Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.754
Filter
1.
Life Sci Alliance ; 7(9)2024 Sep.
Article in English | MEDLINE | ID: mdl-38977310

ABSTRACT

Hippocampal seizures mimicking mesial temporal lobe epilepsy cause a profound disruption of the adult neurogenic niche in mice. Seizures provoke neural stem cells to switch to a reactive phenotype (reactive neural stem cells, React-NSCs) characterized by multibranched hypertrophic morphology, massive activation to enter mitosis, symmetric division, and final differentiation into reactive astrocytes. As a result, neurogenesis is chronically impaired. Here, using a mouse model of mesial temporal lobe epilepsy, we show that the epidermal growth factor receptor (EGFR) signaling pathway is key for the induction of React-NSCs and that its inhibition exerts a beneficial effect on the neurogenic niche. We show that during the initial days after the induction of seizures by a single intrahippocampal injection of kainic acid, a strong release of zinc and heparin-binding epidermal growth factor, both activators of the EGFR signaling pathway in neural stem cells, is produced. Administration of the EGFR inhibitor gefitinib, a chemotherapeutic in clinical phase IV, prevents the induction of React-NSCs and preserves neurogenesis.


Subject(s)
ErbB Receptors , Heparin-binding EGF-like Growth Factor , Hippocampus , Neural Stem Cells , Neurogenesis , Seizures , Signal Transduction , Animals , ErbB Receptors/metabolism , Neural Stem Cells/metabolism , Neural Stem Cells/drug effects , Hippocampus/metabolism , Mice , Heparin-binding EGF-like Growth Factor/metabolism , Seizures/metabolism , Neurogenesis/drug effects , Signal Transduction/drug effects , Male , Disease Models, Animal , Gefitinib/pharmacology , Epilepsy, Temporal Lobe/metabolism , Cell Differentiation/drug effects , Kainic Acid/pharmacology , Mice, Inbred C57BL
2.
ASN Neuro ; 16(1): 2371164, 2024.
Article in English | MEDLINE | ID: mdl-39024558

ABSTRACT

There is a high co-morbidity between childhood epilepsy and autism spectrum disorder (ASD), with age of seizure onset being a critical determinant of behavioral outcomes. The interplay between these comorbidities has been investigated in animal models with results showing that the induction of seizures at early post-natal ages leads to learning and memory deficits and to autistic-like behavior in adulthood. Modifications of the excitation/inhibition (glutamate/GABA, ATP/adenosine) balance that follows early-life seizures (ELS) are thought to be the physiological events that underlie neuropsychiatric and neurodevelopmental disorders. Although alterations in purinergic/adenosinergic signaling have been implicated in seizures and ASD, it is unknown whether the ATP release channels, Pannexin1 (Panx1), contribute to ELS-induced behavior changes. To tackle this question, we used the ELS-kainic acid model in transgenic mice with global and cell type specific deletion of Panx1 to evaluate whether these channels were involved in behavioral deficits that occur later in life. Our studies show that ELS results in Panx1 dependent social behavior deficits and also in poor performance in a spatial memory test that does not involve Panx1. These findings provide support for a link between ELS and adult behavioral deficits. Moreover, we identify neuronal and not astrocyte Panx1 as a potential target to specifically limit astrogliosis and social behavioral deficits resultant from early-life seizures.


Subject(s)
Connexins , Mice, Transgenic , Nerve Tissue Proteins , Seizures , Social Behavior , Animals , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Connexins/metabolism , Connexins/genetics , Seizures/metabolism , Mice , Male , Mice, Inbred C57BL , Kainic Acid , Disease Models, Animal
3.
Sci Rep ; 14(1): 14543, 2024 06 24.
Article in English | MEDLINE | ID: mdl-38914629

ABSTRACT

Epidural spinal cord stimulation (SCS) is indicated for the treatment of intractable pain and is widely used in clinical practice. In previous basic research, the therapeutic effects of SCS have been demonstrated for epileptic seizure. However, the mechanism has not yet been elucidated. In this study, we investigated the therapeutic effect of SCS and the influence of epileptic seizure. First, SCS in the cervical spine was performed. The rats were divided into four groups: control group and treatment groups with SCS conducted at 2, 50, and 300 Hz frequency. Two days later, convulsions were induced by the intraperitoneal administration of kainic acid, followed by video monitoring to assess seizures. We also evaluated glial cells in the hippocampus by fluorescent immunostaining, electroencephalogram measurements, and inflammatory cytokines such as C-C motif chemokine ligand 2 (CCL2) by quantitative real-time polymerase chain reaction. Seizure frequency and the number of glial cells were significantly lower in the 300 Hz group than in the control group. SCS at 300 Hz decreased gene expression level of CCL2, which induces monocyte migration. SCS has anti-seizure effects by inhibiting CCL2-mediated cascades. The suppression of CCL2 and glial cells may be associated with the suppression of epileptic seizure.


