and demonstrates that large disease-linked and experimentally generated C-terminal truncated KCNQ3 mutants retain the ability to assemble with KCNQ2.


Subject(s)
Frameshift Mutation , KCNQ2 Potassium Channel/metabolism , KCNQ3 Potassium Channel/chemistry , KCNQ3 Potassium Channel/metabolism , Neurodevelopmental Disorders/genetics , Animals , Child , Humans , KCNQ2 Potassium Channel/chemistry , KCNQ3 Potassium Channel/genetics , Male , Models, Molecular , Protein Conformation , Protein Multimerization , Protein Stability , Protein Structure, Secondary , Xenopus laevis
5.
Commun Biol ; 2: 401, 2019.
Article in English | MEDLINE | ID: mdl-31701029

ABSTRACT

Voltage-gated potassium (Kv) channel dysfunction causes a variety of inherited disorders, but developing small molecules that activate Kv channels has proven challenging. We recently discovered that the inhibitory neurotransmitter γ-aminobutyric acid (GABA) directly activates Kv channels KCNQ3 and KCNQ5. Here, finding that inhibitory neurotransmitter glycine does not activate KCNQs, we re-engineered it in silico to introduce predicted KCNQ-opening properties, screened by in silico docking, then validated the hits in vitro. Attaching a fluorophenyl ring to glycine optimized its electrostatic potential, converting it to a low-nM affinity KCNQ channel activator. Repositioning the phenyl ring fluorine and/or adding a methylsulfonyl group increased the efficacy of the re-engineered glycines and switched their target KCNQs. Combining KCNQ2- and KCNQ3-specific glycine derivatives synergistically potentiated KCNQ2/3 activation by exploiting heteromeric channel composition. Thus, in silico optimization and docking, combined with functional screening of only three compounds, facilitated re-engineering of glycine to develop several potent KCNQ activators.


Subject(s)
KCNQ Potassium Channels/chemistry , KCNQ Potassium Channels/metabolism , Animals , Computer Simulation , Glycine/analogs & derivatives , Glycine/chemistry , Glycine/metabolism , Glycine Agents/chemistry , Glycine Agents/metabolism , KCNQ Potassium Channels/genetics , KCNQ2 Potassium Channel/chemistry , KCNQ2 Potassium Channel/genetics , KCNQ2 Potassium Channel/metabolism , KCNQ3 Potassium Channel/chemistry , KCNQ3 Potassium Channel/genetics , KCNQ3 Potassium Channel/metabolism , Models, Molecular , Molecular Docking Simulation , Protein Engineering/methods , Receptors, Glycine/antagonists & inhibitors , Static Electricity , Synthetic Biology , Xenopus Proteins/chemistry , Xenopus Proteins/genetics , Xenopus Proteins/metabolism , Xenopus laevis/genetics , Xenopus laevis/metabolism
6.
Ann Neurol ; 86(2): 181-192, 2019 08.
Article in English | MEDLINE | ID: mdl-31177578

ABSTRACT

OBJECTIVE: Recent reports have described single individuals with neurodevelopmental disability (NDD) harboring heterozygous KCNQ3 de novo variants (DNVs). We sought to assess whether pathogenic variants in KCNQ3 cause NDD and to elucidate the associated phenotype and molecular mechanisms. METHODS: Patients with NDD and KCNQ3 DNVs were identified through an international collaboration. Phenotypes were characterized by clinical assessment, review of charts, electroencephalographic (EEG) recordings, and parental interview. Functional consequences of variants were analyzed in vitro by patch-clamp recording. RESULTS: Eleven patients were assessed. They had recurrent heterozygous DNVs in KCNQ3 affecting residues R230 (R230C, R230H, R230S) and R227 (R227Q). All patients exhibited global developmental delay within the first 2 years of life. Most (8/11, 73%) were nonverbal or had a few words only. All patients had autistic features, and autism spectrum disorder (ASD) was diagnosed in 5 of 11 (45%). EEGs performed before 10 years of age revealed frequent sleep-activated multifocal epileptiform discharges in 8 of 11 (73%). For 6 of 9 (67%) recorded between 1.5 and 6 years of age, spikes became near-continuous during sleep. Interestingly, most patients (9/11, 82%) did not have seizures, and no patient had seizures in the neonatal period. Voltage-clamp recordings of the mutant KCNQ3 channels revealed gain-of-function (GoF) effects. INTERPRETATION: Specific GoF variants in KCNQ3 cause NDD, ASD, and abundant sleep-activated spikes. This new phenotype contrasts both with self-limited neonatal epilepsy due to KCNQ3 partial loss of function, and with the neonatal or infantile onset epileptic encephalopathies due to KCNQ2 GoF. ANN NEUROL 2019;86:181-192.


