Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30.819
Filter
1.
Arch Dermatol Res ; 316(7): 341, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847867

ABSTRACT

Topical tirbanibulin is a highly effective and well tolerated novel treatment option for actinic keratoses (AKs). This study aimed to characterize the mode of action of tirbanibulin in keratinocytes (NHEK) and cutaneous squamous cell carcinoma (cSCC) cell lines (A431, SCC-12) in vitro. Tirbanibulin significantly reduced proliferation in a dose-dependent manner in all investigated cell lines, inhibited migration, and induced G2/M-cell cycle arrest only in the cSCC cell lines analyzed, and induced apoptosis solely in A431, which showed the highest sensitivity to tirbanibulin. In general, we detected low basal expression of phosphorylated SRC in all cell lines analyzed, therefore, interference with SRC signaling does not appear to be the driving force regarding the observed effects of tirbanibulin. The most prominent tirbanibulin-mediated effect was on ß-tubulin-polymerization, which was especially impaired in A431. Additionally, tirbanibulin induced an increase of the proinflammatory cytokines IL-1α, bFGF and VEGF in A431. In conclusion, tirbanibulin mediated anti-tumor effects predominantly in A431, while healthy keratinocytes and more dedifferentiated SCC-12 were less influenced. These effects of tirbanibulin are most likely mediated via dysregulation of ß-tubulin-polymerization and may be supported by proinflammatory aspects.


Subject(s)
Apoptosis , Carcinoma, Squamous Cell , Cell Movement , Cell Proliferation , Keratinocytes , Skin Neoplasms , Tubulin , Humans , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Keratinocytes/drug effects , Keratinocytes/metabolism , Cell Line, Tumor , Tubulin/metabolism , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Skin Neoplasms/metabolism , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Movement/drug effects , Antineoplastic Agents/pharmacology , Polymerization/drug effects , Keratosis, Actinic/drug therapy , Keratosis, Actinic/pathology , Keratosis, Actinic/metabolism , Signal Transduction/drug effects , Acetamides , Morpholines , Pyridines
2.
Sci Rep ; 14(1): 13148, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849425

ABSTRACT

Recent data indicate that extracellular ATP affects wound healing efficacy via P2Y2-dependent signaling pathway. In the current work, we propose double-modified ATP analogue-alpha-thio-beta,gamma-methylene-ATP as a potential therapeutic agent for a skin regeneration. For the better understanding of structure-activity relationship, beside tested ATP analogues, the appropriate single-modified derivatives of target compound, such as alpha-thio-ATP and beta,gamma-methylene-ATP, were also tested in the context of their involvement in the activation of ATP-dependent purinergic signaling pathway via the P2Y2 receptor. The diastereomerically pure alpha-thio-modified-ATP derivatives were obtained using the oxathiaphospholane method as separate SP and RP diastereomers. Both the single- and double- modified ATP analogues were then tested for their impact on the viability and migration of human keratinocytes. The involvement of P2Y2-dependent purinergic signaling was analyzed in silico by molecular docking of the tested compounds to the P2Y2 receptor and experimentally by studying intracellular calcium mobilization in the human keratinocytes HaCaT. The effects obtained for ATP analogues were compared with the results for ATP as a natural P2Y2 agonist. To confirm the contribution of the P2Y2 receptor to the observed effects, the tests were also performed in the presence of the selective P2Y2 antagonist-AR-C118925XX. The ability of the alpha-thio-beta,gamma-methylene-ATP to influence cell migration was analyzed in vitro on the model HaCaT and MDA-MB-231 cells by wound healing assay and transwell migration test as well as in vivo using zebrafish system. The impact on tissue regeneration was estimated based on the regrowth rate of cut zebrafish tails. The in vitro and in vivo studies have shown that the SP-alpha-thio-beta,gamma-methylene-ATP analogue promotes regeneration-related processes, making it a suitable agent for enhance wound healing. Performed studies indicated its impact on the cell migration, induction of epithelial-mesenchymal transition and intracellular calcium mobilization. The enhanced regeneration of cut zebrafish tails confirmed the pro-regenerative activity of this ATP analogue. Based on the performed studies, the SP-alpha-thio-beta,gamma-methylene-ATP is proposed as a potential therapeutic agent for wound healing and skin regeneration treatment.


Subject(s)
Adenosine Triphosphate , Keratinocytes , Wound Healing , Zebrafish , Wound Healing/drug effects , Humans , Adenosine Triphosphate/metabolism , Animals , Keratinocytes/drug effects , Keratinocytes/metabolism , Molecular Docking Simulation , Cell Movement/drug effects , Receptors, Purinergic P2Y2/metabolism , Signal Transduction/drug effects , Calcium/metabolism , Cell Line , Cell Survival/drug effects , Structure-Activity Relationship
3.
Exp Dermatol ; 33(6): e15100, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38840387

ABSTRACT

Skin wound healing is driven by proliferation, migration and differentiation of several cell types that are controlled by the alterations in the gene expression programmes. Brahma Gene 1 (BRG1) (also known as SMARCA4) is a core ATPase in the BRG1 Associated Factors (BAF) ATP-dependent chromatin remodelling complexes that alter DNA-histone interaction in chromatin at the specific gene regulatory elements resulting in increase or decrease of the target gene transcription. Using siRNA mediated suppression of BRG1 during wound healing in a human ex vivo and in vitro (scratch assay) models, we demonstrated that BRG1 is essential for efficient skin wound healing by promoting epidermal keratinocytes migration, but not their proliferation or survival. BRG1 controls changes in the expression of genes associated with gene transcription, response to wounding, cell migration and cell signalling. Altogether, our data revealed that BRG1 play positive role in skin repair by promoting keratinocyte migration and impacting the genes expression programmes associated with cell migration and cellular signalling.