Subject(s)
Chemokine CCL2 , Disease Models, Animal , Epilepsy , Seizures , Spinal Cord Stimulation , Animals , Chemokine CCL2/metabolism , Chemokine CCL2/genetics , Rats , Spinal Cord Stimulation/methods , Male , Seizures/therapy , Seizures/metabolism , Epilepsy/therapy , Epilepsy/metabolism , Kainic Acid , Hippocampus/metabolism , Neuroglia/metabolism , Rats, Sprague-Dawley , Electroencephalography
4.
Harmful Algae ; 136: 102653, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38876527

ABSTRACT

Harmful algal bloom (HAB) toxins consumed by marine predators through fish prey can be lethal but studies on the resulting population consequences are lacking. Over the past approximately 20 years there have been large regional declines in some harbour seal populations around Scotland. Analyses of excreta (faeces and urine from live and dead seals and faecal samples from seal haulout sites) suggest widespread exposure to toxins through the ingestion of contaminated prey. A risk assessment model, incorporating concentrations of the two major HAB toxins found in seal prey around Scotland (domoic acid (DA), and saxitoxins (STX)), the seasonal persistence of the toxins in the fish and the foraging patterns of harbour seals were used to estimate the proportion of adults and juveniles likely to have ingested doses above various estimated toxicity thresholds. The results were highly dependent on toxin type, persistence, and foraging regime as well as age class, all of which affected the proportion of exposed animals exceeding toxicity thresholds. In this preliminary model STX exposure was unlikely to result in mortalities. Modelled DA exposure resulted in doses above an estimated lethal threshold of 1900 µg/kg body mass affecting up to 3.8 % of exposed juveniles and 5.3 % of exposed adults. Given the uncertainty in the model parameters and the limitations of the data these conclusions should be treated with caution, but they indicate that DA remains a potential factor involved in the regional declines of harbour seals. Similar risks may be experienced by other top predators, including small cetaceans and seabirds that feed on similar prey in Scottish waters.


Subject(s)
Harmful Algal Bloom , Animals , Scotland , Risk Assessment , Phoca , Marine Toxins/analysis , Kainic Acid/analogs & derivatives , Saxitoxin/analysis , Environmental Exposure
5.
Harmful Algae ; 135: 102628, 2024 May.
Article in English | MEDLINE | ID: mdl-38830707

ABSTRACT

Diatoms of the genus Pseudo-nitzschia are widespread in marine waters. Some of them can produce the toxin domoic acid (DA) which can be responsible for amnesic shellfish poisoning (ASP) when transferred into the food web. These ASP events are of major concern, due to their ecological and socio-economic repercussions, particularly on the shellfish industry. Many studies have focused on the influence of abiotic factors on DA induction, less on the role of biotic interactions. Recently, the presence of predators has been shown to increase DA production in several Pseudo-nitzschia species, in particular in Arctic areas. In order to investigate the relationship between Pseudo-nitzschia species and grazers from the French coast, exposures between one strain of three species (P. australis, P. pungens, P. fraudulenta) and the copepod Temora longicornis were conducted for 5 days. Cellular and dissolved DA content were enhanced by 1,203 % and 1,556 % respectively after the 5-days exposure of P.australis whereas no DA induction was observed in P. pungens and P. fraudulenta. T. longicornis consumed all three Pseudo-nitzschia species. The copepod survival was not related to DA content. This study is an essential first step to better understanding the interactions between planktonic species from the French coast and highlights the potential key role of copepods in the Pseudo-nitzschia bloom events in the temperate ecosystems.


Subject(s)
Copepoda , Diatoms , Kainic Acid , Kainic Acid/analogs & derivatives , Kainic Acid/metabolism , Copepoda/physiology , Copepoda/metabolism , Diatoms/metabolism , Diatoms/physiology , Animals , France , Marine Toxins/metabolism
6.
ACS Chem Neurosci ; 15(10): 1951-1966, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38696478

ABSTRACT

Aims: the study aimed to (i) use adeno-associated virus technology to modulate parvalbumin (PV) gene expression, both through overexpression and silencing, within the hippocampus of male mice and (ii) assess the impact of PV on the metabolic pathway of glutamate and γ-aminobutyric acid (GABA). Methods: a status epilepticus (SE) mouse model was established by injecting kainic acid into the hippocampus of transgenic mice. When the seizures of mice reached SE, the mice were killed at that time point and 30 min after the onset of SE. Hippocampal tissues were extracted and the mRNA and protein levels of PV and the 65 kDa (GAD65) and 67 kDa (GAD67) isoforms of glutamate decarboxylase were assessed using real-time quantitative polymerase chain reaction and Western blot, respectively. The concentrations of glutamate and GABA were detected with high-performance liquid chromatography (HPLC), and the intracellular calcium concentration was detected using flow cytometry. Results: we demonstrate that the expression of PV is associated with GAD65 and GAD67 and that PV regulates the levels of GAD65 and GAD67. PV was correlated with calcium concentration and GAD expression. Interestingly, PV overexpression resulted in a reduction in calcium ion concentration, upregulation of GAD65 and GAD67, elevation of GABA concentration, reduction in glutamate concentration, and an extension of seizure latency. Conversely, PV silencing induced the opposite effects. Conclusion: parvalbumin may affect the expression of GAD65 and GAD67 by regulating calcium ion concentration, thereby affecting the metabolic pathways associated with glutamate and GABA. In turn, this contributes to the regulation of seizure activity.