Subject(s)
Autistic Disorder/diagnosis , Autistic Disorder/genetics , Developmental Disabilities/diagnosis , Developmental Disabilities/genetics , Gain of Function Mutation/genetics , KCNQ3 Potassium Channel/genetics , Amino Acid Sequence , Child , Child, Preschool , Genetic Variation/genetics , Humans , KCNQ3 Potassium Channel/chemistry , Male , Protein Structure, Secondary , Young Adult
7.
J Gen Physiol ; 151(2): 247-257, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30578330

ABSTRACT

One of the major factors known to cause neuronal hyperexcitability is malfunction of the potassium channels formed by KCNQ2 and KCNQ3. These channel subunits underlie the M current, which regulates neuronal excitability. Here, I investigate the molecular mechanisms by which epilepsy-associated mutations in the voltage sensor (S4) of KCNQ3 cause channel malfunction. Voltage clamp fluorometry reveals that the R230C mutation in KCNQ3 allows S4 movement but shifts the open/closed transition of the gate to very negative potentials. This results in the mutated channel remaining open throughout the physiological voltage range. Substitution of R230 with natural and unnatural amino acids indicates that the functional effect of the arginine residue at position 230 depends on both its positive charge and the size of its side chain. I find that KCNQ3-R230C is hard to close, but it is capable of being closed at strong negative voltages. I suggest that compounds that shift the voltage dependence of S4 activation to more positive potentials would promote gate closure and thus have therapeutic potential.


Subject(s)
Epilepsy/genetics , Ion Channel Gating , KCNQ3 Potassium Channel/metabolism , Mutation , Animals , Humans , KCNQ3 Potassium Channel/chemistry , KCNQ3 Potassium Channel/genetics , Membrane Potentials , Xenopus
8.
J Biol Chem ; 293(50): 19411-19428, 2018 12 14.
Article in English | MEDLINE | ID: mdl-30348901

ABSTRACT

Phosphatidylinositol 4,5-bisphosphate (PIP2) in the plasma membrane regulates the function of many ion channels, including M-type (potassium voltage-gated channel subfamily Q member (KCNQ), Kv7) K+ channels; however, the molecular mechanisms involved remain unclear. To this end, we here focused on the KCNQ3 subtype that has the highest apparent affinity for PIP2 and performed extensive mutagenesis in regions suggested to be involved in PIP2 interactions among the KCNQ family. Using perforated patch-clamp recordings of heterologously transfected tissue culture cells, total internal reflection fluorescence microscopy, and the zebrafish (Danio rerio) voltage-sensitive phosphatase to deplete PIP2 as a probe, we found that PIP2 regulates KCNQ3 channels through four different domains: 1) the A-B helix linker that we previously identified as important for both KCNQ2 and KCNQ3, 2) the junction between S6 and the A helix, 3) the S2-S3 linker, and 4) the S4-S5 linker. We also found that the apparent strength of PIP2 interactions within any of these domains was not coupled to the voltage dependence of channel activation. Extensive homology modeling and docking simulations with the WT or mutant KCNQ3 channels and PIP2 were consistent with the experimental data. Our results indicate that PIP2 modulates KCNQ3 channel function by interacting synergistically with a minimum of four cytoplasmic domains.


Subject(s)
Cytoplasm/metabolism , KCNQ3 Potassium Channel/chemistry , KCNQ3 Potassium Channel/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Amino Acid Sequence , Animals , CHO Cells , Cricetulus , Humans , KCNQ3 Potassium Channel/genetics , Models, Molecular , Mutation , Protein Binding , Protein Conformation, alpha-Helical , Protein Domains
9.
Nat Commun ; 9(1): 1847, 2018 05 10.
Article in English | MEDLINE | ID: mdl-29748663

