Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22.941
Filter
1.
Sci Rep ; 14(1): 12864, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834664

ABSTRACT

Natural polymer-based hydrogels have demonstrated great potential as wound-healing dressings. They help to maintain a moist wound environment as well as promote faster healing. In this work, a multifunctional hydrogel was prepared using keratin, sodium alginate, and carboxymethyl chitosan with tannic acid modification. Micro-morphology of hydrogels has been performed by scanning electron microscopy. Fourier Transform Infrared Spectroscopy reveals the presence of hydrogen bonding. The mechanical properties of the hydrogels were examined using a universal testing machine. Furthermore, we investigated several properties of the modified hydrogel. These properties include swelling rate, water retention, anti-freezing properties, antimicrobial and antioxidant properties, hemocompatibility evaluation and cell viability test in vitro. The modified hydrogel has a three-dimensional microporous structure, the swelling rate was 1541.7%, the elastic modulus was 589.74 kPa, the toughness was 211.74 kJ/m3, and the elongation at break was 75.39%, which was similar to the human skin modulus. The modified hydrogel also showed inhibition of S. aureus and E. coli, as well as a DPPH scavenging rate of 95%. In addition, the modified hydrogels have good biological characteristics. Based on these findings, the K/SA/CCS hydrogel holds promise for applications in biomedical engineering.


Subject(s)
Alginates , Chitosan , Hydrogels , Keratins , Tannins , Chitosan/chemistry , Chitosan/analogs & derivatives , Tannins/chemistry , Alginates/chemistry , Hydrogels/chemistry , Humans , Keratins/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Staphylococcus aureus/drug effects , Antioxidants/chemistry , Antioxidants/pharmacology , Escherichia coli/drug effects , Wound Healing/drug effects , Cell Survival/drug effects , Spectroscopy, Fourier Transform Infrared , Elastic Modulus , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology
3.
Sci Rep ; 14(1): 13066, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38844764

ABSTRACT

The aim of this study was to assess the surface and tissue quality of keratinized mucosa grafts (KMG) obtained using the conventional scalpel and mucotome techniques. This was an experimental in vitro/ex vivo study involving six porcine hemi-mandibles. Specimens were harvested using both the mucotome and conventional scalpel techniques, with randomization determining the choice of technique for tissue removal. The specimens were prepared following predefined laboratory protocols and subsequently subjected to optical microscopy for evaluating epithelial and connective tissue and scanning electron microscopy for topographical and 3D profilometry analysis. Tissues harvested using the mucotome exhibited a linear base and uniform thickness, along with the presence of submucosa and fibrous connective tissue, all of which are ideal for graft success. Differences in the surface characteristics of specimens obtained through the two techniques were observed during a comparative analysis of images obtained through both microscopy types. KMG obtained using the mucotome technique displayed greater uniformity and reduced undesirable cell presence compared to the scalpel technique, thereby enhancing the likelihood of success in soft tissue graft surgical procedures. This study provides valuable insights to oral healthcare professionals and may contribute to future research aimed at achieving more successful surgeries, shorter postoperative recovery times, reduced discomfort, and an overall more positive patient experience.


Subject(s)
Mandible , Mouth Mucosa , Animals , Swine , Mouth Mucosa/transplantation , Mouth Mucosa/cytology , Mandible/surgery , Keratins/metabolism , Microscopy, Electron, Scanning , Tissue and Organ Harvesting/methods
4.
Cells ; 13(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38786031

ABSTRACT

The oral mucosa functions as a physico-chemical and immune barrier to external stimuli, and an adequate width of the keratinized mucosa around the teeth or implants is crucial to maintaining them in a healthy and stable condition. In this study, for the first time, bulk RNA-seq analysis was performed to explore the gene expression of laser microdissected epithelium and lamina propria from mice, aiming to investigate the differences between keratinized and non-keratinized oral mucosa. Based on the differentially expressed genes (DEGs) and Gene Ontology (GO) Enrichment Analysis, bone morphogenetic protein 2 (BMP-2) was identified to be a potential regulator of oral mucosal keratinization. Monoculture and epithelial-mesenchymal cell co-culture models in the air-liquid interface (ALI) indicated that BMP-2 has direct and positive effects on epithelial keratinization and proliferation. We further performed bulk RNA-seq of the ALI monoculture stimulated with BMP-2 in an attempt to identify the downstream factors promoting epithelial keratinization and proliferation. Analysis of the DEGs identified, among others, IGF2, ID1, LTBP1, LOX, SERPINE1, IL24, and MMP1 as key factors. In summary, these results revealed the involvement of a well-known growth factor responsible for bone development, BMP-2, in the mechanism of oral mucosal keratinization and proliferation, and pointed out the possible downstream genes involved in this mechanism.