Subject(s)
Calcium , Glutamic Acid , Kainic Acid , Parvalbumins , Status Epilepticus , gamma-Aminobutyric Acid , Animals , Male , Mice , Calcium/metabolism , Disease Models, Animal , gamma-Aminobutyric Acid/metabolism , Glutamate Decarboxylase/metabolism , Glutamic Acid/metabolism , Hippocampus/metabolism , Mice, Transgenic , Parvalbumins/metabolism , Status Epilepticus/metabolism , Status Epilepticus/chemically induced
7.
Epilepsia ; 65(7): 2152-2164, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38804501

ABSTRACT

OBJECTIVES: Pathological forms of neural activity, such as epileptic seizures, modify the expression pattern of multiple proteins, leading to persistent changes in brain function. One such protein is activity-regulated cytoskeleton-associated protein (Arc), which is critically involved in protein-synthesis-dependent synaptic plasticity underlying learning and memory. In the present study, we have investigated how the expression of ArcKR, a form of Arc in which the ubiquitination sites have been mutated, resulting in slowed Arc degradation, modifies group I metabotropic glutamate receptor-mediated long-term depression (G1-mGluR-LTD) following seizures. METHODS: We used a knock-in mice line that express ArcKR and two hyperexcitation models: an in vitro model, where hippocampal slices were exposed to zero Mg2+, 6 mM K+; and an in vivo model, where kainic acid was injected unilaterally into the hippocampus. In both models, field excitatory postsynaptic potentials (fEPSPs) were recorded from the CA1 region of hippocampal slices in response to Schaffer collateral stimulation and G1-mGluR-LTD was induced chemically with the group 1 mGluR agonist DHPG. RESULTS: In the in vitro model, ArcKR expression enhanced the effects of seizure activity and increased the magnitude of G1-mGluR LTD, an effect that could be blocked with the mGluR5 antagonist MTEP. In the in vivo model, fEPSPs were significantly smaller in slices from ArcKR mice and were less contaminated by population spikes. In this model, the amount of G1-mGluR-LTD was significantly less in epileptic slices from ArcKR mice as compared to wildtype (WT) mice. SIGNIFICANCE: We have shown that expression of ArcKR, a form of Arc in which degradation is reduced, significantly modulates the magnitude of G1-mGluR-LTD following epileptic seizures. However, the effect of ArcKR on LTD depends on the epileptic model used, with enhancement of LTD in an in vitro model and a reduction in the kainate mouse model.


Subject(s)
Hippocampus , Kainic Acid , Mice, Transgenic , Neuronal Plasticity , Animals , Mice , Neuronal Plasticity/physiology , Neuronal Plasticity/drug effects , Hippocampus/metabolism , Hippocampus/drug effects , Kainic Acid/pharmacology , Seizures/physiopathology , Seizures/metabolism , Seizures/chemically induced , Seizures/genetics , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Receptors, Metabotropic Glutamate/metabolism , Receptors, Metabotropic Glutamate/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Epilepsy/physiopathology , Epilepsy/metabolism , Epilepsy/chemically induced , Epilepsy/genetics , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Disease Models, Animal , Male , Mice, Inbred C57BL , Long-Term Synaptic Depression/drug effects , Long-Term Synaptic Depression/physiology , Excitatory Amino Acid Agonists/pharmacology
8.
J Proteome Res ; 23(7): 2419-2430, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38807289

ABSTRACT

Since 1998, California sea lion (Zalophus californianus) stranding events associated with domoic acid toxicosis (DAT) have consistently increased. Outside of direct measurement of domoic acid in bodily fluids at the time of stranding, there are no practical nonlethal clinical tests for the diagnosis of DAT that can be utilized in a rehabilitation facility. Proteomics analysis was conducted to discover candidate protein markers of DAT using cerebrospinal fluid from stranded California sea lions with acute DAT (n = 8), chronic DAT (n = 19), or without DAT (n = 13). A total of 2005 protein families were identified experiment-wide. A total of 83 proteins were significantly different in abundance across the three groups (adj. p < 0.05). MDH1, PLD3, ADAM22, YWHAG, VGF, and CLSTN1 could discriminate California sea lions with or without DAT (AuROC > 0.75). IGKV2D-28, PTRPF, KNG1, F2, and SNCB were able to discriminate acute DAT from chronic DAT (AuROC > 0.75). Proteins involved in alpha synuclein deposition were over-represented as classifiers of DAT, and many of these proteins have been implicated in a variety of neurodegenerative diseases. These proteins should be considered potential markers for DAT in California sea lions and should be prioritized for future validation studies as biomarkers.