ABSTRACT

Voltage-gated potassium channels KCNQ2-5 generate the M-current, which controls neuronal excitability. KCNQ2-5 subunits each harbor a high-affinity anticonvulsant drug-binding pocket containing an essential tryptophan (W265 in human KCNQ3) conserved for >500 million years, yet lacking a known physiological function. Here, phylogenetic analysis, electrostatic potential mapping, in silico docking, electrophysiology, and radioligand binding assays reveal that the anticonvulsant binding pocket evolved to accommodate endogenous neurotransmitters including γ-aminobutyric acid (GABA), which directly activates KCNQ5 and KCNQ3 via W265. GABA, and endogenous metabolites ß-hydroxybutyric acid (BHB) and γ-amino-ß-hydroxybutyric acid (GABOB), competitively and differentially shift the voltage dependence of KCNQ3 activation. Our results uncover a novel paradigm: direct neurotransmitter activation of voltage-gated ion channels, enabling chemosensing of the neurotransmitter/metabolite landscape to regulate channel activity and cellular excitability.


Subject(s)
Anticonvulsants/metabolism , KCNQ Potassium Channels/physiology , KCNQ3 Potassium Channel/physiology , Neurons/physiology , Neurotransmitter Agents/metabolism , gamma-Aminobutyric Acid/metabolism , Animals , Binding Sites/physiology , CHO Cells , Cricetulus , Ganglia, Spinal/cytology , KCNQ Potassium Channels/chemistry , KCNQ3 Potassium Channel/chemistry , Male , Mice , Molecular Docking Simulation , Oocytes , PC12 Cells , Patch-Clamp Techniques , Phylogeny , Primary Cell Culture , Protein Binding/physiology , Rats , Sequence Alignment , Tryptophan/metabolism , Xenopus laevis
10.
Neuron ; 97(4): 836-852.e6, 2018 02 21.
Article in English | MEDLINE | ID: mdl-29429937

ABSTRACT

Kv7 (KCNQ) voltage-gated potassium channels control excitability in the brain, heart, and ear. Calmodulin (CaM) is crucial for Kv7 function, but how this calcium sensor affects activity has remained unclear. Here, we present X-ray crystallographic analysis of CaM:Kv7.4 and CaM:Kv7.5 AB domain complexes that reveal an Apo/CaM clamp conformation and calcium binding preferences. These structures, combined with small-angle X-ray scattering, biochemical, and functional studies, establish a regulatory mechanism for Kv7 CaM modulation based on a common architecture in which a CaM C-lobe calcium-dependent switch releases a shared Apo/CaM clamp conformation. This C-lobe switch inhibits voltage-dependent activation of Kv7.4 and Kv7.5 but facilitates Kv7.1, demonstrating that mechanism is shared by Kv7 isoforms despite the different directions of CaM modulation. Our findings provide a unified framework for understanding how CaM controls different Kv7 isoforms and highlight the role of membrane proximal domains for controlling voltage-gated channel function. VIDEO ABSTRACT.


Subject(s)
Calcium/chemistry , Calmodulin/chemistry , KCNQ Potassium Channels/chemistry , KCNQ Potassium Channels/metabolism , Protein Structure, Tertiary , Binding Sites , Calmodulin/metabolism , Crystallography, X-Ray , HEK293 Cells , Humans , KCNQ1 Potassium Channel/chemistry , KCNQ1 Potassium Channel/metabolism , KCNQ2 Potassium Channel/chemistry , KCNQ2 Potassium Channel/metabolism , KCNQ3 Potassium Channel/chemistry , KCNQ3 Potassium Channel/metabolism , Protein Binding , Protein Isoforms/chemistry
11.
Mol Neurobiol ; 55(8): 7009-7024, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29383681

ABSTRACT

Over one hundred mutations in the Kv7.2 (KCNQ2) gene encoding for phosphatidylinositol 4,5-bisphosphate (PIP2)-sensitive voltage-gated K+ channel subunits have been identified in early-onset epilepsies with wide phenotypic variability. By contrast, only few mutations in the closely related Kv7.3 (KCNQ3) gene have been reported, mostly associated with typical benign familial neonatal seizures (BFNS). We herein describe a patient affected by early onset epileptic encephalopathy (EOEE) carrying two Kv7.3 missense mutations (p.Val359Leu/V359L and p.Asp542Asn/D542N) in compound heterozygosis, each inherited from an asymptomatic parent. Patch-clamp recordings from transiently transfected CHO cells showed that, when incorporated in physiologically relevant Kv7.2 + Kv7.3 heteromeric channels, expression of Kv7.3 V359L or Kv7.3 D542N subunits failed to affect current density, whereas a significant decrease was instead observed when these mutant subunits were both simultaneously present. Modeling and functional experiments revealed that each variant decreased PIP2-dependent current regulation, with additive effects when the two were co-expressed. Moreover, expression of Kv7.2 subunits carrying the D535N variant previously described in three sporadic EOEE cases prompted functional changes more dramatic when compared to those of the corresponding D542N variant in Kv7.3, but similar to those observed when both Kv7.3 V359L and Kv7.3 D542N subunits were expressed together. Finally, the Kv7 activator retigabine restored channel dysfunction induced by each Kv7.2 or Kv7.3 variant(s). These results provide a plausible molecular explanation for the apparent recessive inheritance of the phenotype in the family investigated, and a rational basis for personalized therapy with Kv7 channel activators in EOEE patients carrying loss-of-function mutations in Kv7.2 or Kv7.3.


