Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 282.931
Filter
1.
Parasite ; 31: 35, 2024.
Article in English | MEDLINE | ID: mdl-38949637

ABSTRACT

Myxidium rhodei Léger, 1905 (Cnidaria: Myxozoa) is a kidney-infecting myxosporean that was originally described from the European bitterling Rhodeus amarus. Subsequently, it has been documented based on spore morphology in more than 40 other cypriniform species, with the roach Rutilus rutilus being the most commonly reported host. This study introduces the first comprehensive data assessment of M. rhodei, conducted through morphological, ecological and molecular methods. The morphological and phylogenetic analyses of SSU rDNA sequences of Myxidium isolates obtained from European bitterling and roach did not support parasite conspecificity from these fish. In fact, the roach-infecting isolates represent three distinct parasite species. The first two, M. rutili n. sp. and M. rutilusi n. sp., are closely related cryptic species clustering with other myxosporeans in the freshwater urinary clade, sharing the same tissue tropism. The third one, M. batuevae n. sp., previously assigned to M. cf. rhodei, clustered in the hepatic biliary clade sister to bitterling-infecting M. rhodei. Our examination of diverse cypriniform fishes, coupled with molecular and morphological analyses, allowed us to untangle the cryptic species nature of M. rhodei and discover the existence of novel species. This underscores the largely undiscovered range of myxozoan diversity and highlights the need to incorporate sequence data in diagnosing novel species.


Title: Résoudre le casse-tête de Myxidium rhodei (Myxozoa) : aperçu de sa phylogénie et de sa spécificité d'hôte chez les Cypriniformes. Abstract: Myxidium rhodei Léger, 1905 (Cnidaria : Myxozoa) est un Myxosporea infectant les reins qui a été décrit à l'origine chez la bouvière, Rhodeus amarus. Par la suite, il a été documenté, sur la base de la morphologie des spores, chez plus de 40 autres espèces de cypriniformes, le gardon Rutilus rutilus étant l'hôte le plus fréquemment signalé. Cette étude présente la première évaluation complète des données sur M. rhodei, réalisée par des méthodes morphologiques, écologiques et moléculaires. Les analyse morphologiques et phylogénétiques des séquences d'ADNr SSU des isolats de Myxidium obtenus à partir de bouvières et de gardons européens n'ont pas confirmé la conspécificité du parasite de ces poissons. En fait, les isolats infectant les gardons représentent trois espèces distinctes de parasites. Les deux premières, M. rutili n. sp. et M. rutilusi n. sp., sont des espèces cryptiques étroitement apparentées, regroupées avec d'autres Myxosporea du clade urinaire d'eau douce, partageant le même tropisme tissulaire. La troisième, M. batuevae n. sp., précédemment attribuée à M. cf. rhodei, appartient au clade biliaire hépatique, groupe-frère de M. rhodei infectant la bouvière. Notre examen de divers poissons cypriniformes, couplé à des analyses moléculaires et morphologiques, nous a permis de démêler la nature cryptique des espèces de M. rhodei et de découvrir l'existence de nouvelles espèces. Cela souligne la diversité largement méconnue des Myxozoaires et souligne la nécessité d'incorporer des données de séquence dans le diagnostic de nouvelles espèces.


Subject(s)
Cypriniformes , Fish Diseases , Host Specificity , Myxozoa , Parasitic Diseases, Animal , Phylogeny , Animals , Myxozoa/classification , Myxozoa/genetics , Myxozoa/isolation & purification , Parasitic Diseases, Animal/parasitology , Fish Diseases/parasitology , Cypriniformes/parasitology , DNA, Ribosomal , Kidney/parasitology , Cyprinidae/parasitology
2.
Sci Rep ; 14(1): 15514, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969704

ABSTRACT

This study aimed to create and validate a predictive model for renal function following live kidney donation, using pre-donation factors. Accurately predicting remaining renal function post live kidney donation is currently insufficient, necessitating an effective assessment tool. A multicenter retrospective study of 2318 live kidney donors from two independent centers (May 2007-December 2019) was conducted. The primary endpoint was the reduction in eGFR to below 60 mL/min/m2 6 months post-donation. The primary endpoint was achieved in 14.4% of the training cohort and 25.8% of the validation cohort. Sex, age, BMI, hypertension, preoperative eGFR, and remnant kidney proportion (RKP) measured by computerized tomography (CT) volumetry were found significant in the univariable analysis. These variables informed a scoring system based on multivariable analysis: sex (male: 1, female: 0), age at operation (< 30: 0, 30-39: 1, 40-59: 2, ≥ 60: 3), preoperative eGFR (≥ 100: 0, 90-99: 2, 80-89: 4, < 80: 5), and RKP (≥ 52%: 0, < 52%: 1). The total score ranged from 0 to 10. The model showed good discrimination for the primary endpoint in both cohorts. The prediction model provides a useful tool for estimating post-donation renal dysfunction risk, factoring in the side of the donated kidney. It offers potential enhancement to pre-donation evaluations.