Subject(s)
Cell Movement , DNA Helicases , Keratinocytes , Nuclear Proteins , Signal Transduction , Transcription Factors , Wound Healing , Humans , Keratinocytes/metabolism , DNA Helicases/metabolism , DNA Helicases/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Skin/metabolism , Cell Proliferation , RNA, Small Interfering
4.
Exp Dermatol ; 33(6): e15107, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38840418

ABSTRACT

The skin plays an essential role in preventing the entry of external environmental threats and the loss of internal substances, depending on the epidermal permeability barrier. Nuclear receptors (NRs), present in various tissues and organs including full-thickness skin, have been demonstrated to exert significant effects on the epidermal lipid barrier. Formation of the lipid lamellar membrane and the normal proliferation and differentiation of keratinocytes (KCs) are crucial for the development of the epidermal permeability barrier and is regulated by specific NRs such as PPAR, LXR, VDR, RAR/RXR, AHR, PXR and FXR. These receptors play a key role in regulating KC differentiation and the entire process of epidermal lipid synthesis, processing and secretion. Lipids derived from sebaceous glands are influenced by NRs as well and participate in regulation of the epidermal lipid barrier. Furthermore, intricate interplay exists between these receptors. Disturbance of barrier function leads to a range of diseases, including psoriasis, atopic dermatitis and acne. Targeting these NRs with agonists or antagonists modulate pathways involved in lipid synthesis and cell differentiation, suggesting potential therapeutic approaches for dermatosis associated with barrier damage. This review focuses on the regulatory role of NRs in the maintenance and processing of the epidermal lipid barrier through their effects on skin lipid synthesis and KC differentiation, providing novel insights for drug targets to facilitate precision medicine strategies.


Subject(s)
Cell Differentiation , Epidermis , Keratinocytes , Lipid Metabolism , Receptors, Cytoplasmic and Nuclear , Humans , Epidermis/metabolism , Keratinocytes/metabolism , Keratinocytes/physiology , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/physiology , Animals , Permeability
5.
Sci Rep ; 14(1): 12593, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38824160

ABSTRACT

Coconut (Cocos nucifera) leaves, an unutilized resource, enriched with valuable bioactive compounds. Spectral analysis of purified pentane fraction of coconut leaves revealed the presence of a squalene analog named 4,4'-diapophytofluene or in short 4,4'-DPE (C30H46). Pure squalene standard (PSQ) showed cytotoxicity after 8 µg/ml concentration whereas 4,4'-DPE exhibited no cytotoxic effects up to 16 µg/ml concentration. On senescence-induced WI38 cells, 4,4'-DPE displayed better percentage of cell viability (164.5% at 24 h, 159.4% at 48 h and 148% at 72 h) compared to PSQ and BSQ (bio-source squalene) with same time duration. Similar trend of result was found in HaCaT cells. SA-ß-gal assay showed that number of ß-galactosidase positive cells were significantly decreased in senescent cells (WI38 and HaCaT) after treated with 4,4'-DPE than PSQ, BSQ. Percentage of ROS was increased to 60% in WI38 cells after olaparib treatment. When PSQ, BSQ and 4,4'-DPE were applied separately on these oxidative-stress-induced cells for 48 h, the overall percentage of ROS was decreased to 39.3%, 45.6% and 19.3% respectively. This 4,4'-DPE was found to be more effective in inhibiting senescence by removing ROS as compared to squalene. Therefore, this 4,4'-DPE would be new potent senotherapeutic agent for pharmaceuticals and dermatological products.


Subject(s)
Antioxidants , Cellular Senescence , Cocos , Fibroblasts , Keratinocytes , Plant Leaves , Squalene , Humans , Plant Leaves/chemistry , Squalene/pharmacology , Squalene/chemistry , Cellular Senescence/drug effects , Antioxidants/pharmacology , Antioxidants/chemistry , Keratinocytes/drug effects , Keratinocytes/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , Cocos/chemistry , Cell Survival/drug effects , Cell Line , Plant Extracts/pharmacology , Plant Extracts/chemistry , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects
6.
Sci Rep ; 14(1): 12670, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38830883

