Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 677
Filter
1.
J Cell Sci ; 137(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38841902

ABSTRACT

The model of RNA stability has undergone a transformative shift with the revelation of a cytoplasmic capping activity that means a subset of transcripts are recapped autonomously of their nuclear counterparts. The present study demonstrates nucleo-cytoplasmic shuttling of the mRNA-capping enzyme (CE, also known as RNA guanylyltransferase and 5'-phosphatase; RNGTT), traditionally acknowledged for its nuclear localization and functions, elucidating its contribution to cytoplasmic capping activities. A unique nuclear export sequence in CE mediates XPO1-dependent nuclear export of CE. Notably, during sodium arsenite-induced oxidative stress, cytoplasmic CE (cCE) congregates within stress granules (SGs). Through an integrated approach involving molecular docking and subsequent co-immunoprecipitation, we identify eIF3b, a constituent of SGs, as an interactive associate of CE, implying that it has a potential role in guiding cCE to SGs. We measured the cap status of specific mRNA transcripts from U2OS cells that were non-stressed, stressed and recovered from stress, which indicated that cCE-target transcripts lost their caps during stress but remarkably regained cap stability during the recovery phase. This comprehensive study thus uncovers a novel facet of cytoplasmic CE, which facilitates cellular recovery from stress by maintaining cap homeostasis of target mRNAs.


Subject(s)
Cytoplasm , Homeostasis , RNA, Messenger , Stress Granules , Humans , RNA, Messenger/metabolism , RNA, Messenger/genetics , Stress Granules/metabolism , Cytoplasm/metabolism , RNA Caps/metabolism , Arsenites/pharmacology , Oxidative Stress , Active Transport, Cell Nucleus , RNA Nucleotidyltransferases/metabolism , RNA Nucleotidyltransferases/genetics , Sodium Compounds/pharmacology , Exportin 1 Protein , Karyopherins/metabolism , Karyopherins/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Cytoplasmic Granules/metabolism , RNA Stability , Cell Nucleus/metabolism , Cell Line, Tumor , Nucleotidyltransferases
2.
PLoS One ; 19(5): e0302786, 2024.
Article in English | MEDLINE | ID: mdl-38722973

ABSTRACT

A role for exportin 4 (XPO4) in the pathogenesis of liver fibrosis was recently identified. We sought to determine changes in hepatic XPO4 promoter methylation levels during liver fibrosis. The quantitative real-time RT-PCR technique was used to quantify the mRNA level of XPO4. Additionally, pyrosequencing was utilized to assess the promoter methylation status of XPO4. The methylation rate of the XPO4 promoter was significantly increased with fibrosis in human and mouse models, while XPO4 mRNA expression negatively correlated with methylation of its promoter. DNA methyltransferases (DNMTs) levels (enzymes that drive DNA methylation) were upregulated in patients with liver fibrosis compared to healthy controls and in hepatic stellate cells upon transforming growth factor beta (TGFß) stimulation. The DNA methylation inhibitor 5-Aza or specific siRNAs for these DNMTs led to restoration of XPO4 expression. The process of DNA methylation plays a crucial role in the repression of XPO4 transcription in the context of liver fibrosis development.


Subject(s)
DNA Methylation , Karyopherins , Liver Cirrhosis , Promoter Regions, Genetic , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Humans , Karyopherins/genetics , Karyopherins/metabolism , Animals , Mice , Male , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Mice, Inbred C57BL
3.
FASEB J ; 38(10): e23666, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38780091

ABSTRACT

Genome-wide association studies have identified many single nucleotide polymorphisms (SNPs) associated with erythrocyte traits. However, the functional variants and their working mechanisms remain largely unknown. Here, we reported that the SNP of rs80207740, which was associated with red blood cell (RBC) volume and hemoglobin content across populations, conferred enhancer activity to XPO7 gene via allele-differentially binding to Ikaros family zinc finger 1 (IKZF1). We showed that the region around rs80207740 was an erythroid-specific enhancer using reporter assays, and that the G-allele further enhanced activity. 3D genome evidence showed that the enhancer interacted with the XPO7 promoter, and eQTL analysis suggested that the G-allele upregulated expression of XPO7. We further showed that the rs80207740-G allele facilitated the binding of transcription factor IKZF1 in EMSA and ChIP analyses. Knockdown of IKZF1 and GATA1 resulted in decreased expression of Xpo7 in both human and mouse erythroid cells. Finally, we constructed Xpo7 knockout mouse by CRISPR/Cas9 and observed anemic phenotype with reduced volume and hemoglobin content of RBC, consistent to the effect of rs80207740 on erythrocyte traits. Overall, our study demonstrated that rs80207740 modulated erythroid indices by regulating IKZF1 binding and Xpo7 expression.