Subject(s)
Brain Diseases/genetics , Ion Channel Gating , KCNQ3 Potassium Channel/chemistry , KCNQ3 Potassium Channel/genetics , Phosphatidylinositol 4,5-Diphosphate/metabolism , Amino Acid Sequence , Animals , Child , Cricetinae , Cricetulus , Female , Heterozygote , Humans , Infant , Infant, Newborn , KCNQ2 Potassium Channel/metabolism , KCNQ3 Potassium Channel/metabolism , Male , Mutant Proteins/metabolism , Pedigree , Structure-Activity Relationship
12.
Curr Med Chem ; 25(23): 2637-2660, 2018.
Article in English | MEDLINE | ID: mdl-29022505

ABSTRACT

BACKGROUND: The Kv7 (KCNQ) subfamily of voltage-gated potassium channels consists of 5 members (Kv7.1-5) each showing characteristic tissue distribution and physiological roles. Given their functional heterogeneity, Kv7 channels represent important pharmacological targets for the development of new drugs for neuronal, cardiovascular and metabolic diseases. OBJECTIVE: In the present manuscript, we focus on describing the pharmacological relevance and potential therapeutic applications of drugs acting on neuronally-expressed Kv7.2/3 channels, placing particular emphasis on the different chemotypes, and highlighting their pharmacodynamic and, whenever possible, pharmacokinetic peculiarities. METHODS: The present work is based on an in-depth search of the currently available scientific literature, and on our own experience and knowledge in the field of neuronal Kv7 channel pharmacology. Space limitations impeded to describe the full pharmacological potential of Kv7 channels; thus, we have chosen to focus on neuronal channels composed of Kv7.2 and Kv7.3 subunits, and to mainly concentrate on their involvement in epilepsy. RESULTS: An astonishing heterogeneity in the molecular scaffolds exploitable to develop Kv7.2/3 modulators is evident, with important structural/functional peculiarities of distinct compound classes. CONCLUSION: In the present work we have attempted to show the current status and growing potential of the Kv7 pharmacology field. We anticipate a bright future for the field, and express our hopes that the efforts herein reviewed will result in an improved treatment of hyperexcitability (or any other) diseases.


Subject(s)
KCNQ2 Potassium Channel/metabolism , KCNQ3 Potassium Channel/metabolism , Neurons/metabolism , Animals , Carbamates/chemistry , Carbamates/metabolism , Carbamates/pharmacology , Epilepsy/metabolism , Epilepsy/pathology , Humans , Indoles/chemistry , Indoles/metabolism , Indoles/pharmacology , KCNQ2 Potassium Channel/chemistry , KCNQ2 Potassium Channel/genetics , KCNQ3 Potassium Channel/chemistry , KCNQ3 Potassium Channel/genetics , Membrane Transport Modulators/chemistry , Membrane Transport Modulators/metabolism , Neurons/drug effects , Phenylenediamines/chemistry , Phenylenediamines/metabolism , Phenylenediamines/pharmacology , Potassium Channel Blockers/chemistry , Potassium Channel Blockers/metabolism , Pyridines/chemistry , Pyridines/metabolism , Pyridines/pharmacology
13.
J Recept Signal Transduct Res ; 37(3): 259-266, 2017 Jun.
Article in English | MEDLINE | ID: mdl-27607834