ABSTRACT

Gelatin-methacryloyl (GelMA) is a highly adaptable biomaterial extensively utilized in skin regeneration applications. However, it is frequently imperative to enhance its physical and biological qualities by including supplementary substances in its composition. The purpose of this study was to fabricate and characterize a bi-layered GelMA-gelatin scaffold using 3D bioprinting. The upper section of the scaffold was encompassed with keratinocytes to simulate the epidermis, while the lower section included fibroblasts and HUVEC cells to mimic the dermis. A further step involved the addition of amniotic membrane extract (AME) to the scaffold in order to promote angiogenesis. The incorporation of gelatin into GelMA was found to enhance its stability and mechanical qualities. While the Alamar blue test demonstrated that a high concentration of GelMA (20%) resulted in a decrease in cell viability, the live/dead cell staining revealed that incorporation of AME increased the quantity of viable HUVECs. Further, gelatin upregulated the expression of KRT10 in keratinocytes and VIM in fibroblasts. Additionally, the histological staining results demonstrated the formation of well-defined skin layers and the creation of extracellular matrix (ECM) in GelMA/gelatin hydrogels during a 14-day culture period. Our study showed that a 3D-bioprinted composite scaffold comprising GelMA, gelatin, and AME can be used to regenerate skin tissues.


Subject(s)
Amnion , Bioprinting , Fibroblasts , Gelatin , Human Umbilical Vein Endothelial Cells , Keratinocytes , Tissue Engineering , Tissue Scaffolds , Keratinocytes/drug effects , Keratinocytes/cytology , Keratinocytes/metabolism , Gelatin/chemistry , Humans , Tissue Engineering/methods , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/cytology , Tissue Scaffolds/chemistry , Amnion/cytology , Amnion/metabolism , Amnion/chemistry , Bioprinting/methods , Printing, Three-Dimensional , Skin/metabolism , Skin/cytology , Methacrylates/chemistry , Cell Survival/drug effects , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Endothelial Cells/cytology
7.
Cell Death Dis ; 15(6): 392, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834617

ABSTRACT

Keratinocyte proliferation and differentiation in epidermis are well-controlled and essential for reacting to stimuli such as ultraviolet light. Imbalance between proliferation and differentiation is a characteristic feature of major human skin diseases such as psoriasis and squamous cell carcinoma. However, the effect of keratinocyte metabolism on proliferation and differentiation remains largely elusive. We show here that the gluconeogenic enzyme fructose-1,6-bisphosphatase 1 (FBP1) promotes differentiation while inhibits proliferation of keratinocyte and suppresses psoriasis development. FBP1 is identified among the most upregulated genes induced by UVB using transcriptome sequencing and is elevated especially in upper epidermis. Fbp1 heterozygous mice exhibit aberrant epidermis phenotypes with local hyperplasia and dedifferentiation. Loss of FBP1 promotes proliferation and inhibits differentiation of keratinocytes in vitro. Mechanistically, FBP1 loss facilitates glycolysis-mediated acetyl-CoA production, which increases histone H3 acetylation at lysine 9, resulting in enhanced transcription of proliferation genes. We further find that the expression of FBP1 is dramatically reduced in human psoriatic lesions and in skin of mouse imiquimod psoriasis model. Fbp1 deficiency in mice facilitates psoriasis-like skin lesions development through glycolysis and acetyl-CoA production. Collectively, our findings reveal a previously unrecognized role of FBP1 in epidermal homeostasis and provide evidence for FBP1 as a metabolic psoriasis suppressor.


Subject(s)
Cell Differentiation , Cell Proliferation , Fructose-Bisphosphatase , Histones , Keratinocytes , Psoriasis , Psoriasis/pathology , Psoriasis/metabolism , Psoriasis/genetics , Animals , Keratinocytes/metabolism , Keratinocytes/pathology , Humans , Acetylation , Histones/metabolism , Fructose-Bisphosphatase/metabolism , Fructose-Bisphosphatase/genetics , Mice , Glycolysis , Mice, Inbred C57BL , Acetyl Coenzyme A/metabolism , Disease Models, Animal
9.
Front Cell Infect Microbiol ; 14: 1355679, 2024.
Article in English | MEDLINE | ID: mdl-38841110

ABSTRACT

Intestinal bacteria metabolize dietary substances to produce bioactive postbiotics, among which some are recognized for their role in promoting host health. We here explored the postbiotic potential of two omega-3 α-linolenic acid-derived metabolites: trans-10-cis-15-octadecadienoic acid (t10,c15-18:2) and cis-9-cis-15-octadecadienoic acid (c9,c15-18:2). Dietary intake of lipids rich in omega-3 α-linolenic acid elevated levels of t10,c15-18:2 and c9,c15-18:2 in the serum and feces of mice, an effect dependent on the presence of intestinal bacteria. Notably, t10,c15-18:2 mitigated skin inflammation in mice that became hypersensitive after exposure to 2,4-dinitrofluorobenzene, an experimental model for allergic contact dermatitis. In particular, t10,c15-18:2-but not c9,c15-18:2-attenuated ear swelling and edema, characteristic symptoms of contact hypersensitivity. The anti-inflammatory effects of t10,c15-18:2 were due to its ability to suppress the release of vascular endothelial growth factor A from keratinocytes, thereby mitigating the enhanced vascular permeability induced by hapten stimulation. Our study identified retinoid X receptor as a functional receptor that mediates the downregulation of skin inflammation upon treatment with t10,c15-18:2. Our results suggest that t10,c15-18:2 holds promise as an omega-3 fatty acid-derived postbiotic with potential therapeutic implications for alleviating the skin edema seen in allergic contact dermatitis-induced inflammation.