Subject(s)
Biomarkers , Kainic Acid , Sea Lions , Animals , Kainic Acid/analogs & derivatives , Kainic Acid/toxicity , Biomarkers/cerebrospinal fluid , Proteomics/methods
9.
Brain Res ; 1838: 148991, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38754803

ABSTRACT

BACKGROUND: The study aimed to investigate the potential pharmacological and toxicological differences between Vigabatrin (VGB) and its enantiomers S-VGB and R-VGB. The researchers focused on the toxic effects and antiepileptic activity of these compounds in a rat model. METHODS: The epileptic rat model was established by intraperitoneal injection of kainic acid, and the antiepileptic activity of VGB, S-VGB, and VGB was observed, focusing on the improvements in seizure latency, seizure frequency and sensory, motor, learning and memory deficits in epileptic rats, as well as the hippocampal expression of key molecular associated with synaptic plasticity and the Wnt/ß-catenin/GSK 3ß signaling pathway. The acute toxic test was carried out and the LD50 was calculated, and tretinal damages in epileptic rats were also evaluated. RESULT: The results showed that S-VGB exhibited stronger antiepileptic and neuroprotective effects with lower toxicity compared to VGB raceme. These findings suggest that S-VGB and VGB may modulate neuronal damage, glial cell activation, and synaptic plasticity related to epilepsy through the Wnt/ß-catenin/GSK 3ß signaling pathway. The study provides valuable insights into the potential differential effects of VGB enantiomers, highlighting the potential of S-VGB as an antiepileptic drug with reduced side effects. CONCLUSION: S-VGB has the highest antiepileptic effect and lowest toxicity compared to VGB and R-VGB.


Subject(s)
Anticonvulsants , Epilepsy , Vigabatrin , Wnt Signaling Pathway , Animals , Anticonvulsants/pharmacology , Vigabatrin/pharmacology , Rats , Male , Epilepsy/drug therapy , Epilepsy/chemically induced , Stereoisomerism , Wnt Signaling Pathway/drug effects , Kainic Acid/toxicity , Rats, Sprague-Dawley , Seizures/chemically induced , Seizures/drug therapy , Hippocampus/drug effects , Hippocampus/metabolism , Neuronal Plasticity/drug effects , Disease Models, Animal , Neuroprotective Agents/pharmacology , Glycogen Synthase Kinase 3 beta/metabolism
10.
Neuroreport ; 35(10): 612-620, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38813900

ABSTRACT

Epilepsy is a common neurologic disorder. While a good clinical solution is still missing, studies have confirmed that exosomes (Exos) derived from adipose-derived stem cells (ADSCs) had a therapeutic effect on various diseases, including neurological diseases. Therefore, this study aimed to reveal whether ADSC-Exo treatment could improve kainic acid (KA)-induced seizures in epileptic mice. ADSCs and Exos were isolated. Mice were generated with KA-induced epileptic seizures. ELISA was used to detect inflammatory factor expression. Luciferase reporter analysis detection showed a relationship among miR-23b-3p, STAT1, and glyoxylate reductase 1 (GlyR1). ADSC-Exos had a protective effect on KA-induced seizures by inhibiting inflammatory factor expression and the M1 microglia phenotype. The result showed that miR-23b-3p played an important role in the Exo-mediated protective effect in KA-induced seizures in epileptic mice by regulating STAT1 and GlyR1. Luciferase reporter analysis confirmed that miR-23b-3p interacted with the 3'-UTR of STAT1 and GlyR1. The miR-23b-3p inhibited M1 microglia-mediated inflammatory factor expression in microglial cells by regulating STAT1 and GlyR1. The downregulation of miR-23b-3p decreased the protective effect of ADSC-Exos on KA-induced seizures in epileptic mice. The miR-23b-3p from ADSC-Exos alleviated inflammation in mice with KA-induced epileptic seizures.


Subject(s)
Exosomes , Inflammation , Kainic Acid , MicroRNAs , Seizures , Animals , Kainic Acid/toxicity , MicroRNAs/metabolism , MicroRNAs/genetics , Exosomes/metabolism , Mice , Inflammation/metabolism , Seizures/chemically induced , Seizures/metabolism , Male , Microglia/metabolism , Epilepsy/chemically induced , Epilepsy/metabolism , Epilepsy/therapy , STAT1 Transcription Factor/metabolism , Adipose Tissue/metabolism , Mice, Inbred C57BL
11.
Mar Pollut Bull ; 203: 116444, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705002

ABSTRACT

An efficient and sensitivity approach, which combines solid-phase extraction or ultrasonic extraction for pretreatment, followed by ultra-performance liquid chromatography-tandem mass spectrometry, has been established to simultaneously determine eight lipophilic phycotoxins and one hydrophilic phycotoxin in seawater, sediment and biota samples. The recoveries and matrix effects of target analytes were in the range of 61.6-117.3 %, 55.7-121.3 %, 57.5-139.9 % and 82.6 %-95.0 %, 85.8-106.8 %, 80.7 %-103.3 % in seawater, sediment, and biota samples, respectively. This established method revealed that seven, six and six phycotoxins were respectively detected in the Beibu Gulf, with concentrations ranging from 0.14 ng/L (okadaic acid, OA) to 26.83 ng/L (domoic acid, DA) in seawater, 0.04 ng/g (gymnodimine-A, GYM-A) to 2.75 ng/g (DA) in sediment and 0.01 ng/g (GYM-A) to 2.64 ng/g (domoic acid) in biota samples. These results suggest that the presented method is applicable for the simultaneous determination of trace marine lipophilic and hydrophilic phycotoxins in real samples.