Subject(s)
Alleles , Erythrocytes , Genome-Wide Association Study , Ikaros Transcription Factor , Polymorphism, Single Nucleotide , Ikaros Transcription Factor/genetics , Ikaros Transcription Factor/metabolism , Humans , Animals , Mice , Erythrocytes/metabolism , Karyopherins/genetics , Karyopherins/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Promoter Regions, Genetic
4.
Mol Plant ; 17(6): 884-899, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38693693

ABSTRACT

Stress-induced retrograde signal transmission from the plastids to the nucleus has long puzzled plant biologists. To address this, we performed a suppressor screen of the ceh1 mutant, which contains elevated 2-C-methyl-d-erythritol-2,4-cyclopyrophosphate (MEcPP) levels, and identified the gain-of-function mutant impα-9, which shows reversed dwarfism and suppressed expression of stress-response genes in the ceh1 background despite heightened MEcPP. Subsequent genetic and biochemical analyses established that the accumulation of MEcPP initiates an upsurge in Arabidopsis SKP1-like 1 (ASK1) abundance, a pivotal component in the proteasome degradation pathway. This increase in ASK1 prompts the degradation of IMPα-9. Moreover, we uncovered a protein-protein interaction between IMPα-9 and TPR2, a transcriptional co-suppressor and found that a reduction in IMPα-9 levels coincides with a decrease in TPR2 abundance. Significantly, the interaction between IMPα-9 and TPR2 was disrupted in impα-9 mutants, highlighting the critical role of a single amino acid alteration in maintaining their association. Disruption of their interaction results in the reversal of MEcPP-associated phenotypes. Chromatin immunoprecipitation coupled with sequencing analyses revealed that TPR2 binds globally to stress-response genes and suggested that IMPα-9 associates with the chromatin. They function together to suppress the expression of stress-response genes under normal conditions, but this suppression is alleviated in response to stress through the degradation of the suppressing machinery. The biological relevance of our discoveries was validated under high light stress, marked by MEcPP accumulation, elevated ASK1 levels, IMPα-9 degredation, reduced TPR2 abundance, and subsequent activation of a network of stress-response genes. In summary, our study collectively unveils fresh insights into plant adaptive mechanisms, highlighting intricate interactions among retrograde signaling, the proteasome, and nuclear transport machinery.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Signal Transduction , Stress, Physiological , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Stress, Physiological/genetics , Cell Nucleus/metabolism , Karyopherins/metabolism , Karyopherins/genetics , Protein Binding
5.
Commun Biol ; 7(1): 426, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589567

ABSTRACT

Wilms tumor (WT) is the most common renal malignancy of childhood. Despite improvements in the overall survival, relapse occurs in ~15% of patients with favorable histology WT (FHWT). Half of these patients will succumb to their disease. Identifying novel targeted therapies remains challenging in part due to the lack of faithful preclinical in vitro models. Here we establish twelve patient-derived WT cell lines and demonstrate that these models faithfully recapitulate WT biology using genomic and transcriptomic techniques. We then perform loss-of-function screens to identify the nuclear export gene, XPO1, as a vulnerability. We find that the FDA approved XPO1 inhibitor, KPT-330, suppresses TRIP13 expression, which is required for survival. We further identify synergy between KPT-330 and doxorubicin, a chemotherapy used in high-risk FHWT. Taken together, we identify XPO1 inhibition with KPT-330 as a potential therapeutic option to treat FHWTs and in combination with doxorubicin, leads to durable remissions in vivo.