Subject(s)
Disease Models, Animal , Down-Regulation , Fatty Acids, Omega-3 , Vascular Endothelial Growth Factor A , Animals , Mice , Vascular Endothelial Growth Factor A/metabolism , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-3/pharmacology , Dermatitis, Contact/metabolism , Dinitrofluorobenzene , Skin/metabolism , Skin/pathology , Keratinocytes/metabolism , Keratinocytes/drug effects , Female , Dermatitis, Allergic Contact/metabolism , Humans , Gastrointestinal Microbiome/drug effects , Feces/chemistry , Feces/microbiology
10.
Theranostics ; 14(8): 3339-3357, 2024.
Article in English | MEDLINE | ID: mdl-38855186

ABSTRACT

Rationale: Skin cells actively metabolize nutrients to ensure cell proliferation and differentiation. Psoriasis is an immune-disorder-related skin disease with hyperproliferation in epidermal keratinocytes and is increasingly recognized to be associated with metabolic disturbance. However, the metabolic adaptations and underlying mechanisms of epidermal hyperproliferation in psoriatic skin remain largely unknown. Here, we explored the role of metabolic competition in epidermal cell proliferation and differentiation in psoriatic skin. Methods: Bulk- and single-cell RNA-sequencing, spatial transcriptomics, and glucose uptake experiments were used to analyze the metabolic differences in epidermal cells in psoriasis. Functional validation in vivo and in vitro was done using imiquimod-like mouse models and inflammatory organoid models. Results: We observed the highly proliferative basal cells in psoriasis act as the winners of the metabolic competition to uptake glucose from suprabasal cells. Using single-cell metabolic analysis, we found that the "winner cells" promote OXPHOS pathway upregulation by COX7B and lead to increased ROS through glucose metabolism, thereby promoting the hyperproliferation of basal cells in psoriasis. Also, to prevent toxic damage from ROS, basal cells activate the glutathione metabolic pathway to increase their antioxidant capacity to assist in psoriasis progression. We further found that COX7B promotes psoriasis development by modulating the activity of the PPAR signaling pathway by bulk RNA-seq analysis. We also observed glucose starvation and high expression of SLC7A11 that causes suprabasal cell disulfide stress and affects the actin cytoskeleton, leading to immature differentiation of suprabasal cells in psoriatic skin. Conclusion: Our study demonstrates the essential role of cellular metabolic competition for skin tissue homeostasis.


Subject(s)
Cell Differentiation , Cell Proliferation , Glucose , Keratinocytes , Psoriasis , Psoriasis/metabolism , Psoriasis/pathology , Glucose/metabolism , Humans , Animals , Mice , Keratinocytes/metabolism , Disease Models, Animal , Single-Cell Analysis , Epidermal Cells/metabolism , Reactive Oxygen Species/metabolism , Energy Metabolism , Epidermis/metabolism , Epidermis/pathology , Imiquimod , Male
11.
Folia Biol (Praha) ; 70(1): 53-61, 2024.
Article in English | MEDLINE | ID: mdl-38830123

ABSTRACT

Psoriasis is a chronic non-contagious autoimmune disease. Gallic acid is a natural compound with potential health benefits, including antioxidant, anticancer, antiviral and antibacterial properties. Nevertheless, the influence of gallic acid on psoriasis has not been fully determined. This investigation aimed to discover the effect of gallic acid on psoriasis. Thirty-one pairs of psoriatic skin tissues and healthy adult human skin tissues were collected. Human keratinocytes (HaCaT cells) were transfected with interleukin 17A (IL-17A) to create the psoriatic keratinocyte model. The content of bromodomain-containing protein 4 (BRD4) microRNA was assessed using qRT-PCR testing. The content of BRD4 was detected by Western blotting. Cell migration was evaluated by conducting a wound healing assay. Cell proliferation was determined using an EdU assay. Apoptosis was detected by the TUNEL assay. The contents of interferon gamma (IFN-γ), IL-6, IL-8 and IL-17 were detected by ELISA. BRD4 was up-regulated in psoriatic skin tissues and in the IL-17A group compared to the healthy adult human skin tissues and the control group. Silencing BRD4 inhibited cell migration, proliferation and inflammatory response but induced apoptosis in IL-17A-treated HaCaT cells. Conversely, BRD4 over-expression promoted cell migration, proliferation and inflammatory response but suppressed apoptosis in IL-17A-treated HaCaT cells. Gallic acid repressed cell migration, proliferation and inflammatory response but indu-ced apoptosis in HaCaT cells transfected with IL-17A by down-regulating BRD4. Gallic acid represses cell migration, proliferation and inflammatory response but induces apoptosis in IL-17A-transfected HaCaT cells by down-regulating BRD4.