ABSTRACT

Biological mechanism attributing mutations in KCNQ2/Q3 results in benign familial neonatal epilepsy (BFNE), a rare form of epilepsy and thus neglected. It offers a potential target for antiepileptic drug discovery. In the present work, a pharmacophore-based 3D-QSAR model was generated for a series of N-pyridyl and pyrimidine benzamides possessing KCNQ2/Q3 opening activity. The pharmacophore model generated contains one hydrogen bond donor (D), one hydrophobic (H), and two aromatic rings (R). They are the crucial molecular write-up detailing predicted binding efficacy of high affinity and low affinity ligands for KCNQ2/Q3 opening activity. Furthermore, it has been validated by using a biological correlation between pharmacophore hypothesis-based 3D-QSAR variables and functional fingerprints of openers responsible for the receptor binding and also by docking of these benzamides into the validated homology model. Excellent statistical computational tools of QSAR model such as good correlation coefficient (R2 > 0.80), higher F value (F > 39), and excellent predictive power (Q2 > 0.7) with low standard deviation (SD <0.3) strongly suggest that the developed model could be used for prediction of antiepileptic activity of newer analogs. A preliminary pharmacokinetic profile of these derivatives was also performed on the basis of QikProp predictions.


Subject(s)
Benzamides/chemistry , Drug Discovery , Epilepsy, Benign Neonatal/drug therapy , KCNQ2 Potassium Channel/chemistry , KCNQ3 Potassium Channel/chemistry , Anticonvulsants/chemistry , Anticonvulsants/therapeutic use , Benzamides/therapeutic use , Binding Sites , Computer Simulation , Epilepsy, Benign Neonatal/genetics , Epilepsy, Benign Neonatal/pathology , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , KCNQ2 Potassium Channel/antagonists & inhibitors , KCNQ2 Potassium Channel/genetics , KCNQ3 Potassium Channel/antagonists & inhibitors , KCNQ3 Potassium Channel/genetics , Models, Molecular , Molecular Docking Simulation , Mutation , Pyrimidines/chemistry , Quantitative Structure-Activity Relationship
14.
J Gen Physiol ; 147(3): 229-41, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26880756

ABSTRACT

The anticonvulsant Retigabine is a KV7 channel agonist used to treat hyperexcitability disorders in humans. Retigabine shifts the voltage dependence for activation of the heteromeric KV7.2/KV7.3 channel to more negative potentials, thus facilitating activation. Although the molecular mechanism underlying Retigabine's action remains unknown, previous studies have identified the pore region of KV7 channels as the drug's target. This suggested that the Retigabine-induced shift in voltage dependence likely derives from the stabilization of the pore domain in an open (conducting) conformation. Testing this idea, we show that the heteromeric KV7.2/KV7.3 channel has at least two open states, which we named O1 and O2, with O2 being more stable. The O1 state was reached after short membrane depolarizations, whereas O2 was reached after prolonged depolarization or during steady state at the typical neuronal resting potentials. We also found that activation and deactivation seem to follow distinct pathways, suggesting that the KV7.2/KV7.3 channel activity displays hysteresis. As for the action of Retigabine, we discovered that this agonist discriminates between open states, preferentially acting on the O2 state and further stabilizing it. Based on these findings, we proposed a novel mechanism for the therapeutic effect of Retigabine whereby this drug reduces excitability by enhancing the resting potential open state stability of KV7.2/KV7.3 channels. To address this hypothesis, we used a model for action potential (AP) in Xenopus laevis oocytes and found that the resting membrane potential became more negative as a function of Retigabine concentration, whereas the threshold potential for AP firing remained unaltered.


Subject(s)
Anticonvulsants/pharmacology , Carbamates/pharmacology , KCNQ2 Potassium Channel/agonists , KCNQ3 Potassium Channel/agonists , Membrane Potentials , Phenylenediamines/pharmacology , Animals , Humans , Ion Channel Gating , KCNQ2 Potassium Channel/chemistry , KCNQ2 Potassium Channel/metabolism , KCNQ3 Potassium Channel/chemistry , KCNQ3 Potassium Channel/metabolism , Protein Domains , Protein Multimerization , Xenopus
15.
J Biol Chem ; 291(6): 2931-7, 2016 Feb 05.
Article in English | MEDLINE | ID: mdl-26627826