Subject(s)
Hydrazines , Kidney Neoplasms , Triazoles , Wilms Tumor , Humans , Exportin 1 Protein , Active Transport, Cell Nucleus , Karyopherins/genetics , Karyopherins/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Cell Line, Tumor , Apoptosis , Neoplasm Recurrence, Local , Doxorubicin/pharmacology , Wilms Tumor/drug therapy , Wilms Tumor/genetics , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , ATPases Associated with Diverse Cellular Activities/metabolism , Cell Cycle Proteins/metabolism
6.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 241-247, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38650127

ABSTRACT

Oral squamous cell carcinoma (OSCC) is a common malignant tumor. Importin7 (IPO7) is responsible for nucleoplasmic transport of RNAs and proteins, and it has been confirmed to be involved in the development of human cancers. This study aimed to explore the function and mechanism of IPO7 in OSCC. IPO7 expression in tissues and cells was determined by RT-qPCR. Cell proliferative, migratory, and invasive capabilities were detected through transwell assay and colony formation assay. Mice xenograft models were established for evaluating tumor growth. Autophagy was estimated by the LC3 levels in cells through western blot and immunofluorescence (IF). Western blot was utilized to detect the key proteins in PERK/EIF2AK3/ATF4 pathway for assessing the endoplasmic reticulum stress (ERS). The interaction of IPO7 and homeobox A10 (HOXA10) was tested by GST pull-down assay and Co-IP assay. ChIP assay and luciferase reporter assay were utilized to determine the combination of HOXA10 and EIF2AK3. We proved that IPO7 was upregulated in OSCC tissues and cells, and its depletion reduced cell proliferation, migration, invasion and tumor growth. Furthermore, LC3 expression in cells was found to be reduced by IPO7 knockdown. IPO7 promoted OSCC tumor metastasis by activating autophagy. Additionally, we discovered that IPO7 could regulate ERS by activating the PERK/ATF4 pathway. EIF2AK3 upregulation can promote cell autophagy. Furthermore, IPO7 was proven to promote nuclear translocation of HOXA10 in cells. EIF2AK3 promoter can bind to HOXA10. Rescue assay confirmed that HOXA10 upregulation can reverse the effect of IPO7 silencing on OSCC progression. IPO7 can enhance proliferation, migration, invasion, and autophagy by nuclear translocation of HOXA10 and the activation of EIF2AK3/ATF4 pathway in OSCC.


Subject(s)
Autophagy , Carcinoma, Squamous Cell , Cell Movement , Cell Nucleus , Cell Proliferation , Homeobox A10 Proteins , Homeodomain Proteins , Mouth Neoplasms , alpha Karyopherins , eIF-2 Kinase , Humans , Autophagy/genetics , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Mouth Neoplasms/genetics , Animals , Cell Line, Tumor , Cell Proliferation/genetics , eIF-2 Kinase/metabolism , eIF-2 Kinase/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/genetics , Cell Movement/genetics , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Cell Nucleus/metabolism , Mice , Endoplasmic Reticulum Stress/genetics , Gene Expression Regulation, Neoplastic , Mice, Nude , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 4/genetics , Signal Transduction , Karyopherins/metabolism , Karyopherins/genetics , Male , Mice, Inbred BALB C , Female , Neoplasm Invasiveness
7.
Nature ; 627(8002): 212-220, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38355801

ABSTRACT

Circular RNAs (circRNAs), which are increasingly being implicated in a variety of functions in normal and cancerous cells1-5, are formed by back-splicing of precursor mRNAs in the nucleus6-10. circRNAs are predominantly localized in the cytoplasm, indicating that they must be exported from the nucleus. Here we identify a pathway that is specific for the nuclear export of circular RNA. This pathway requires Ran-GTP, exportin-2 and IGF2BP1. Enhancing the nuclear Ran-GTP gradient by depletion or chemical inhibition of the major protein exporter CRM1 selectively increases the nuclear export of circRNAs, while reducing the nuclear Ran-GTP gradient selectively blocks circRNA export. Depletion or knockout of exportin-2 specifically inhibits nuclear export of circRNA. Analysis of nuclear circRNA-binding proteins reveals that interaction between IGF2BP1 and circRNA is enhanced by Ran-GTP. The formation of circRNA export complexes in the nucleus is promoted by Ran-GTP through its interactions with exportin-2, circRNA and IGF2BP1. Our findings demonstrate that adaptors such as IGF2BP1 that bind directly to circular RNAs recruit Ran-GTP and exportin-2 to export circRNAs in a mechanism that is analogous to protein export, rather than mRNA export.