Subject(s)
Apoptosis , Cell Cycle Proteins , Cell Movement , Cell Proliferation , Gallic Acid , Inflammation , Keratinocytes , Psoriasis , Transcription Factors , Humans , Psoriasis/metabolism , Psoriasis/pathology , Psoriasis/drug therapy , Transcription Factors/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Gallic Acid/pharmacology , Keratinocytes/drug effects , Keratinocytes/metabolism , Apoptosis/drug effects , Inflammation/pathology , Cell Proliferation/drug effects , Cell Movement/drug effects , Interleukin-17/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Adult , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Male , HaCaT Cells , Female , Gene Expression Regulation/drug effects , Cell Line , Bromodomain Containing Proteins
12.
Skin Res Technol ; 30(5): e13720, 2024 May.
Article in English | MEDLINE | ID: mdl-38743384

ABSTRACT

BACKGROUND: Sensitive skin is hypersensitive to various external stimuli and a defective epidermal permeability barrier is an important clinical feature of sensitive skin. Claudin-5 (CLDN5) expression levels decrease in sensitive skin. This study aimed to explore the impact of CLDN5 deficiency on the permeability barrier in sensitive skin and the regulatory role of miRNAs in CLDN5 expression. MATERIALS AND METHODS: A total of 26 patients were retrospectively enrolled, and the CLDN5 expression and permeability barrier dysfunction in vitro were assessed. Then miRNA-224-5p expression was also assessed in sensitive skin. RESULTS: Immunofluorescence and electron microscopy revealed reduced CLDN5 expression, increased miR-224-5p expression, and disrupted intercellular junctions in sensitive skin. CLDN5 knockdown was associated with lower transepithelial electrical resistance (TEER) and Lucifer yellow penetration in keratinocytes and organotypic skin models. The RNA-seq and qRT-PCR results indicated elevated miR-224-5p expression in sensitive skin; MiR-224-5p directly interacted with the 3`UTR of CLDN5, resulting in CLDN5 deficiency in the luciferase reporter assay. Finally, miR-224-5p reduced TEER in keratinocyte cultures. CONCLUSION: These results suggest that the miR-224-5p-induced reduction in CLDN5 expression leads to impaired permeability barrier function, and that miR-224-5p could be a potential therapeutic target for sensitive skin.


Subject(s)
Claudin-5 , Keratinocytes , MicroRNAs , Permeability , Humans , MicroRNAs/metabolism , MicroRNAs/genetics , Claudin-5/genetics , Claudin-5/metabolism , Female , Male , Keratinocytes/metabolism , Retrospective Studies , Adult , Skin/metabolism
13.
Molecules ; 29(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38731556

ABSTRACT

Red rice, a variety of pigmented grain, serves dual purposes as both a food and medicinal resource. In recent years, we have witnessed an increasing interest in the dermatological benefits of fermented rice extracts, particularly their whitening and hydrating effects. However, data on the skincare advantages derived from fermenting red rice with Aspergillus oryzae remain sparse. This study utilized red rice as a substrate for fermentation by Aspergillus oryzae, producing a substance known as red rice Aspergillus oryzae fermentation (RRFA). We conducted a preliminary analysis of RRFA's composition followed by an evaluation of its skincare potential through various in vitro tests. Our objective was to develop a safe and highly effective skincare component for potential cosmetic applications. RRFA's constituents were assessed using high-performance liquid chromatography (HPLC), Kjeldahl nitrogen determination, the phenol-sulfuric acid method, and enzyme-linked immunosorbent assay (ELISA). We employed human dermal fibroblasts (FB) to assess RRFA's anti-aging and antioxidative properties, immortalized keratinocytes (HaCaT cells) and 3D epidermal models to examine its moisturizing and reparative capabilities, and human primary melanocytes (MCs) to study its effects on skin lightening. Our findings revealed that RRFA encompasses several bioactive compounds beneficial for skin health. RRFA can significantly promote the proliferation of FB cells. And it markedly enhances the mRNA expression of ECM-related anti-aging genes and reduces reactive oxygen species production. Furthermore, RRFA significantly boosts the expression of Aquaporin 3 (AQP3), Filaggrin (FLG), and Hyaluronan Synthase 1 (HAS1) mRNA, alongside elevating moisture levels in a 3D epidermal model. Increases were also observed in the mRNA expression of Claudin 1 (CLDN1), Involucrin (IVL), and Zonula Occludens-1 (ZO-1) in keratinocytes. Additionally, RRFA demonstrated an inhibitory effect on melanin synthesis. Collectively, RRFA contains diverse ingredients which are beneficial for skin health and showcases multifaceted skincare effects in terms of anti-aging, antioxidant, moisturizing, repairing, and whitening capabilities in vitro, highlighting its potential for future cosmetic applications.