Subject(s)
Biota , Environmental Monitoring , Marine Toxins , Seawater , Solid Phase Extraction , Marine Toxins/analysis , Environmental Monitoring/methods , Seawater/chemistry , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Tandem Mass Spectrometry , Hydrophobic and Hydrophilic Interactions , Kainic Acid/analogs & derivatives , Kainic Acid/analysis , Heterocyclic Compounds, 3-Ring , Hydrocarbons, Cyclic , Imines
12.
Epilepsia ; 65(7): 2099-2110, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38752982

ABSTRACT

OBJECTIVE: Seizures can be difficult to control in infants and toddlers. Seizures with periods of apnea and hypoventilation are common following severe traumatic brain injury (TBI). We previously observed that brief apnea with hypoventilation (A&H) in our severe TBI model acutely interrupted seizures. The current study is designed to determine the effect of A&H on subsequent seizures and whether A&H has potential therapeutic implications. METHODS: Piglets (1 week or 1 month old) received multifactorial injuries: cortical impact, mass effect, subdural hematoma, subarachnoid hemorrhage, and seizures induced with kainic acid. A&H (1 min apnea, 10 min hypoventilation) was induced either before or after seizure induction, or control piglets received subdural/subarachnoid hematoma and seizure without A&H. In an intensive care unit, piglets were sedated, intubated, and mechanically ventilated, and epidural electroencephalogram was recorded for an average of 18 h after seizure induction. RESULTS: In our severe TBI model, A&H after seizure reduced ipsilateral seizure burden by 80% compared to the same injuries without A&H. In the A&H before seizure induction group, more piglets had exclusively contralateral seizures, although most piglets in all groups had seizures that shifted location throughout the several hours of seizure. After 8-10 h, seizures transitioned to interictal epileptiform discharges regardless of A&H or timing of A&H. SIGNIFICANCE: Even brief A&H may alter traumatic seizures. In our preclinical model, we will address the possibility of hypercapnia with normoxia, with controlled intracranial pressure, as a therapeutic option for children with status epilepticus after hemorrhagic TBI.


Subject(s)
Apnea , Brain Injuries, Traumatic , Disease Models, Animal , Hypoventilation , Seizures , Animals , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/physiopathology , Swine , Seizures/etiology , Seizures/physiopathology , Hypoventilation/therapy , Hypoventilation/physiopathology , Hypoventilation/etiology , Apnea/physiopathology , Electroencephalography , Time Factors , Kainic Acid , Male
13.
Biomolecules ; 14(5)2024 May 16.
Article in English | MEDLINE | ID: mdl-38785996

ABSTRACT

Excitotoxicity is a common pathological process in neurological diseases caused by excess glutamate. The purpose of this study was to evaluate the effect of gypenoside XVII (GP-17), a gypenoside monomer, on the glutamatergic system. In vitro, in rat cortical nerve terminals (synaptosomes), GP-17 dose-dependently decreased glutamate release with an IC50 value of 16 µM. The removal of extracellular Ca2+ or blockade of N-and P/Q-type Ca2+ channels and protein kinase A (PKA) abolished the inhibitory effect of GP-17 on glutamate release from cortical synaptosomes. GP-17 also significantly reduced the phosphorylation of PKA, SNAP-25, and synapsin I in cortical synaptosomes. In an in vivo rat model of glutamate excitotoxicity induced by kainic acid (KA), GP-17 pretreatment significantly prevented seizures and rescued neuronal cell injury and glutamate elevation in the cortex. GP-17 pretreatment decreased the expression levels of sodium-coupled neutral amino acid transporter 1, glutamate synthesis enzyme glutaminase and vesicular glutamate transporter 1 but increased the expression level of glutamate metabolism enzyme glutamate dehydrogenase in the cortex of KA-treated rats. In addition, the KA-induced alterations in the N-methyl-D-aspartate receptor subunits GluN2A and GluN2B in the cortex were prevented by GP-17 pretreatment. GP-17 also prevented the KA-induced decrease in cerebral blood flow and arginase II expression. These results suggest that (i) GP-17, through the suppression of N- and P/Q-type Ca2+ channels and consequent PKA-mediated SNAP-25 and synapsin I phosphorylation, reduces glutamate exocytosis from cortical synaptosomes; and (ii) GP-17 has a neuroprotective effect on KA-induced glutamate excitotoxicity in rats through regulating synaptic glutamate release and cerebral blood flow.