Subject(s)
Active Transport, Cell Nucleus , Cell Nucleus , RNA Transport , RNA, Circular , Active Transport, Cell Nucleus/physiology , Cell Nucleus/metabolism , Guanosine Triphosphate/metabolism , Karyopherins/antagonists & inhibitors , Karyopherins/deficiency , Karyopherins/genetics , Karyopherins/metabolism , Nuclear Proteins/metabolism , ran GTP-Binding Protein/metabolism , RNA, Circular/metabolism , RNA Precursors/genetics , RNA Precursors/metabolism , RNA-Binding Proteins/metabolism , Exportin 1 Protein/metabolism , Protein Transport
8.
IUBMB Life ; 76(1): 4-25, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37623925

ABSTRACT

Systemic modalities are crucial in the management of disseminated malignancies and liquid tumours. However, patient responses and tolerability to treatment are generally poor and those that enter remission often return with refractory disease. Combination therapies provide a methodology to overcome chemoresistance mechanisms and address dose-limiting toxicities. A deeper understanding of tumorigenic processes at the molecular level has brought a targeted therapy approach to the forefront of cancer research, and novel cancer biomarkers are being identified at a rapid rate, with some showing potential therapeutic benefits. The Karyopherin superfamily of proteins is soluble receptors that mediate nucleocytoplasmic shuttling of proteins and RNAs, and recently, nuclear transport receptors have been recognized as novel anticancer targets. Inhibitors against nuclear export have been approved for clinical use against certain cancer types, whereas inhibitors against nuclear import are in preclinical stages of investigation. Mechanistically, targeting nucleocytoplasmic shuttling has shown to abrogate oncogenic signalling and restore tumour suppressor functions through nuclear sequestration of relevant proteins and mRNAs. Hence, nuclear transport inhibitors display broad spectrum anticancer activity and harbour potential to engage in synergistic interactions with a wide array of cytotoxic agents and other targeted agents. This review is focussed on the most researched nuclear transport receptors in the context of cancer, XPO1 and KPNB1, and highlights how inhibitors targeting these receptors can enhance the therapeutic efficacy of standard of care therapies and novel targeted agents in a combination therapy approach. Furthermore, an updated review on the therapeutic targeting of lesser characterized karyopherin proteins is provided and resistance to clinically approved nuclear export inhibitors is discussed.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Active Transport, Cell Nucleus/physiology , Exportin 1 Protein , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Karyopherins/genetics , Karyopherins/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Drug Therapy, Combination
9.
New Phytol ; 241(5): 2075-2089, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38095260

ABSTRACT

Nuclear-cytoplasmic trafficking is crucial for protein synthesis in eukaryotic cells due to the spatial separation of transcription and translation by the nuclear envelope. However, the mechanism underlying this process remains largely unknown in plants. In this study, we isolated a maize (Zea mays) mutant designated developmentally delayed kernel 1 (ddk1), which exhibits delayed seed development and slower filling. Ddk1 encodes a plant-specific protein known as Importin-4 ß, and its mutation results in reduced 80S monosomes and suppressed protein synthesis. Through our investigations, we found that DDK1 interacts with eIF1A proteins in vivo. However, in vitro experiments revealed that this interaction exhibits low affinity in the absence of RanGTP. Additionally, while the eIF1A protein primarily localizes to the cytoplasm in the wild-type, it remains significantly retained within the nuclei of ddk1 mutants. These observations suggest that DDK1 functions as an exportin and collaborates with RanGTP to facilitate the nuclear export of eIF1A, consequently regulating endosperm development at the translational level. Importantly, both DDK1 and eIF1A are conserved among various plant species, implying the preservation of this regulatory module across diverse plants.