Subject(s)
Aspergillus oryzae , Fermentation , Filaggrin Proteins , Oryza , Aspergillus oryzae/metabolism , Oryza/chemistry , Oryza/metabolism , Humans , Antioxidants/pharmacology , Antioxidants/metabolism , Keratinocytes/metabolism , Keratinocytes/drug effects , HaCaT Cells , Fibroblasts/metabolism , Fibroblasts/drug effects , Melanocytes/metabolism , Melanocytes/drug effects , Skin Care/methods , Skin/metabolism
14.
Exp Dermatol ; 33(5): e15077, 2024 May.
Article in English | MEDLINE | ID: mdl-38711200

ABSTRACT

Modelling atopic dermatitis (AD) in vitro is paramount to understand the disease pathophysiology and identify novel treatments. Previous studies have shown that the Th2 cytokines IL-4 and IL-13 induce AD-like features in keratinocytes in vitro. However, it has not been systematically researched whether the addition of Th2 cells, their supernatants or a 3D structure is superior to model AD compared to simple 2D cell culture with cytokines. For the first time, we investigated what in vitro option most closely resembles the disease in vivo based on single-cell RNA sequencing data (scRNA-seq) obtained from skin biopsies in a clinical study and published datasets of healthy and AD donors. In vitro models were generated with primary fibroblasts and keratinocytes, subjected to cytokine treatment or Th2 cell cocultures in 2D/3D. Gene expression changes were assessed using qPCR and Multiplex Immunoassays. Of all cytokines tested, incubation of keratinocytes and fibroblasts with IL-4 and IL-13 induced the closest in vivo-like AD phenotype which was observed in the scRNA-seq data. Addition of Th2 cells to fibroblasts failed to model AD due to the downregulation of ECM-associated genes such as POSTN. While keratinocytes cultured in 3D showed better stratification than in 2D, changes induced with AD triggers did not better resemble AD keratinocyte subtypes observed in vivo. Taken together, our comprehensive study shows that the simple model using IL-4 or IL-13 in 2D most accurately models AD in fibroblasts and keratinocytes in vitro, which may aid the discovery of novel treatment options.


Subject(s)
Dermatitis, Atopic , Fibroblasts , Interleukin-13 , Interleukin-4 , Keratinocytes , Sequence Analysis, RNA , Single-Cell Analysis , Th2 Cells , Humans , Fibroblasts/metabolism , Interleukin-4/pharmacology , Interleukin-4/metabolism , Interleukin-13/metabolism , Interleukin-13/pharmacology , Cytokines/metabolism , Coculture Techniques , RNA-Seq , Cells, Cultured , Skin/pathology
15.
Elife ; 132024 May 20.
Article in English | MEDLINE | ID: mdl-38767331

ABSTRACT

Wound infections are highly prevalent and can lead to delayed or failed healing, causing significant morbidity and adverse economic impacts. These infections occur in various contexts, including diabetic foot ulcers, burns, and surgical sites. Enterococcus faecalis is often found in persistent non-healing wounds, but its contribution to chronic wounds remains understudied. To address this, we employed single-cell RNA sequencing (scRNA-seq) on infected wounds in comparison to uninfected wounds in a mouse model. Examining over 23,000 cells, we created a comprehensive single-cell atlas that captures the cellular and transcriptomic landscape of these wounds. Our analysis revealed unique transcriptional and metabolic alterations in infected wounds, elucidating the distinct molecular changes associated with bacterial infection compared to the normal wound healing process. We identified dysregulated keratinocyte and fibroblast transcriptomes in response to infection, jointly contributing to an anti-inflammatory environment. Notably, E. faecalis infection prompted a premature, incomplete epithelial-mesenchymal transition in keratinocytes. Additionally, E. faecalis infection modulated M2-like macrophage polarization by inhibiting pro-inflammatory resolution in vitro, in vivo, and in our scRNA-seq atlas. Furthermore, we discovered macrophage crosstalk with neutrophils, which regulates chemokine signaling pathways, while promoting anti-inflammatory interactions with endothelial cells. Overall, our findings offer new insights into the immunosuppressive role of E. faecalis in wound infections.


If wounds get infected, they heal much more slowly, sometimes leading to skin damage and other complications, including disseminated infections or even amputation. Infections can happen in many types of wounds, ranging from ulcers in patients with diabetes to severe burns. If infections are not cleared quickly, the wounds can become 'chronic' and are unable to heal without intervention. Enterococcus faecalis is a type of bacteria that normally lives in the gut. Within that environment, in healthy people, it is not harmful. However, if it comes into contact with wounds ­ particularly diabetic ulcers or the site of a surgery ­ it can cause persistent infections and prevent healing. Although researchers are beginning to understand how E. faecalis initially colonises wounds, the biological mechanisms that transform these infections into chronic wounds are still largely unknown. Celik et al. therefore set out to investigate exactly how E. faecalis interferes with wound healing. To do this, Celik et al. looked at E. faecalis-infected wounds in mice and compared them to uninfected ones. Using a genetic technique called single-cell RNA sequencing, Celik et al. were able to determine which genes were switched on in individual skin and immune cells at the site of the wounds. This in turn allowed the researchers to determine how those cells were behaving in both infected and uninfected conditions. The experiments revealed that when E. faecalis was present in wounds, several important cell types in the wounds did not behave normally. For example, although the infected skin cells still underwent a change in behaviour required for healing (called an epithelial-mesenchymal transition), the change was both premature and incomplete. In other words, the skin cells in infected wounds started changing too early and did not finish the healing process properly. E. faecalis also changed the way macrophages and neutrophils worked within the wounds. These are cells in our immune system that normally promote inflammation, a process involved in both uninfected wounds or during infections and is a key part of wound healing when properly controlled. In the E. faecalis-infected wounds, these cells' inflammatory properties were suppressed, making them less helpful for healing. These results shed new light on how E. faecalis interacts with skin cells and the immune system to disrupt wound healing. Celik et al. hope that this knowledge will allow us to find new ways to target E. faecalis infections, and ultimately develop treatments to help chronic wounds heal better and faster.