Subject(s)
Bone Morphogenetic Protein 2 , Mouth Mucosa , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 2/genetics , Mouth Mucosa/metabolism , Animals , Mice , Keratins/metabolism , Keratins/genetics , Cell Proliferation , Gene Expression Regulation , Humans , Gene Ontology
5.
Curr Microbiol ; 81(7): 179, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38761211

ABSTRACT

Enormous aggregates of keratinous wastes are produced annually by the poultry and leather industries which cause environmental degradation globally. To combat this issue, microbially synthesized extracellular proteases known as keratinase are used widely which is effective in degrading keratin found in hair and feathers. In the present work, keratinolytic bacteria were isolated from poultry farm soil and feather waste, and various cultural conditions were optimized to provide the highest enzyme production for efficient keratin waste degradation. Based on the primary and secondary screening methods, the potent keratinolytic strain (HFS_F2T) with the highest enzyme activity 32.65 ± 0.16 U/mL was genotypically characterized by 16S rRNA sequencing and was confirmed as Bacillus velezensis HFS_F2T ON556508. Through one-variable-at-a-time approach (OVAT), the keratinase production medium was optimized with sucrose (carbon source), beef extract (nitrogen source) pH-7, inoculum size (5%), and incubation at 37 °C). The degree of degradation (%DD) of keratin wastes was evaluated after 35 days of degradation in the optimized keratinase production medium devoid of feather meal under submerged fermentation conditions. Further, the deteriorated keratin wastes were visually examined and the hydrolysed bovine hair with 77.32 ± 0.32% degradation was morphologically analysed through Field Emission Scanning Electron Microscopy (FESEM) to confirm the structural disintegration of the cuticle. Therefore, the current study would be a convincing strategy for reducing the detrimental impact of pollutants from the poultry and leather industries by efficient keratin waste degradation through the production of microbial keratinase.


Subject(s)
Bacillus , Biodegradation, Environmental , Culture Media , Feathers , Keratins , Peptide Hydrolases , Bacillus/metabolism , Bacillus/genetics , Bacillus/enzymology , Keratins/metabolism , Peptide Hydrolases/metabolism , Peptide Hydrolases/genetics , Animals , Feathers/metabolism , Culture Media/chemistry , Poultry , RNA, Ribosomal, 16S/genetics , Cattle , Soil Microbiology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Fermentation , Hair
6.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2402-2409, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812141

ABSTRACT

Due to the highly stable structure of keratin, the extraction and dissolution steps of animal medicines rich in keratin are complex, which seriously restricts the detection efficiency and flux. Therefore, this study simplified the pre-treatment steps of horn samples and optimized the detection methods of characteristic peptides to improve the efficiency of identifying the specificity of horn-derived animal medicines. For detection of the characteristic peptides in horn-derived animal medicines treated with/without iodoace-tamide(IAA), the ion pair conditions of the characteristic peptides were optimized, and the retention time, intensity and other data of the specific peptides were compared between the samples treated with/without IAA. Two pre-treatment methods, direct enzymatic hydrolysis and total protein extraction followed by enzymatic hydrolysis, were used to prepare horn-derived animal medicine samples. The effects of different methods on the detection of specific peptides in the samples of Saiga antelope horn, water buffalo horn, goat horn, and yak horn were compared regarding the retention time of specific peptides and ion intensity. The results indicated that after direct enzymatic hydrolysis, the specific peptides in the samples without IAA treatment can be detected. Compared with the characteristic peptides in the samples treated with IAA, their retention time shifted back and the mass spectrometry response slightly decreased. The specific peptides of the samples without IAA treatment had good specificity and did not affect the specificity identification of horn-derived animal medicines. Overall, the process of direct enzymatic hydrolysis can be used to treat horn samples, omitting the steps of protein extraction and dithiothreitol and IAA treatment, significantly improving the pre-treatment efficiency without affecting the specificity identification of horn-derived animal medicines. This study provides ideas for quality research and standard improvement of horn-derived animal medicines.