Subject(s)
Seeds , Zea mays , Active Transport, Cell Nucleus , Zea mays/metabolism , Seeds/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Karyopherins/genetics , Karyopherins/metabolism , Edible Grain/metabolism
10.
Cancer Lett ; 580: 216486, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37984724

ABSTRACT

Multiple myeloma (MM) is an incurable haematological cancer. Selinexor is the first-in-class selective inhibitor of nuclear export (SINE) and was newly approved for the treatment of MM. Until now, very few studies have investigated selinexor resistance in MM. Heterogeneous nuclear ribonucleoprotein U (hnRNPU) is an RNA-binding protein and a component of hnRNP complexes. Here we found that hnRNPU regulates MM sensitivity to selinexor. Cell apoptosis assays were performed to compare selinexor-induced cell death in control knockdown (CTR-KD) and hnRNPU knockdown (hnR-KD) MM cells. HnRNPU knockdown-induced nuclear protein retention was examined by proteomics array. HnRNPU-conferred mRNA translation regulation was evaluated by sucrose gradient assay, RNA electrophoresis mobility shift assay, and RNA pull-down assay. We found that hnR-KD MM cells were more sensitive to selinexor-induced cell death in vitro and in mouse model. MM patients who responded to selinexor had relatively low hnRNPU expression. In brief, hnRNPU comprehensively regulated MM sensitivity to selinexor by affecting the localization of LTV1 and NMD3, and mRNA translation of MDM2 and RAN, which were involved in XPO1-mediated nuclear export of ribosome subunits and tumor suppressors. Our discoveries indicate that hnRNPU might be a possible marker to categorize MM patients for the use of Selinexor.


Subject(s)
Multiple Myeloma , Animals , Humans , Mice , Cell Line, Tumor , Heterogeneous-Nuclear Ribonucleoprotein U , Hydrazines/pharmacology , Karyopherins/genetics , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Multiple Myeloma/metabolism , RNA , RNA-Binding Proteins/genetics
11.
PLoS Genet ; 19(11): e1011026, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37948444

ABSTRACT

The meiotic recombination checkpoint reinforces the order of events during meiotic prophase I, ensuring the accurate distribution of chromosomes to the gametes. The AAA+ ATPase Pch2 remodels the Hop1 axial protein enabling adequate levels of Hop1-T318 phosphorylation to support the ensuing checkpoint response. While these events are localized at chromosome axes, the checkpoint activating function of Pch2 relies on its cytoplasmic population. In contrast, forced nuclear accumulation of Pch2 leads to checkpoint inactivation. Here, we reveal the mechanism by which Pch2 travels from the cell nucleus to the cytoplasm to maintain Pch2 cellular homeostasis. Leptomycin B treatment provokes the nuclear accumulation of Pch2, indicating that its nucleocytoplasmic transport is mediated by the Crm1 exportin recognizing proteins containing Nuclear Export Signals (NESs). Consistently, leptomycin B leads to checkpoint inactivation and impaired Hop1 axial localization. Pch2 nucleocytoplasmic traffic is independent of its association with Zip1 and Orc1. We also identify a functional NES in the non-catalytic N-terminal domain of Pch2 that is required for its nucleocytoplasmic trafficking and proper checkpoint activity. In sum, we unveil another layer of control of Pch2 function during meiosis involving nuclear export via the exportin pathway that is crucial to maintain the critical balance of Pch2 distribution among different cellular compartments.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae Proteins/genetics , Meiosis/genetics , Saccharomyces cerevisiae/genetics , Active Transport, Cell Nucleus/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , DNA-Binding Proteins/genetics , Karyopherins/genetics , Karyopherins/metabolism , Homeostasis
12.
Signal Transduct Target Ther ; 8(1): 425, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37945593

ABSTRACT

Proper subcellular localization is crucial for the functioning of biomacromolecules, including proteins and RNAs. Nuclear transport is a fundamental cellular process that regulates the localization of many macromolecules within the nuclear or cytoplasmic compartments. In humans, approximately 60 proteins are involved in nuclear transport, including nucleoporins that form membrane-embedded nuclear pore complexes, karyopherins that transport cargoes through these complexes, and Ran system proteins that ensure directed and rapid transport. Many of these nuclear transport proteins play additional and essential roles in mitosis, biomolecular condensation, and gene transcription. Dysregulation of nuclear transport is linked to major human diseases such as cancer, neurodegenerative diseases, and viral infections. Selinexor (KPT-330), an inhibitor targeting the nuclear export factor XPO1 (also known as CRM1), was approved in 2019 to treat two types of blood cancers, and dozens of clinical trials of are ongoing. This review summarizes approximately three decades of research data in this field but focuses on the structure and function of individual nuclear transport proteins from recent studies, providing a cutting-edge and holistic view on the role of nuclear transport proteins in health and disease. In-depth knowledge of this rapidly evolving field has the potential to bring new insights into fundamental biology, pathogenic mechanisms, and therapeutic approaches.