Subject(s)
Cyclic AMP-Dependent Protein Kinases , Glutamic Acid , Gynostemma , Animals , Glutamic Acid/metabolism , Rats , Male , Gynostemma/chemistry , Cyclic AMP-Dependent Protein Kinases/metabolism , Rats, Sprague-Dawley , Synaptosomes/metabolism , Synaptosomes/drug effects , Neuroprotective Agents/pharmacology , Kainic Acid/toxicity , Seizures/chemically induced , Seizures/metabolism , Seizures/drug therapy , Seizures/prevention & control , Synapses/drug effects , Synapses/metabolism , Synaptosomal-Associated Protein 25/metabolism , Synapsins/metabolism , Phosphorylation/drug effects , Calcium/metabolism , Plant Extracts
14.
Epilepsia ; 65(7): 2082-2098, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38758110

ABSTRACT

OBJECTIVE: Animal and human studies have shown that the seizure-generating region is vastly dependent on distant neuronal hubs that can decrease duration and propagation of ongoing seizures. However, we still lack a comprehensive understanding of the impact of distant brain areas on specific interictal and ictal epileptic activities (e.g., isolated spikes, spike trains, seizures). Such knowledge is critically needed, because all kinds of epileptic activities are not equivalent in terms of clinical expression and impact on the progression of the disease. METHODS: We used surface high-density electroencephalography and multisite intracortical recordings, combined with pharmacological silencing of specific brain regions in the well-known kainate mouse model of temporal lobe epilepsy. We tested the impact of selective regional silencing on the generation of epileptic activities within a continuum ranging from very transient to more sustained and long-lasting discharges reminiscent of seizures. RESULTS: Silencing the contralateral hippocampus completely suppresses sustained ictal activities in the focus, as efficiently as silencing the focus itself, but whereas focus silencing abolishes all focus activities, contralateral silencing fails to control transient spikes. In parallel, we observed that sustained focus epileptiform discharges in the focus are preceded by contralateral firing and more strongly phase-locked to bihippocampal delta/theta oscillations than transient spiking activities, reinforcing the presumed dominant role of the contralateral hippocampus in promoting long-lasting, but not transient, epileptic activities. SIGNIFICANCE: Altogether, our work provides suggestive evidence that the contralateral hippocampus is necessary for the interictal to ictal state transition and proposes that crosstalk between contralateral neuronal activity and ipsilateral delta/theta oscillation could be a candidate mechanism underlying the progression from short- to long-lasting epileptic activities.


Subject(s)
Disease Models, Animal , Electroencephalography , Epilepsy, Temporal Lobe , Hippocampus , Kainic Acid , Animals , Epilepsy, Temporal Lobe/physiopathology , Epilepsy, Temporal Lobe/chemically induced , Mice , Hippocampus/physiopathology , Male , Mice, Inbred C57BL , Functional Laterality/physiology , Seizures/physiopathology , Seizures/chemically induced
15.
J Toxicol Sci ; 49(5): 231-240, 2024.
Article in English | MEDLINE | ID: mdl-38692910

ABSTRACT

Drug-induced convulsions are a major challenge to drug development because of the lack of reliable biomarkers. Using machine learning, our previous research indicated the potential use of an index derived from heart rate variability (HRV) analysis in non-human primates as a biomarker for convulsions induced by GABAA receptor antagonists. The present study aimed to explore the application of this methodology to other convulsants and evaluate its specificity by testing non-convulsants that affect the autonomic nervous system. Telemetry-implanted males were administered various convulsants (4-aminopyridine, bupropion, kainic acid, and ranolazine) at different doses. Electrocardiogram data gathered during the pre-dose period were employed as training data, and the convulsive potential was evaluated using HRV and multivariate statistical process control. Our findings show that the Q-statistic-derived convulsive index for 4-aminopyridine increased at doses lower than that of the convulsive dose. Increases were also observed for kainic acid and ranolazine at convulsive doses, whereas bupropion did not change the index up to the highest dose (1/3 of the convulsive dose). When the same analysis was applied to non-convulsants (atropine, atenolol, and clonidine), an increase in the index was noted. Thus, the index elevation appeared to correlate with or even predict alterations in autonomic nerve activity indices, implying that this method might be regarded as a sensitive index to fluctuations within the autonomic nervous system. Despite potential false positives, this methodology offers valuable insights into predicting drug-induced convulsions when the pharmacological profile is used to carefully choose a compound.