Subject(s)
Horns , Keratins , Peptides , Animals , Horns/chemistry , Peptides/chemistry , Keratins/chemistry , Cattle , Goats , Buffaloes , Chromatography, High Pressure Liquid
7.
Sci Rep ; 14(1): 12374, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38811642

ABSTRACT

Circulating tumor cells (CTCs) have gathered attention as a biomarker for carcinomas. However, CTCs in sarcomas have received little attention. In this work, we investigated cell surface proteins and antibody combinations for immunofluorescence detection of sarcoma CTCs. A microfluidic device that combines filtration and immunoaffinity using gangliosides 2 and cell surface vimentin (CSV) antibodies was employed to capture CTCs. For CTC detection, antibodies against cytokeratins 7 and 8 (CK), pan-cytokeratin (panCK), or a combination of panCK and CSV were used. Thirty-nine blood samples were collected from 21 patients of various sarcoma subtypes. In the independent samples study, samples were subjected to one of three antibody combination choices. Significant difference in CTC enumeration was found between CK and panCK + CSV, and between panCK and panCK + CSV. Upon stratification of CK+ samples, those of metastatic disease had a higher CTC number than those of localized disease. In the paired samples study involving cytokeratin-positive sarcoma subtypes, using panCK antibody detected more CTCs than CK. Similarly, for osteosarcoma, using panCK + CSV combination resulted in a higher CTC count than panCK. This study emphasized deliberate selection of cell surface proteins for sarcoma CTC detection and subtype stratification for studying cancers as heterogeneous as sarcomas.


Subject(s)
Biomarkers, Tumor , Neoplastic Cells, Circulating , Sarcoma , Humans , Neoplastic Cells, Circulating/pathology , Neoplastic Cells, Circulating/metabolism , Sarcoma/pathology , Sarcoma/blood , Sarcoma/diagnosis , Sarcoma/metabolism , Biomarkers, Tumor/blood , Female , Male , Membrane Proteins/metabolism , Membrane Proteins/immunology , Keratins/immunology , Keratins/metabolism , Middle Aged , Adult , Vimentin/metabolism , Vimentin/immunology , Aged , Antibodies/immunology , Cell Line, Tumor
8.
BMC Oral Health ; 24(1): 634, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811896

ABSTRACT

BACKGROUND: The aim of this study was to assess the outcomes of the combination technique of strip free gingival grafts (SFGG) and xenogeneic collagen matrix (XCM) in augmenting the width of keratinized mucosa (KMW) around dental implants, and compare its efficacy with the historical control group (FGG). METHODS: Thirteen patients with at least one site with KMW ≤ 2 mm after implant surgery were included and received SFGG in combination with XCM. Another thirteen patients with the same inclusion and exclusion criteria from the previous trial received FGG alone. The same outcomes as the previous trial were evaluated. KMW, thickness of keratinized mucosa (KMT), gingival index (GI) and probing depth (PD) were measured at baseline, 2 and 6 months. Postoperative pain, patient satisfaction and aesthetic outcomes were also assessed. RESULTS: At 6 months after surgery, the combination technique could attain 3.3 ± 1.6 mm of KMW. No significant change could be detected in GI or PD at 6 months compared to those at 2 months (p > 0.05). The postoperative pain and patient satisfaction in VAS were 2.6 ± 1.2 and 9.5 ± 1.2. The total score of aesthetic outcomes was 3.8 ± 1.2. In the historical FGG group, 4.6 ± 1.6 mm of KMW was reported at 6 months, and the total score of aesthetic outcomes was higher than the combination technique (4.8 ± 0.7 vs. 3.8 ± 1.2, p < 0.05). CONCLUSIONS: The combination technique of SFGG and XCM could increase KMW and maintain peri-implant health. However, this combination technique was associated with inferior augmentation and aesthetic outcomes compared with FGG alone. TRIAL REGISTRATION: This clinical trial was registered in the Chinese Clinical Trial Registry with registration number ChiCTR2200057670 on 15/03/2022.


Subject(s)
Collagen , Dental Implants , Gingiva , Humans , Female , Male , Collagen/therapeutic use , Middle Aged , Gingiva/transplantation , Adult , Patient Satisfaction , Periodontal Index , Gingivoplasty/methods , Keratins , Esthetics, Dental , Treatment Outcome , Pain, Postoperative/etiology , Mouth Mucosa/transplantation
9.
Int J Mol Sci ; 25(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732209