Subject(s)
Neoplasms , Receptors, Cytoplasmic and Nuclear , Humans , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/therapeutic use , Active Transport, Cell Nucleus/genetics , Karyopherins/genetics , Karyopherins/metabolism , Karyopherins/therapeutic use , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism , Neoplasms/metabolism , ran GTP-Binding Protein
13.
Ulus Travma Acil Cerrahi Derg ; 29(11): 1228-1236, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37889026

ABSTRACT

BACKGROUND: This study aims to investigate whether the expression levels of proteins involved in microRNA (miRNA) biogenesis vary in early- and late-stage traumatic brain injury (TBI) patients and to evaluate its effect on prognosis. METHODS: Dicer, Drosha, DiGeorge Syndrome Critical Region eight (DGCR8), Exportin5 (XPO5), and Argonaute2 (AGO2) levels were measured in the blood samples of severe TBI patients collected 4-6 h and 72 h after the trauma and compared with the control group. Prognostic follow-up of the patients was performed using the Glasgow Coma Scale score. RESULTS: There were no statistically significant changes in the expression of the miRNA biogenesis proteins Dicer, Drosha, DGCR8, XPO5, and AGO2 in patients with severe TBI. However, the expression of Dicer increased in the patients who improved from the severe TBI grade to the mild TBI grade, and the expression of AGO2 decreased in most of these patients. The Dicer expression profile was found to increase in patients discharged from the intensive care unit in a short time. CONCLUSION: MicroRNAs and their biogenesis proteins may guide prognostic and therapeutic decisions for patients with TBI in the future.


Subject(s)
Brain Injuries, Traumatic , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA-Binding Proteins/genetics , Prognosis , Brain Injuries, Traumatic/genetics , Karyopherins/genetics , Karyopherins/metabolism
14.
Nucleic Acids Res ; 51(18): 9849-9862, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37655623

ABSTRACT

MicroRNAs (miRNAs) are small non-coding RNAs first discovered in Caenorhabditis elegans. The let-7 miRNA is highly conserved in sequence, biogenesis and function from C. elegans to humans. During miRNA biogenesis, XPO5-mediated nuclear export of pre-miRNAs is a rate-limiting step and, therefore, might be critical for the quantitative control of miRNA levels, yet little is known about how this is regulated. Here we show a novel role for lipid kinase PPK-1/PIP5K1A (phosphatidylinositol-4-phosphate 5-kinase) in regulating miRNA levels. We found that C. elegans PPK-1 functions in the lin-28/let-7 heterochronic pathway, which regulates the strict developmental timing of seam cells. In C. elegans and human cells, PPK-1/PIP5K1A regulates let-7 miRNA levels. We investigated the mechanism further in human cells and show that PIP5K1A interacts with nuclear export protein XPO5 in the nucleus to regulate mature miRNA levels by blocking the binding of XPO5 to pre-let-7 miRNA. Furthermore, we demonstrate that this role for PIP5K1A is kinase-independent. Our study uncovers the novel finding of a direct connection between PIP5K1A and miRNA biogenesis. Given that miRNAs are implicated in multiple diseases, including cancer, this new finding might lead to a novel therapeutic opportunity.


Subject(s)
Karyopherins , MicroRNAs , Phosphotransferases (Alcohol Group Acceptor) , Animals , Humans , Active Transport, Cell Nucleus , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Karyopherins/genetics , Karyopherins/metabolism , Lipids , MicroRNAs/genetics , MicroRNAs/metabolism , Nuclear Proteins/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism
15.
Microbiol Res ; 277: 127487, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37713908