ABSTRACT

KCNQ (voltage-gated K(+) channel family 7 (Kv7)) channels control cellular excitability and underlie the K(+) current sensitive to muscarinic receptor signaling (the M current) in sympathetic neurons. Here we show that the novel anti-epileptic drug retigabine (RTG) modulates channel function of pore-only modules (PMs) of the human Kv7.2 and Kv7.3 homomeric channels and of Kv7.2/3 heteromeric channels by prolonging the residence time in the open state. In addition, the Kv7 channel PMs are shown to recapitulate the single-channel permeation and pharmacological specificity characteristics of the corresponding full-length proteins in their native cellular context. A mutation (W265L) in the reconstituted Kv7.3 PM renders the channel insensitive to RTG and favors the conductive conformation of the PM, in agreement to what is observed when the Kv7.3 mutant is heterologously expressed. On the basis of the new findings and homology models of the closed and open conformations of the Kv7.3 PM, we propose a structural mechanism for the gating of the Kv7.3 PM and for the site of action of RTG as a Kv7.2/Kv7.3 K(+) current activator. The results validate the modular design of human Kv channels and highlight the PM as a high-fidelity target for drug screening of Kv channels.


Subject(s)
Anticonvulsants/chemistry , Carbamates/chemistry , KCNQ2 Potassium Channel/chemistry , KCNQ3 Potassium Channel/chemistry , Models, Molecular , Mutation, Missense , Phenylenediamines/chemistry , Amino Acid Substitution , Anticonvulsants/pharmacology , Carbamates/pharmacology , Humans , Ion Channel Gating/drug effects , KCNQ2 Potassium Channel/genetics , KCNQ2 Potassium Channel/metabolism , KCNQ3 Potassium Channel/genetics , KCNQ3 Potassium Channel/metabolism , Phenylenediamines/pharmacology
16.
PLoS One ; 10(12): e0145367, 2015.
Article in English | MEDLINE | ID: mdl-26692086

ABSTRACT

In the central and peripheral nervous system, the assembly of KCNQ3 with KCNQ2 as mostly heteromers, but also homomers, underlies "M-type" currents, a slowly-activating voltage-gated K+ current that plays a dominant role in neuronal excitability. KCNQ3 homomers yield much smaller currents compared to KCNQ2 or KCNQ4 homomers and KCNQ2/3 heteromers. This smaller current has been suggested to result either from divergent channel surface expression or from a pore that is more unstable in KCNQ3. Channel surface expression has been shown to be governed by the distal part of the C-terminus in which helices C and D are critical for channel trafficking and assembly. A sequence alignment of this region in KCNQ channels shows that KCNQ3 possesses a longer linker between helix C and D compared to the other KCNQ subunits. Here, we investigate the role of the extra residues of this linker on KCNQ channel expression. Deletion of these residues increased KCNQ3 current amplitudes. Total internal reflection fluorescence imaging and plasma membrane protein assays suggest that the increase in current is due to a higher surface expression of the channels. Conversely, introduction of the extra residues into the linker between helices C and D of KCNQ4 reduced current amplitudes by decreasing the number of KCNQ4 channels at the plasma membrane. Confocal imaging suggests a higher fraction of channels, which possess the extra residues of helix C-D linker, were retained within the endoplasmic reticulum. Such retention does not appear to lead to protein accumulation and activation of the unfolded protein response that regulates protein folding and maintains endoplasmic reticulum homeostasis. Taken together, we conclude that extra helix C-D linker residues play a role in KCNQ3 current amplitudes by controlling the exit of the channel from the endoplasmic reticulum.


Subject(s)
KCNQ3 Potassium Channel/chemistry , KCNQ3 Potassium Channel/metabolism , Amino Acid Motifs , Amino Acid Sequence , Animals , CHO Cells , Cricetulus , Endoplasmic Reticulum/metabolism , KCNQ Potassium Channels/chemistry , KCNQ Potassium Channels/genetics , KCNQ Potassium Channels/metabolism , KCNQ2 Potassium Channel/chemistry , KCNQ2 Potassium Channel/genetics , KCNQ2 Potassium Channel/metabolism , KCNQ3 Potassium Channel/genetics , Molecular Sequence Data , Mutation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Structure-Activity Relationship , Unfolded Protein Response
17.
Mol Cell Neurosci ; 58: 40-52, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24333508