ABSTRACT

One of the primary complications in generating physiologically representative skin tissue is the inability to integrate vasculature into the system, which has been shown to promote the proliferation of basal keratinocytes and consequent keratinocyte differentiation, and is necessary for mimicking representative barrier function in the skin and physiological transport properties. We created a 3D vascularized human skin equivalent (VHSE) with a dermal and epidermal layer, and compared keratinocyte differentiation (immunomarker staining), epidermal thickness (H&E staining), and barrier function (transepithelial electrical resistance (TEER) and dextran permeability) to a static, organotypic avascular HSE (AHSE). The VHSE had a significantly thicker epidermal layer and increased resistance, both an indication of increased barrier function, compared to the AHSE. The inclusion of keratin in our collagen hydrogel extracellular matrix (ECM) increased keratinocyte differentiation and barrier function, indicated by greater resistance and decreased permeability. Surprisingly, however, endothelial cells grown in a collagen/keratin extracellular environment showed increased cell growth and decreased vascular permeability, indicating a more confluent and tighter vessel compared to those grown in a pure collagen environment. The development of a novel VHSE, which incorporated physiological vasculature and a unique collagen/keratin ECM, improved barrier function, vessel development, and skin structure compared to a static AHSE model.


Subject(s)
Collagen , Hydrogels , Keratinocytes , Keratins , Skin , Humans , Hydrogels/chemistry , Collagen/chemistry , Collagen/metabolism , Keratinocytes/metabolism , Keratinocytes/cytology , Skin/metabolism , Skin/blood supply , Keratins/metabolism , Cell Differentiation , Cell Proliferation , Tissue Engineering/methods , Extracellular Matrix/metabolism , Cells, Cultured
10.
Int J Biol Macromol ; 268(Pt 1): 131769, 2024 May.
Article in English | MEDLINE | ID: mdl-38692999

ABSTRACT

This study investigates the synthesis of selenium nanoparticles (SeNPs), owing to the low cost and abundance of selenium. However, the toxicity of SeNP prompts the development of a selenium nanocomposite (SeNC) containing pectin, keratin, and ferulic acid to improve the bioactivity of Se[0]. Further, incorporating the SeNC in a suitable formulation for drug delivery as a transdermal patch was worth studying. Accordingly, various analytical techniques were used to characterize the SeNPs and the SeNC, confirming successful synthesis and encapsulation. The SeNC exhibited notable particle size of 448.2 ± 50.2 nm, high encapsulation efficiency (98.90 % ± 2.4 %), 28.1 ± 0.45 drug loading, and sustained drug release at pH 5.5. Zeta potential and XPS confirmed the zero-oxidation state. The supramolecular structure was evident from spectral analysis endorsing the semi-crystalline nature of the SeNC and SEM images showcasing flower-shaped structures. Further, the SeNC demonstrated sustained drug release (approx. 22 % at 48 h) and wound-healing potential in L929 fibroblast cells. Subsequently, the SeNC loaded into a gelling agent exhibited shear thinning properties and improved drug release by nearly 58 %. A 3D printed reservoir-type transdermal patch was developed utilizing the SeNC-loaded gel, surpassing commercially available patches in characteristics such as % moisture uptake, tensile strength, and hydrophobicity. The patch, evaluated through permeation studies and CAM assay, exhibited controlled drug release and angiogenic properties for enhanced wound healing. The study concludes that this patch can serve as a smart dressing with tailored functionality for different wound stages, offering a promising novel drug delivery system for wound healing.


Subject(s)
Drug Liberation , Keratins , Nanogels , Pectins , Printing, Three-Dimensional , Selenium , Transdermal Patch , Selenium/chemistry , Pectins/chemistry , Keratins/chemistry , Animals , Nanogels/chemistry , Mice , Oxidation-Reduction , Wound Healing/drug effects , Cell Line , Nanocomposites/chemistry , Drug Carriers/chemistry , Drug Delivery Systems , Particle Size
11.
J Colloid Interface Sci ; 669: 295-304, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38718583