ABSTRACT

Acetic acid tolerance of Saccharomyces cerevisiae is an important trait in sourdough fermentation processes, where the accumulation of acid by the growth of lactic acid bacteria reduces the yeast metabolic activity. In this work, we have carried out adaptive laboratory evolution (ALE) experiments in two sourdough isolates of S. cerevisiae exposed to acetic acid, or alternatively to acetic acid and myriocin, an inhibitor of sphingolipid biosynthesis that sped-up the evolutionary adaptation. Evolution approaches resulted in acetic tolerance, and surprisingly, increased lactic susceptibility. Four evolved clones, one from each parental strain and evolutionary scheme, were selected on the basis of their potential for CO2 production in sourdough conditions. Among them, two showed phenotypic instability characterized by strong lactic sensitivity after several rounds of growth under unstressed conditions, while two others, displayed increased constitutive acetic tolerance with no loss of growth in lactic medium. Genome sequencing and ploidy level analysis of all strains revealed aneuploidies, which could account for phenotypic heterogeneity. In addition, copy number variations (CNVs), affecting specially to genes involved in ion transport or flocculation, and single nucleotide polymorphisms (SNPs) were identified. Mutations in several genes, ARG82, KEX1, CTK1, SPT20, IRA2, ASG1 or GIS4, were confirmed as involved in acetic and/or lactic tolerance, and new determinants of these phenotypes, MSN5 and PSP2, identified.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Acetic Acid/metabolism , Acetic Acid/pharmacology , DNA Copy Number Variations , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Fermentation , Phenotype , Karyopherins/genetics , Karyopherins/metabolism
16.
G3 (Bethesda) ; 13(10)2023 09 30.
Article in English | MEDLINE | ID: mdl-37548268

ABSTRACT

Teopod1 (Tp1), Teopod2 (Tp2), and Early phase change (Epc) have profound effects on the timing of vegetative phase change in maize. Gain-of-function mutations in Tp1 and Tp2 delay all known phase-specific vegetative traits, whereas loss-of-function mutations in Epc accelerate vegetative phase change and cause shoot abortion in some genetic backgrounds. Here, we show that Tp1 and Tp2 likely represent cis-acting mutations that cause the overexpression of Zma-miR156j and Zma-miR156h, respectively. Epc is the maize ortholog of HASTY, an Arabidopsis gene that stabilizes miRNAs and promotes their intercellular movement. Consistent with its pleiotropic phenotype and epistatic interaction with Tp1 and Tp2, epc reduces the levels of miR156 and several other miRNAs.


Subject(s)
Arabidopsis Proteins , Arabidopsis , MicroRNAs , Zea mays/genetics , Mutation , Arabidopsis/genetics , Genes, Plant , MicroRNAs/genetics , Gene Expression Regulation, Plant , Karyopherins/genetics , Arabidopsis Proteins/genetics
17.
Nat Commun ; 14(1): 4312, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37463913

ABSTRACT

Severe forms of dilated cardiomyopathy (DCM) are associated with point mutations in the alternative splicing regulator RBM20 that are frequently located in the arginine/serine-rich domain (RS-domain). Such mutations can cause defective splicing and cytoplasmic mislocalization, which leads to the formation of detrimental cytoplasmic granules. Successful development of personalized therapies requires identifying the direct mechanisms of pathogenic RBM20 variants. Here, we decipher the molecular mechanism of RBM20 mislocalization and its specific role in DCM pathogenesis. We demonstrate that mislocalized RBM20 RS-domain variants retain their splice regulatory activity, which reveals that aberrant cellular localization is the main driver of their pathological phenotype. A genome-wide CRISPR knockout screen combined with image-enabled cell sorting identified Transportin-3 (TNPO3) as the main nuclear importer of RBM20. We show that the direct RBM20-TNPO3 interaction involves the RS-domain, and is disrupted by pathogenic variants. Relocalization of pathogenic RBM20 variants to the nucleus restores alternative splicing and dissolves cytoplasmic granules in cell culture and animal models. These findings provide proof-of-principle for developing therapeutic strategies to restore RBM20's nuclear localization in RBM20-DCM patients.