Subject(s)
4-Aminopyridine , Heart Rate , Machine Learning , Seizures , Animals , Male , Seizures/chemically induced , Heart Rate/drug effects , 4-Aminopyridine/adverse effects , Kainic Acid/toxicity , Convulsants/toxicity , Ranolazine , Bupropion/toxicity , Bupropion/adverse effects , Electrocardiography/drug effects , Dose-Response Relationship, Drug , Autonomic Nervous System/drug effects , Autonomic Nervous System/physiopathology , Telemetry , Biomarkers
16.
PLoS One ; 19(5): e0302470, 2024.
Article in English | MEDLINE | ID: mdl-38701101

ABSTRACT

Network oscillation in the anterior cingulate cortex (ACC) plays a key role in attention, novelty detection and anxiety; however, its involvement in cognitive impairment caused by acute systemic inflammation is unclear. To investigate the acute effects of systemic inflammation on ACC network oscillation and cognitive function, we analyzed cytokine level and cognitive performance as well as network oscillation in the mouse ACC Cg1 region, within 4 hours after lipopolysaccharide (LPS, 30 µg/kg) administration. While the interleukin-6 concentration in the serum was evidently higher in LPS-treated mice, the increases in the cerebral cortex interleukin-6 did not reach statistical significance. The power of kainic acid (KA)-induced network oscillation in the ACC Cg1 region slice preparation increased in LPS-treated mice. Notably, histamine, which was added in vitro, increased the oscillation power in the brain slices from LPS-untreated mice; for the LPS-treated mice, however, the effect of histamine was suppressive. In the open field test, frequency of entries into the center area showed a negative correlation with the power of network oscillation (0.3 µM of KA, theta band (3-8 Hz); 3.0 µM of KA, high-gamma band (50-80 Hz)). These results suggest that LPS-induced systemic inflammation results in increased network oscillation and a drastic change in histamine sensitivity in the ACC, accompanied by the robust production of systemic pro-inflammatory cytokines in the periphery, and that these alterations in the network oscillation and animal behavior as an acute phase reaction relate with each other. We suggest that our experimental setting has a distinct advantage in obtaining mechanistic insights into inflammatory cognitive impairment through comprehensive analyses of hormonal molecules and neuronal functions.


Subject(s)
Cognition , Gyrus Cinguli , Histamine , Inflammation , Lipopolysaccharides , Animals , Gyrus Cinguli/metabolism , Gyrus Cinguli/physiopathology , Inflammation/metabolism , Mice , Male , Histamine/blood , Histamine/metabolism , Kainic Acid , Interleukin-6/blood , Interleukin-6/metabolism , Behavior, Animal , Nerve Net/physiopathology , Mice, Inbred C57BL
17.
J Hazard Mater ; 472: 134541, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38714055

ABSTRACT

Domoic acid (DA)-producing algal blooms are a global marine environmental issue. However, there has been no previous research addressing the question regarding the fate of DA in marine benthic environments. In this work, we investigated the DA fate in the water-sediment microcosm via the integrative analysis of a top-down metabolic model, metagenome, and metabolome. Results demonstrated that biodegradation is the leading mechanism for the nonconservative attenuation of DA. Specifically, DA degradation was prominently completed by the sediment aerobic community, with a degradation rate of 0.0681 ± 0.00954 d-1. The DA degradation pathway included hydration, dehydrogenation, hydrolysis, decarboxylation, automatic ring opening of hydration, and ß oxidation reactions. Moreover, the reverse ecological analysis demonstrated that the microbial community transitioned from nutrient competition to metabolic cross-feeding during DA degradation, further enhancing the cooperation between DA degraders and other taxa. Finally, we reconstructed the metabolic process of microbial communities during DA degradation and confirmed that the metabolism of amino acid and organic acid drove the degradation of DA. Overall, our work not only elucidated the fate of DA in marine environments but also provided crucial insights for applying metabolic models and multi-omics to investigate the biotransformation of other contaminants.


Subject(s)
Biotransformation , Geologic Sediments , Kainic Acid , Marine Toxins , Kainic Acid/analogs & derivatives , Kainic Acid/metabolism , Geologic Sediments/microbiology , Marine Toxins/metabolism , Microbiota , Metabolome , Biodegradation, Environmental , Metagenome , Water Pollutants, Chemical/metabolism , Multiomics
18.
Hormones (Athens) ; 23(2): 321-329, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38625627

ABSTRACT

PURPOSE: The neuroprotective actions of the ovarian hormone 17ß-estradiol (E2) against different brain lesions have been constantly confirmed in a variety of models including kainic acid (KA) lesions. Similarly, the pituitary hormone prolactin (PRL), traditionally associated with lactogenesis, has recently been linked to a large diversity of functions, including neurogenesis, neuroprotection, and cognitive processes. While the mechanisms of actions of E2 as regards its neuroprotective and behavioral effects have been extensively explored, the molecular mechanisms of PRL related to these roles remain under investigation. The current study aimed to investigate whether the simultaneous administration of PRL and a low dose of E2 prevents the KA-induced cognitive deficit and if this action is associated with changes in hippocampal neuronal density. METHODS: Ovariectomized (OVX) rats were treated with saline, PRL, and/or E2 in the presence or absence of KA. Neuroprotection was assessed by Nissl staining and neuron counting. Memory was evaluated with the novel object recognition test (NOR). RESULTS: On their own, both PRL and E2 prevented short- and long-term memory deficits in lesioned animals and exerted neuroprotection against KA-induced excitotoxicity in the hippocampus. Interestingly, the combined hormonal treatment was superior to either of the treatments administered alone as regards improving both memory and neuronal survival. CONCLUSION: Taken together, these results point to a synergic effect of E2 and PRL in the hippocampus to produce their behavioral, proliferative, and neuroprotective effects.