ABSTRACT

Perovskite nanocrystals (PNCs) have emerged as promising candidates for fluorescent probes owing to their outstanding photoelectric properties. However, the conventional CsPbBr3 (CPB) NCs are extremely unstable in water, which has seriously limited their sensing applications in water environment. Herein, we present a powerful ligand engineering strategy for fabricating highly water-stable CPB NCs by using a biopolymer of wool keratin (WK) as the passivator and the polyaryl polymethylene isocyanate (PAPI) as the cross-linking agent. In particular, WK with multi-functional groups can serve as a polydentate ligand to firmly passivate CPB NCs by the ligand exchange process in hot toluene; and then the addition of PAPI can further encapsulate CPB NCs by the crosslinking reaction between PAPI and WK. Consequently, the as-prepared CPB/WK-PAPI NCs can maintain âˆ¼ 80 % of their relative photoluminescence (PL) intensity after 60 days in water, and they still maintain âˆ¼ 40 % of their relative PL intensity even after 512 days in the same environment, which is one of the best water stabilities compared previously reported polymer passivation methods. As a proof-of their application, the portable CPB/WK-PAPI NCs-based test strips are further developed as a fluorescent nanoprobe for real-time and visual monitoring amines and food freshness. Among various amine analytes, the as-prepared test strips exhibit higher sensitivity towards conjugated amines, achieving a remarkable detection limit of 18.3 nM for pyrrole. Our research not only introduces an innovative strategy involving natural biopolymers to enhance the water stability of PNCs, but also highlights the promising potential of PNCs for visually and portably detecting amines and assessing food freshness.


Subject(s)
Fluorescent Dyes , Keratins , Nanoparticles , Water , Wool , Nanoparticles/chemistry , Animals , Water/chemistry , Keratins/chemistry , Keratins/analysis , Wool/chemistry , Fluorescent Dyes/chemistry , Amines/chemistry , Particle Size , Surface Properties , Food Analysis/methods
12.
Nat Commun ; 15(1): 4174, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755126

ABSTRACT

The transition from natal downs for heat conservation to juvenile feathers for simple flight is a remarkable environmental adaptation process in avian evolution. However, the underlying epigenetic mechanism for this primary feather transition is mostly unknown. Here we conducted time-ordered gene co-expression network construction, epigenetic analysis, and functional perturbations in developing feather follicles to elucidate four downy-juvenile feather transition events. We report that extracellular matrix reorganization leads to peripheral pulp formation, which mediates epithelial-mesenchymal interactions for branching morphogenesis. α-SMA (ACTA2) compartmentalizes dermal papilla stem cells for feather renewal cycling. LEF1 works as a key hub of Wnt signaling to build rachis and converts radial downy to bilateral symmetry. Novel usage of scale keratins strengthens feather sheath with SOX14 as the epigenetic regulator. We show that this primary feather transition is largely conserved in chicken (precocial) and zebra finch (altricial) and discuss the possibility that this evolutionary adaptation process started in feathered dinosaurs.


Subject(s)
Chickens , Feathers , Finches , Animals , Feathers/growth & development , Feathers/metabolism , Chickens/genetics , Finches/genetics , Gene Expression Regulation, Developmental , Extracellular Matrix/metabolism , Epigenesis, Genetic , Gene Regulatory Networks , Wnt Signaling Pathway , Keratins/metabolism , Keratins/genetics , Biological Evolution , Morphogenesis/genetics
13.
Mycopathologia ; 189(3): 37, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38704808

ABSTRACT

Trichophyton rubrum is a human fungal pathogen that causes dermatophytosis, an infection that affects keratinized tissues. Integrated molecular signals coordinate mechanisms that control pathogenicity. Transcriptional regulation is a core regulation of relevant fungal processes. Previous RNA sequencing data revealed that the absence of the transcription factor StuA resulted in the differential expression of the MAPK-related high glycerol osmolarity gene (hog1) in T. rubrum. Here we validated the role of StuA in regulating the transcript levels of hog1. We showed through RT-qPCR that transcriptional regulation controls hog1 levels in response to glucose, keratin, and co-culture with human keratinocytes. In addition, we also detected hog1 pre-mRNA transcripts that underwent alternative splicing, presenting intron retention in a StuA-dependent mechanism. Our findings suggest that StuA and alternative splicing simultaneously, but not dependently, coordinate hog1 transcript levels in T. rubrum. As a means of preventing and treating dermatophytosis, our results contribute to the search for new potential drug therapies based on the molecular aspects of signaling pathways in T. rubrum.


Subject(s)
Alternative Splicing , Arthrodermataceae , Gene Expression Regulation, Fungal , Mitogen-Activated Protein Kinases , Tinea , Transcription Factors , Humans , Arthrodermataceae/genetics , Arthrodermataceae/metabolism , Glucose/metabolism , Keratinocytes/microbiology , Keratins/metabolism , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Real-Time Polymerase Chain Reaction , Transcription Factors/genetics , Transcription Factors/metabolism , Tinea/metabolism , Tinea/microbiology
14.
Int J Dev Biol ; 68(1): 39-45, 2024.
Article in English | MEDLINE | ID: mdl-38591692