Subject(s)
Cardiomyopathy, Dilated , Animals , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/pathology , RNA Splicing/genetics , Alternative Splicing/genetics , Mutation , Karyopherins/genetics
18.
Cell Rep ; 42(8): 112884, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37516964

ABSTRACT

NUP98 and NUP214 form chimeric fusion proteins that assemble into phase-separated nuclear bodies containing CRM1, a nuclear export receptor. However, these nuclear bodies' function in controlling gene expression remains elusive. Here, we demonstrate that the nuclear bodies of NUP98::HOXA9 and SET::NUP214 promote the condensation of mixed lineage leukemia 1 (MLL1), a histone methyltransferase essential for the maintenance of HOX gene expression. These nuclear bodies are robustly associated with MLL1/CRM1 and co-localized on chromatin. Furthermore, whole-genome chromatin-conformation capture analysis reveals that NUP98::HOXA9 induces a drastic alteration in high-order genome structure at target regions concomitant with the generation of chromatin loops and/or rearrangement of topologically associating domains in a phase-separation-dependent manner. Collectively, these results show that the phase-separated nuclear bodies of nucleoporin fusion proteins can enhance the activation of target genes by promoting the condensation of MLL1/CRM1 and rearrangement of the 3D genome structure.


Subject(s)
Leukemia , Nuclear Pore Complex Proteins , Humans , Nuclear Pore Complex Proteins/metabolism , Karyopherins/genetics , Karyopherins/metabolism , Homeodomain Proteins/metabolism , Leukemia/metabolism , Chromatin , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Nuclear Bodies
19.
Dev Cell ; 58(13): 1206-1217.e4, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37290444

ABSTRACT

In eukaryotes, transcription factors are a crucial element in the regulation of gene expression, and nuclear translocation is the key to the function of transcription factors. Here, we show that the long intergenic noncoding RNA ARTA interacts with an importin ß-like protein, SAD2, through a long noncoding RNA-binding region embedded in the carboxyl terminal, and then it blocks the import of the transcription factor MYB7 into the nucleus. Abscisic acid (ABA)-induced ARTA expression can positively regulate ABI5 expression by fine-tuning MYB7 nuclear trafficking. Therefore, the mutation of arta represses ABI5 expression, resulting in desensitization to ABA, thereby reducing Arabidopsis drought tolerance. Our results demonstrate that lncRNA can hijack a nuclear trafficking receptor to modulate the nuclear import of a transcription factor during plant responses to environmental stimuli.


Subject(s)
Arabidopsis Proteins , Arabidopsis , RNA, Long Noncoding , Arabidopsis/metabolism , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , beta Karyopherins/genetics , Gene Expression Regulation, Plant , Germination/genetics , Seeds/metabolism , Karyopherins/genetics , Karyopherins/metabolism
20.
Rom J Intern Med ; 61(3): 154-162, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37311119

ABSTRACT

INTRODUCTION: Venous thromboembolism (VTE) is the third most common hemostatic disease worldwide. Studies have reported a role for microRNA (miRNA) in the homeostasis and development of VTE. The ras-related nuclear protein (RAN) and exportin 5 (XPO5) genes are involved in miRNA biogenesis, as both regulate the transport of pre-miRNA from the nucleus to the cytoplasm. Therefore, the aim of the current study is to examine the association between RAN (rs14035) and XPO5 (rs11077) single nucleotide polymorphisms (SNPs) and VTE. METHODS: The study sample consisted of 300 subjects (150 patients and 150 age and sex matched controls). The polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and tetra-primer amplification refractory mutation system (T-ARMS) techniques were used to genotype rs14035 and rs11077, respectively. RESULTS: The results showed that there was a significant association between the XPO5 rs11077 and the risk of VTE (P < 0.05). Subjects with AC (OR: 2.08, CI:1.26-3.44) and CC (OR: 1.77, CI: 0.88-3.55) genotypes were at increased risk of the developing VTE. Regarding RAN gene, no association was found between rs14035 and VTE (P > 0.05). In addition, no associations were found between XPO5 rs11077 and RAN rs14035 genotypes with blood cell parameters (P > 0.05). As for the demographic characteristics, the results indicated a strong association between family history and body mass index (BMI) with the risk of VTE (P < 0.01). CONCLUSION: The XPO5 rs11077, BMI and family history might contribute to the development of VTE in Jordan.


Subject(s)
MicroRNAs , Venous Thromboembolism , Humans , Case-Control Studies , Genetic Predisposition to Disease , Genotype , Karyopherins/genetics , MicroRNAs/genetics , Polymorphism, Single Nucleotide , ran GTP-Binding Protein/genetics , ran GTP-Binding Protein/metabolism , Venous Thromboembolism/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...