ABSTRACT

Mutations in KCNQ2 and KCNQ3 genes are responsible for benign familial neonatal seizures and epileptic encephalopathies. Some of these mutations have been shown to alter the binding of calmodulin (CaM) to specific C-terminal motifs of KCNQ subunits, known as the A and B helices. Here, we show that the mutation I342A in the A helix of KCNQ3 abolishes CaM interaction and strongly decreases the heteromeric association with KCNQ2. The assembly of KCNQ2 with KCNQ3 is essential for their expression at the axon initial segment (AIS). We find that the I342A mutation alters the targeting of KCNQ2/3 subunits at the AIS. However, the traffic of the mutant channels was rescued by provision of exogenous CaM. We show that CaM enhances the heteromeric association of KCNQ2/KCNQ3-I342A subunits by binding to their B helices in a calcium-dependent manner. To further assert the implication of CaM in channel assembly, we inserted a mutation in the second coil-coil domain of KCNQ2 (KCNQ2-L638P) to prevent its heteromerization with KCNQ3. We observe that the expression of a Ca(2+)-insensitive form of CaM favours the assembly of KCNQ3 with KCNQ2-L638P. Our data thus indicate that both apoCaM and Ca(2+)/CaM bind to the C-terminal domains of KCNQ2 and KCNQ3 subunits, and regulate their heteromeric assembly. Hence, CaM may control the composition and distribution of KCNQ channels in neurons.


Subject(s)
Calmodulin/metabolism , KCNQ2 Potassium Channel/metabolism , KCNQ3 Potassium Channel/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Protein Multimerization , Amino Acid Sequence , Animals , Cells, Cultured , KCNQ2 Potassium Channel/chemistry , KCNQ2 Potassium Channel/genetics , KCNQ3 Potassium Channel/chemistry , KCNQ3 Potassium Channel/genetics , Male , Molecular Sequence Data , Mutation , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Protein Binding , Protein Structure, Tertiary , Protein Transport , Rats , Rats, Wistar
18.
Pflugers Arch ; 465(6): 797-804, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23271449

ABSTRACT

The voltage-gated potassium channels KV7.2 and KV7.3 (KCNQ2/3 genes) play an important role in regulating neuronal excitability. More than 50 KCNQ2/3 mutations have been identified to cause an inherited form of epilepsy in newborns. For two of those (E119G and S122L) found in the S1-S2 region of KV7.2, we previously showed a decreased channel availability mainly at action potential subthreshold voltages caused by a slight depolarizing shift of the activation curve. Interestingly, recent studies revealed that a threonine residue within the S1-S2 loop, highly conserved among different classes of KV channels, is crucial for both their function and surface expression. To investigate the functional role of the homologous threonine residues in KV7.2 (T114) and KV7.3 (T144) channels, we replaced them with alanine and examined the electrophysiological properties using heterologous expression in CHO cells and whole cell patch clamping. Channels comprising mutant subunits yielded decreased potassium currents with slowed activation and accelerated deactivation kinetics. However, the most striking effect was a depolarizing shift in the voltage dependence of activation reaching +30 mV upon co-expression of both mutant subunits. Potential interactions of T114 within the channel were analyzed by creating a 3D homology model of KV7.2 in an open state suggesting that this residue plays a central role in the formation of a stable interface between the S1-S2 and the S5 segment helices. This could be the explanation why substitution of the conserved threonine in KV7.2 and KV7.3 channels destabilizes the open and favors the closed state of these channels.


Subject(s)
Ion Channel Gating , KCNQ2 Potassium Channel/metabolism , KCNQ3 Potassium Channel/metabolism , Threonine/metabolism , Amino Acid Sequence , Animals , CHO Cells , Conserved Sequence , Cricetinae , Cricetulus , Humans , KCNQ2 Potassium Channel/chemistry , KCNQ2 Potassium Channel/genetics , KCNQ3 Potassium Channel/chemistry , KCNQ3 Potassium Channel/genetics , Membrane Potentials , Models, Molecular , Molecular Sequence Data , Mutation , Protein Structure, Tertiary , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Threonine/chemistry , Threonine/genetics
19.
J Gen Physiol ; 140(1): 41-53, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22689829