ABSTRACT

Keratin 17 (K17) is thought to be a candidate target gene for regulation by Lymphoid Enhancer Factor-1 (Lef-1). K17 is a marker that distinguishes junctional epithelium (JE) from epithelial rests of Malassez (ERM). However, the relationship of Lef-1 to K17 is not clear in this context. Moreover, the expression of other keratins such as K5, K6, K7 and K16 is not reported. Therefore, the aim of our study was to assay the expression of K5, K6, K7, K14, K16, K17 and Lef-1 in postnatal developing teeth, and clarify the corresponding immunophenotypes of the JE and ERM. Upper jaws of Wistar rats aged from postnatal (PN) day 3.5 to PN21 were used and processed for immunohistochemistry. K5 and K14 were intensely expressed in inner enamel epithelium (IEE), reduced enamel epithelium (REE), ERM and JE. There was no staining for K16 in the tissue, except for strong staining in the oral epithelium. Specifically, at PN3.5 and PN7, K17 was initially strongly expressed and then negative in the IEE. At PN16 and PN21, both REE and ERM were strongly stained for K17, whereas K17 was negative in the JE. In addition, K6, K7 and Lef-1 were not detected in any tissue investigated. REE and ERM have an identical keratin expression pattern before eruption, while JE differs from ERM in the expression of K17 after eruption. The expression of K17 does not coincide with that of Lef-1. These data indicate that JE has a unique phenotype different from ERM, which is of odontogenic origin.


Subject(s)
Epithelial Attachment , Rest , Rats , Animals , Epithelial Attachment/metabolism , Rats, Wistar , Epithelium/metabolism , Immunohistochemistry , Keratins/metabolism
15.
J Colloid Interface Sci ; 666: 176-188, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38593652

ABSTRACT

AIM: Ultraviolet B (UVB) radiation can compromise the functionality of the skin barrier through various mechanisms. We hypothesize that UVB induce photochemical alterations in the components of the outermost layer of the skin, known as the stratum corneum (SC), and modulate its antioxidative defense mechanisms. Catalase is a well-known antioxidative enzyme found in the SC where it acts to scavenge reactive oxygen species. However, a detailed characterization of acute UVB exposure on the activity of native catalase in the SC is lacking. Moreover, the effects of UVB irradiation on the molecular dynamics and organization of the SC keratin and lipid components remain unclear. Thus, the aim of this work is to characterize consequences of UVB exposure on the structural and antioxidative properties of catalase, as well as on the molecular and global properties of the SC matrix surrounding the enzyme. EXPERIMENTS: The effect of UVB irradiation on the catalase function is investigated by chronoamperometry with a skin covered oxygen electrode, which probes the activity of native catalase in the SC matrix. Circular dichroism is used to explore changes of the catalase secondary structure, and gel electrophoresis is used to detect fragmentation of the enzyme following the UVB exposure. UVB induced alterations of the SC molecular dynamics and structural features of the SC barrier, as well as its water sorption behavior, are investigated by a complementary set of techniques, including natural abundance 13C polarization transfer solid-state NMR, wide-angle X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, and dynamic vapor sorption microbalance. FINDINGS: The findings show that UVB exposure impairs the antioxidative function of catalase by deactivating both native catalase in the SC matrix and lyophilized catalase. However, UVB radiation does not alter the secondary structure of the catalase nor induce any observable enzyme fragmentation, which otherwise could explain deactivation of its function. NMR measurements on SC samples show a subtle increase in the molecular mobility of the terminal segments of the SC lipids, accompanied by a decrease in the mobility of lipid chain trans-gauche conformers after high doses of UVB exposure. At the same time, the NMR data suggest increased rigidity of the polypeptide backbone of the keratin filaments, while the molecular mobility of amino acid residues in random coil domains of keratin remain unaffected by UVB irradiation. The FTIR data show a consistent decrease in absorbance associated with lipid bond vibrations, relative to the main protein bands. Collectively, the NMR and FTIR data suggest a small modification in the composition of fluid and solid phases of the SC lipid and protein components after UVB exposure, unrelated to the hydration capacity of the SC tissue. To conclude, UVB deactivation of catalase is anticipated to elevate oxidative stress of the SC, which, when coupled with subtle changes in the molecular characteristics of the SC, may compromise the overall skin health and elevate the likelihood of developing skin disorders.