Subject(s)
Estradiol , Hippocampus , Kainic Acid , Memory Disorders , Neuroprotective Agents , Ovariectomy , Prolactin , Animals , Kainic Acid/pharmacology , Estradiol/pharmacology , Female , Prolactin/pharmacology , Neuroprotective Agents/pharmacology , Hippocampus/drug effects , Hippocampus/pathology , Hippocampus/metabolism , Rats , Memory Disorders/prevention & control , Memory Disorders/drug therapy , Memory Disorders/chemically induced , Rats, Wistar , Drug Synergism , Neurons/drug effects , Neurons/pathology
19.
Free Radic Res ; 58(4): 276-292, 2024.
Article in English | MEDLINE | ID: mdl-38613520

ABSTRACT

It was demonstrated that ginsenosides exert anti-convulsive potentials and interleukin-6 (IL-6) is protective from excitotoxicity induced by kainate (KA), a model of temporal lobe epilepsy. Ginsenosides-mediated mitochondrial recovery is essential for attenuating KA-induced neurotoxicity, however, little is known about the effects of ginsenoside Re (GRe), one of the major ginsenosides. In this study, GRe significantly attenuated KA-induced seizures in mice. KA-induced redox changes were more evident in mitochondrial fraction than in cytosolic fraction in the hippocampus of mice. GRe significantly attenuated KA-induced mitochondrial oxidative stress (i.e. increases in reactive oxygen species, 4-hydroxynonenal, and protein carbonyl) and mitochondrial dysfunction (i.e. the increase in intra-mitochondrial Ca2+ and the decrease in mitochondrial membrane potential). GRe or mitochondrial protectant cyclosporin A restored phospho-signal transducers and activators of transcription 3 (STAT3) and IL-6 levels reduced by KA, and the effects of GRe were reversed by the JAK2 inhibitor AG490 and the mitochondrial toxin 3-nitropropionic acid (3-NP). Thus, we used IL-6 knockout (KO) mice to investigate whether the interaction between STAT3 and IL-6 is involved in the GRe effects. Importantly, KA-induced reduction of manganese superoxide dismutase (SOD-2) levels and neurodegeneration (i.e. astroglial inhibition, microglial activation, and neuronal loss) were more prominent in IL-6 KO than in wild-type (WT) mice. These KA-induced detrimental effects were attenuated by GRe in WT and, unexpectedly, IL-6 KO mice, which were counteracted by AG490 and 3-NP. Our results suggest that GRe attenuates KA-induced neurodegeneration via modulating mitochondrial oxidative burden, mitochondrial dysfunction, and STAT3 signaling in mice.


Subject(s)
Ginsenosides , Kainic Acid , Mitochondria , STAT3 Transcription Factor , Signal Transduction , Animals , Kainic Acid/toxicity , Mice , Mitochondria/metabolism , Mitochondria/drug effects , STAT3 Transcription Factor/metabolism , Ginsenosides/pharmacology , Signal Transduction/drug effects , Male , Mice, Knockout , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Oxidative Stress/drug effects
20.
J Chromatogr A ; 1721: 464849, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38564930

ABSTRACT

A novel fluorinated covalent organic polymer @ attapulgite composite (F-COP@ATP) was prepared at room temperature for in-syringe membrane solid-phase extraction (SM-SPE) of domoic acid (DA) in aquatic products. Natural ore ATP has the advantages of low cost, good mechanical strength and abundant hydroxyl group on its surface, and in-situ modified F-COP layer can provide abundant adsorption sites. F-COP@ATP combining the advantages of F-COP and ATP, becomes an ideal adsorbent for DA extracting. Moreover, a high-throughput sample preparation strategy was carried out by using the F-COP@ATP membrane as syringe filter and assembling syringes with a ten-channel injection pump. In addition, the experimental factors were optimized, such as pH of extract, amount of adsorbent, velocity of extraction and desorption, type and volume of desorption solvent. The DA analytical method was established by SM-SPE-HPLC/tandem mass spectrometry. The method had a wide linear range with low limit of detection (0.344 ng/kg) and low limit of quantification (1.14 ng/kg). F-COP@ATP membrane can be reused more than five times. The method realized the analysis of DA in scallop and razor clam samples, which shows its application prospect in practical analysis. This study provided an efficient, low-energy and mild idea for preparing other reusable natural mineral ATP-based composite materials for separation and enrichment, which reduces the experimental cost and is closer to environmental protection and green chemistry to a certain extent.


Subject(s)
Fluorocarbon Polymers , Kainic Acid/analogs & derivatives , Magnesium Compounds , Silicon Compounds , Solid Phase Extraction , Temperature , Chromatography, High Pressure Liquid/methods , Solid Phase Extraction/methods , Adenosine Triphosphate
SELECTION OF CITATIONS
SEARCH DETAIL
...