Subject(s)
Enterococcus faecalis , Gram-Positive Bacterial Infections , Keratinocytes , Wound Healing , Enterococcus faecalis/physiology , Enterococcus faecalis/genetics , Animals , Mice , Gram-Positive Bacterial Infections/microbiology , Keratinocytes/microbiology , Keratinocytes/metabolism , Macrophages/microbiology , Macrophages/metabolism , Macrophages/immunology , Disease Models, Animal , Wound Infection/microbiology , Transcriptome , Mice, Inbred C57BL , Single-Cell Analysis , Epithelial-Mesenchymal Transition/genetics , Male , Fibroblasts/microbiology , Fibroblasts/metabolism
16.
Int J Artif Organs ; 47(5): 338-346, 2024 May.
Article in English | MEDLINE | ID: mdl-38693724

ABSTRACT

In the present study, porous silk fibroin sponges (SFS) were prepared using silk fibroin (SF), fish bone collagen (FBC), and olive oil (OO). The study investigates the potential use of using this sponge as skin tissue regeneration. The sponge was characterized for its physicochemical, mechanical, antimicrobial, and drug release properties. An in vitro study was carried out using human keratinocyte cell line (HaCaT). Biodegradation study using enzymatic method was carried out. The results showed that the mechanical properties such as tensile strength (23.40 ± 0.05 MPa), elongation at break (14.25 ± 0.02%), and water absorption (30.23 ± 0.01%) of the SFS were excellent, indicating promising performance. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays proved the biocompatible nature of the SFS. The SFS exhibited outstanding antibacterial properties against E. coli (4.72 ± 0.05 mm) and S. aureus (4.98 ± 0.07 mm). The developed SFS promote a promising solution for skin tissue regeneration and wound dressing.


Subject(s)
Anti-Bacterial Agents , Collagen , Fibroins , Regeneration , Skin , Staphylococcus aureus , Tissue Scaffolds , Wound Healing , Fibroins/chemistry , Fibroins/pharmacology , Wound Healing/drug effects , Humans , Collagen/metabolism , Animals , Regeneration/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Skin/drug effects , Skin/metabolism , Staphylococcus aureus/drug effects , HaCaT Cells , Escherichia coli/drug effects , Keratinocytes/drug effects , Olive Oil , Bone and Bones/drug effects , Bone and Bones/metabolism , Fishes , Tensile Strength , Porosity , Biocompatible Materials , Cell Line
17.
Int J Mol Sci ; 25(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732212

ABSTRACT

The skin wound healing process consists of hemostatic, inflammatory, proliferative, and maturation phases, with a complex cellular response by multiple cell types in the epidermis, dermis, and immune system. Magnesium is a mineral essential for life, and although magnesium treatment promotes cutaneous wound healing, the molecular mechanism and timing of action of the healing process are unknown. This study, using human epidermal-derived HaCaT cells and human normal epidermal keratinocyte cells, was performed to investigate the mechanism involved in the effect of magnesium on wound healing. The expression levels of epidermal differentiation-promoting factors were reduced by MgCl2, suggesting an inhibitory effect on epidermal differentiation in the remodeling stage of the late wound healing process. On the other hand, MgCl2 treatment increased the expression of matrix metalloproteinase-7 (MMP7), a cell migration-promoting factor, and enhanced cell migration via the MEK/ERK pathway activation. The enhancement of cell migration by MgCl2 was inhibited by MMP7 knockdown, suggesting that MgCl2 enhances cell migration which is mediated by increased MMP7 expression. Our results revealed that MgCl2 inhibits epidermal differentiation but promotes cell migration, suggesting that applying magnesium to the early wound healing process could be beneficial.