Subject(s)
Catalase , Ultraviolet Rays , Catalase/metabolism , Catalase/chemistry , Humans , Epidermis/radiation effects , Epidermis/metabolism , Epidermis/enzymology , Skin/radiation effects , Skin/metabolism , Skin/chemistry , Keratins/chemistry , Keratins/metabolism
16.
Biomed Mater ; 19(3)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38626780

ABSTRACT

Wool derived keratin, due to its demonstrated ability to promote bone formation, has been suggested as a potential bioactive material for implant surfaces. The aim of this study was to assess the effects of keratin-coated titanium on osteoblast functionin vitroand bone healingin vivo. Keratin-coated titanium surfaces were fabricated via solvent casting and molecular grafting. The effect of these surfaces on the attachment, osteogenic gene, and osteogenic protein expression of MG-63 osteoblast-like cells were quantifiedin vitro. The effect of these keratin-modified surfaces on bone healing over three weeks using an intraosseous calvaria defect was assessed in rodents. Keratin coating did not affect MG-63 proliferation or viability, but enhanced osteopontin, osteocalcin and bone morphogenetic expressionin vitro. Histological analysis of recovered calvaria specimens showed osseous defects covered with keratin-coated titanium had a higher percentage of new bone area two weeks after implantation compared to that in defects covered with titanium alone. The keratin-coated surfaces were biocompatible and stimulated osteogenic expression in adherent MG-63 osteoblasts. Furthermore, a pilot preclinical study in rodents suggested keratin may stimulate earlier intraosseous calvaria bone healing.


Subject(s)
Bone Regeneration , Cell Proliferation , Coated Materials, Biocompatible , Keratins , Osteoblasts , Osteogenesis , Skull , Titanium , Titanium/chemistry , Osteoblasts/drug effects , Osteoblasts/cytology , Osteoblasts/metabolism , Bone Regeneration/drug effects , Animals , Keratins/chemistry , Keratins/metabolism , Humans , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Cell Proliferation/drug effects , Skull/drug effects , Skull/injuries , Osteogenesis/drug effects , Rats , Surface Properties , Male , Cell Line , Cell Adhesion/drug effects , Materials Testing , Cell Survival/drug effects , Rats, Sprague-Dawley
17.
AAPS PharmSciTech ; 25(4): 77, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589761

ABSTRACT

Keratin has the potential to function as the gel matrix in an ophthalmic formulation for the encapsulation of the macrolide antibiotic azithromycin. The quality of this formulation was thoroughly evaluated through various analyses, such as in vitro release assessment, rheological examination, intraocular retention studies in rabbits, assessment of bacteriostatic efficacy, and safety evaluations. It is worth mentioning that the gel demonstrated shear thinning properties and exhibited characteristics of an elastic solid, thereby confirming its structural stability. The gel demonstrated a notable affinity for mucosal surfaces in comparison to traditional azithromycin aqueous solutions. In vitro release testing revealed that drug release transpired via diffusion mechanisms, following a first-order kinetic release pattern. Additionally, the formulated gel exhibited remarkable antibacterial efficacy against Staphylococcus aureus and Pseudomonas aeruginosa in bacteriostatic evaluations. Lastly, safety assessments confirmed that the gel eye drops induced minimal irritation and displayed no apparent cytotoxicity, indicating their good safety and biocompatibility for ocular application. Thus, these findings indicated that the prepared azithromycin gel eye drops complied with the requisite standards for ophthalmic preparations.


Subject(s)
Conjunctivitis, Bacterial , Drug Delivery Systems , Animals , Rabbits , Azithromycin/pharmacology , Keratins/therapeutic use , Conjunctivitis, Bacterial/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Gels/chemistry , Ophthalmic Solutions/chemistry
18.
Microb Cell Fact ; 23(1): 102, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575972

ABSTRACT

BACKGROUND: Poultry feather waste has a potential for bioenergy production because of its high protein content. This research explored the use of chicken feather hydrolysate for methane and hydrogen production via anaerobic digestion and bioelectrochemical systems, respectively. Solid state fermentation of chicken waste was conducted using a recombinant strain of Bacillus subtilis DB100 (p5.2). RESULTS: In the anaerobic digestion, feather hydrolysate produced maximally 0.67 Nm3 CH4/kg feathers and 0.85 mmol H2/day.L concomitant to COD removal of 86% and 93%, respectively. The bioelectrochemical systems used were microbial fuel and electrolysis cells. In the first using a microbial fuel cell, feather hydrolysate produced electricity with a maximum cell potential of 375 mV and a current of 0.52 mA. In the microbial electrolysis cell, the hydrolysate enhanced the hydrogen production rate to 7.5 mmol/day.L, with a current density of 11.5 A/m2 and a power density of 9.26 W/m2. CONCLUSIONS: The data indicated that the sustainable utilization of keratin hydrolysate to produce electricity and biohydrogen via bioelectrical chemical systems is feasible. Keratin hydrolysate can produce electricity and biofuels through an integrated aerobic-anaerobic fermentation system.