ABSTRACT

Low-threshold voltage-gated M-type potassium channels (M channels) are tetraheteromers, commonly of two Kv7.2 and two Kv7.3 subunits. Though gated by voltage, the channels have an absolute requirement for binding of the membrane phospholipid phosphatidylinositol-4,5-bisphosphate (PI(4,5)P(2)) to open. We have investigated the quantitative relation between the concentration of a water-soluble PI(4,5)P(2) analog, dioctanoyl-PI(4,5)P(2) (DiC(8)-PI(4,5)P(2)), and channel open probability (P(open)) by fast application of increasing concentrations of DiC(8)-PI(4,5)P(2) to the inside face of membrane patches excised from Chinese hamster ovary cells expressing M channels as heteromeric Kv7.2/7.3 subunits. The rationale for the experiments is that this will mimic the effect of changes in membrane PI(4,5)P(2) concentration. Single-channel conductances from channel current-voltage relations in cell-attached mode were 9.2 ± 0.1 pS with a 2.5-mM pipette [K(+)]. Plots of P(open) against DiC(8)-PI(4,5)P(2) concentration were best fitted using a two-component concentration-P(open) relationship with high and low affinity, half-maximal effective concentration (EC(50)) values of 1.3 ± 0.14 and 75.5 ± 2.5 µM, respectively, and Hill slopes of 1.4 ± 0.06. In contrast, homomeric channels from cells expressing only Kv7.2 or Kv7.3 constructs yielded single-component curves with EC(50) values of 76.2 ± 19.9 or 3.6 ± 1.0 µM, respectively. When wild-type (WT) Kv7.2 was coexpressed with a mutated Kv7.3 subunit with >100-fold reduced sensitivity to PI(4,5)P(2), the high-affinity component of the activation curve was lost. Fitting the data for WT and mutant channels to an activation mechanism with independent PI(4,5)P(2) binding to two Kv7.2 and two Kv7.3 subunits suggests that the two components of the M-channel activation curve correspond to the interaction of PI(4,5)P(2) with the Kv7.3 and Kv7.2 subunits, respectively, that channels can open when only the two Kv7.3 subunits have bound DiC(8)-PI(4,5)P(2), and that maximum channel opening requires binding to all four subunits.


Subject(s)
KCNQ2 Potassium Channel/agonists , KCNQ3 Potassium Channel/agonists , Phosphatidylinositol 4,5-Diphosphate/analogs & derivatives , Animals , Binding Sites , CHO Cells , Cricetinae , Cricetulus , Ion Channel Gating/drug effects , KCNQ2 Potassium Channel/chemistry , KCNQ2 Potassium Channel/genetics , KCNQ2 Potassium Channel/metabolism , KCNQ3 Potassium Channel/chemistry , KCNQ3 Potassium Channel/genetics , KCNQ3 Potassium Channel/metabolism , Mutation, Missense , Patch-Clamp Techniques , Phosphatidylinositol 4,5-Diphosphate/pharmacology , Protein Subunits/agonists , Protein Subunits/chemistry , Protein Subunits/metabolism
20.
Biophys J ; 102(11): 2499-509, 2012 Jun 06.
Article in English | MEDLINE | ID: mdl-22713565

ABSTRACT

Two mechanisms have been postulated to underlie KCNQ3 homomeric current amplitudes, which are small compared with those of KCNQ4 homomers and KCNQ2/Q3 heteromers. The first involves differential channel expression governed by the D-helix within the C-terminus. The second suggests similar channel surface expression but an intrinsically unstable KCNQ3 pore. Here, we find H2O2-enhanced oligomerization of KCNQ4 subunits, as reported by nondenaturing polyacrylamide gel electrophoresis, at C643 at the end of the D-helix, where KCNQ3 possesses a histidine. However, H2O2-mediated enhancement of KCNQ4 currents was identical in the C643A mutant, and KCNQ3 H646C produced homomeric or heteromeric (with KCNQ2) currents similar to those of wild-type KCNQ3, ruling out this divergent residue as underlying the small KCNQ3 amplitudes. In KcsA, F103 in S6 is critical for pore-mediated destabilization of the conductive pathway. We found that mutations at the analogous F344 in KCNQ3 dramatically decreased the KCNQ3 currents. Total internal reflection fluorescence imaging revealed only minor differential surface expression among the wild-type and mutant channels. Homology modeling suggests that the effects of the F344 mutants arise from the disruption of the interaction between F344 and A315 in the pore helix. These data support a secondary role of the C-terminus, compared with pore helix-S6 interactions, in governing KCNQ3 current amplitudes.


Subject(s)
Ion Channel Gating , KCNQ3 Potassium Channel/chemistry , KCNQ3 Potassium Channel/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Cysteine/metabolism , Disulfides/metabolism , Electric Conductivity , Hydrogen Peroxide/pharmacology , Ion Channel Gating/drug effects , KCNQ3 Potassium Channel/genetics , Microscopy, Fluorescence , Models, Molecular , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Mutation/genetics , Protein Binding/drug effects , Protein Multimerization/drug effects , Protein Stability/drug effects , Protein Structure, Quaternary , Protein Structure, Secondary , Protein Structure, Tertiary , Protein Subunits/chemistry , Protein Subunits/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...