Subject(s)
Cell Differentiation , Cell Movement , Keratinocytes , Magnesium , Matrix Metalloproteinase 7 , Wound Healing , Wound Healing/drug effects , Humans , Cell Movement/drug effects , Keratinocytes/drug effects , Keratinocytes/metabolism , Cell Differentiation/drug effects , Magnesium/pharmacology , Magnesium/metabolism , Matrix Metalloproteinase 7/metabolism , Matrix Metalloproteinase 7/genetics , Skin/metabolism , Skin/drug effects , Skin/injuries , MAP Kinase Signaling System/drug effects , Cell Line , Epidermis/drug effects , Epidermis/metabolism , Magnesium Chloride/pharmacology
18.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731895

ABSTRACT

UVB radiation is known to induce photodamage to the skin, disrupt the skin barrier, elicit cutaneous inflammation, and accelerate the aging process. Agaricus blazei Murill (ABM) is an edible medicinal and nutritional fungus. One of its constituents, Agaricus blazei Murill polysaccharide (ABP), has been reported to exhibit antioxidant, anti-inflammatory, anti-tumor, and immunomodulatory effects, which suggests potential effects that protect against photodamage. In this study, a UVB-induced photodamage HaCaT model was established to investigate the potential reparative effects of ABP and its two constituents (A1 and A2). Firstly, two purified polysaccharides, A1 and A2, were obtained by DEAE-52 cellulose column chromatography, and their physical properties and chemical structures were studied. A1 and A2 exhibited a network-like microstructure, with molecular weights of 1.5 × 104 Da and 6.5 × 104 Da, respectively. The effects of A1 and A2 on cell proliferation, the mitochondrial membrane potential, and inflammatory factors were also explored. The results show that A1 and A2 significantly promoted cell proliferation, enhanced the mitochondrial membrane potential, suppressed the expression of inflammatory factors interleukin-1ß (IL-1ß), interleukin-8 (IL-8), interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α), and increased the relative content of filaggrin (FLG) and aquaporin-3 (AQP3). The down-regulated JAK-STAT signaling pathway was found to play a role in the response to photodamage. These findings underscore the potential of ABP to ameliorate UVB-induced skin damage.


Subject(s)
Agaricus , Cell Proliferation , Filaggrin Proteins , HaCaT Cells , Ultraviolet Rays , Agaricus/chemistry , Humans , Ultraviolet Rays/adverse effects , Cell Proliferation/drug effects , Membrane Potential, Mitochondrial/drug effects , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Keratinocytes/drug effects , Keratinocytes/metabolism , Keratinocytes/radiation effects , Cytokines/metabolism
19.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38731982

ABSTRACT

Plant extracts can be a valuable source of biologically active compounds in many cosmetic preparations. Their effect depends on the phytochemicals they contain and their ability to penetrate the skin. Therefore, in this study, the possibility of skin penetration by phenolic acids contained in dogwood extracts of different fruit colors (yellow, red, and dark ruby red) prepared using different extractants was investigated. These analyses were performed using a Franz chamber and HPLC-UV chromatography. Moreover, the antioxidant properties of the tested extracts were compared and their impact on the intracellular level of free radicals in skin cells was assessed. The cytotoxicity of these extracts towards keratinocytes and fibroblasts was also analyzed and their anti-inflammatory properties were assessed using the enzyme-linked immunosorbent assay (ELISA). The analyses showed differences in the penetration of individual phenolic acids into the skin and different biological activities of the tested extracts. None of the extracts had cytotoxic effects on skin cells in vitro, and the strongest antioxidant and anti-inflammatory properties were found in dogwood extracts with dark ruby red fruits.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Cornus , Plant Extracts , Skin , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cornus/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Skin/metabolism , Skin/drug effects , Humans , Keratinocytes/drug effects , Keratinocytes/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , Hydroxybenzoates/pharmacology , Hydroxybenzoates/chemistry , Fruit/chemistry , Animals , Chromatography, High Pressure Liquid
20.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38731983

ABSTRACT

Acne vulgaris is a prevalent skin disorder affecting many young individuals, marked by keratinization, inflammation, seborrhea, and colonization by Cutibacterium acnes (C. acnes). Ellagitannins, known for their antibacterial and anti-inflammatory properties, have not been widely studied for their anti-acne effects. Chestnut (Castanea sativa Mill., C. sativa), a rich ellagitannin source, including castalagin whose acne-related bioactivity was previously unexplored, was investigated in this study. The research assessed the effect of C. sativa leaf extract and castalagin on human keratinocytes (HaCaT) infected with C. acnes, finding that both inhibited IL-8 and IL-6 release at concentrations below 25 µg/mL. The action mechanism was linked to NF-κB inhibition, without AP-1 involvement. Furthermore, the extract displayed anti-biofilm properties and reduced CK-10 expression, indicating a potential role in mitigating inflammation, bacterial colonization, and keratosis. Castalagin's bioactivity mirrored the extract's effects, notably in IL-8 inhibition, NF-κB inhibition, and biofilm formation at low µM levels. Other polyphenols, such as flavonol glycosides identified via LC-MS, might also contribute to the extract's biological activities. This study is the first to explore ellagitannins' potential in treating acne, offering insights for developing chestnut-based anti-acne treatments pending future in vivo studies.


Subject(s)
Acne Vulgaris , Fagaceae , Hydrolyzable Tannins , Plant Extracts , Plant Leaves , Humans , Hydrolyzable Tannins/pharmacology , Fagaceae/chemistry , Acne Vulgaris/microbiology , Acne Vulgaris/drug therapy , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Leaves/chemistry , Keratinocytes/drug effects , Keratinocytes/metabolism , NF-kappa B/metabolism , HaCaT Cells , Propionibacterium acnes/drug effects , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Interleukin-8/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...