Subject(s)
Chickens , Feathers , Animals , Anaerobiosis , Chickens/metabolism , Hydrogen/metabolism , Keratins/metabolism , Methane/metabolism , Biofuels , Bioreactors
19.
BMC Biotechnol ; 24(1): 23, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671404

ABSTRACT

Volumetric loss is one of the challenging issues in muscle tissue structure that causes functio laesa. Tissue engineering of muscle tissue using suitable hydrogels is an alternative to restoring the physiological properties of the injured area. Here, myogenic properties of type I collagen (0.5%) and keratin (0.5%) were investigated in a mouse model of biceps femoris injury. Using FTIR, gelation time, and rheological analysis, the physicochemical properties of the collagen (Col)/Keratin scaffold were analyzed. Mouse C2C12 myoblast-laden Col/Keratin hydrogels were injected into the injury site and histological examination plus western blotting were performed to measure myogenic potential after 15 days. FTIR indicated an appropriate interaction between keratin and collagen. The blend of Col/Keratin delayed gelation time when compared to the collagen alone group. Rheological analysis revealed decreased stiffening in blended Col/Keratin hydrogel which is favorable for the extrudability of the hydrogel. Transplantation of C2C12 myoblast-laden Col/Keratin hydrogel to injured muscle tissues led to the formation of newly generated myofibers compared to cell-free hydrogel and collagen groups (p < 0.05). In the C2C12 myoblast-laden Col/Keratin group, a low number of CD31+ cells with minimum inflammatory cells was evident. Western blotting indicated the promotion of MyoD in mice that received cell-laden Col/Keratin hydrogel compared to the other groups (p < 0.05). Despite the increase of the myosin cell-laden Col/Keratin hydrogel group, no significant differences were obtained related to other groups (p > 0.05). The blend of Col/Keratin loaded with myoblasts provides a suitable myogenic platform for the alleviation of injured muscle tissue.


Subject(s)
Keratins , Muscle Development , Muscle, Skeletal , Animals , Mice , Muscle, Skeletal/injuries , Muscle, Skeletal/metabolism , Keratins/metabolism , Cell Line , Hydrogels/chemistry , Neovascularization, Physiologic/drug effects , Tissue Engineering/methods , Disease Models, Animal , Collagen/metabolism , Myoblasts/metabolism , Myoblasts/cytology , Male , Tissue Scaffolds/chemistry , Angiogenesis
20.
Int J Biol Macromol ; 267(Pt 2): 131478, 2024 May.
Article in English | MEDLINE | ID: mdl-38604434

ABSTRACT

In this study, an environmentally friendly, effective, easily synthesizable and recoverable nano-sized catalyst system (Ag@NaAlg-keratin) was designed by decorating Ag nanoparticles on microbeads containing sodium alginate (NaAlg) and keratin obtained from goose feathers. The structure, morphology and crystallinity of the Ag@NaAlg-keratin nanocatalyst were evaluated by XRD, FT-IR, FE-SEM, EDS/EDS mapping and TEM analyses. Catalytic ability of designed Ag@NaAlg-keratin nanocatalyst was then investigated against 4-nitrophenol (4-NP) and methyl orange (MO) reductions. Ag@NaAlg-keratin nanocatalyst effectively reduced 4-NP in 6 min and MO in 5 min, with rate constants of 0.17 min-1 and 0.16 min-1, respectively. Additionally, activation energies (Ea) were found as 39.8 kJ/mol for 4-NP and 37.9 kJ/mol for MO. Performed recyclability tests showed that the Ag@NaAlg-keratin nanocatalyst was easily recovered due to its microbead form and successfully reused five times, maintaining both its activity and structure. Furthermore, antioxidant activity of Ag@NaAlg-keratin nanocatalyst was the highest (73.16 %).


Subject(s)
Alginates , Antioxidants , Keratins , Metal Nanoparticles , Microspheres , Silver , Alginates/chemistry , Metal Nanoparticles/chemistry , Silver/chemistry , Keratins/chemistry , Catalysis , Antioxidants/chemistry , Antioxidants/pharmacology , Animals , Nitrophenols/chemistry , Feathers/chemistry , Azo Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...