Subject(s)
Glomerular Filtration Rate , Kidney Transplantation , Kidney , Living Donors , Nephrectomy , Humans , Male , Female , Middle Aged , Adult , Kidney Transplantation/adverse effects , Retrospective Studies , Kidney/diagnostic imaging , Nephrectomy/adverse effects , Risk Factors , Risk Assessment/methods , Kidney Function Tests
3.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(3): 367-376, 2024 Mar 28.
Article in English, Chinese | MEDLINE | ID: mdl-38970510

ABSTRACT

Acute kidney injury (AKI) is a common critical condition in clinical practice, characterized by a rapid decline in renal function within a short period. The pathogenesis of AKI is complex and has not been fully elucidated. In recent years, studies have found that the activation of endoplasmic reticulum stress (ERS) and the Nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome are closely related to the occurrence of AKI. When the kidneys is damaged, the internal environment of the kidney cells is disrupted, leading to the activation of ERS. Excessive ERS can induce apoptosis of renal cells, leading to the occurrence of AKI. Additionally, the NLRP3 inflammasome can mediate the recognition of endogenous and exogenous danger signal molecules by the host, subsequently activating caspase-1, pro-inflammatory cytokines such as IL-1ß and IL-18, inducing inflammatory responses, and promoting apoptosis of renal cells. In animal models of AKI, the upregulation of ERS markers is often accompanied by increased expression levels of NLRP3 inflammasome-related proteins, indicating that ERS can regulate the activation process of the NLRP3 inflammasome. Clarifying the role and mechanism of ERS and NLRP3 inflammasome in AKI is expected to provide new insights for the prevention and treatment of AKI.


Subject(s)
Acute Kidney Injury , Endoplasmic Reticulum Stress , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Acute Kidney Injury/metabolism , Acute Kidney Injury/etiology , Endoplasmic Reticulum Stress/physiology , Inflammasomes/metabolism , Humans , Animals , Apoptosis , Interleukin-18/metabolism , Kidney/metabolism , Interleukin-1beta/metabolism
4.
PLoS One ; 19(7): e0304387, 2024.
Article in English | MEDLINE | ID: mdl-38968252

ABSTRACT

Lindane is a broad-spectrum insecticide widely used on fruits, vegetables, crops, livestock and on animal premises to control the insects and pests. The extensive use of pesticides and their residues in the soil and water typically join the food chain and thus accumulate in the body tissues of human and animals causing severe health effects. The study was designed to determine the toxicity effects of sub-lethal concentrations of lindane on hemato-biochemical profile and histo-pathological changes in Rohu (Labeo rohita). A significant increase in the absolute (p<0.05) and relative (p<0.05) weights was observed along with severe histo-pathological alterations in liver, kidneys, gills, heart and brain at 30µg/L and 45µg/L concentration of lindane. A significant (p<0.05) decrease in RBCs count, PCV and Hb concentration while a significant (p<0.05) increased leukocytes were observed by 30µg/L and 45µg/L concentrations of lindane at 45 and 60 days of the experiment. Serum total protein and albumin were significantly (p<0.05) decreased while hepatic and renal enzymes were significantly (p<0.05) increased due to 30µg/L and 45µg/L concentrations of lindane at days-45 and 60 of experiment compared to control group. The observations of thin blood smear indicated significantly increased number of erythrocytes having nuclear abnormalities in the fish exposed at 30µg/L and 45µg/L concentrations of lindane. ROS and TBARS were found to be significantly increased while CAT, SOD, POD and GSH were significantly decreased with an increase in the concentration and exposure time of lindane. The results showed that lindane causes oxidative stress and severe hematological, serum biochemical and histo-pathological alterations in the fish even at sub-lethal concentrations.


Subject(s)
Cyprinidae , Hexachlorocyclohexane , Insecticides , Kidney , Liver , Animals , Hexachlorocyclohexane/toxicity , Liver/drug effects , Liver/pathology , Liver/metabolism , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Insecticides/toxicity , Cyprinidae/metabolism , Gills/drug effects , Gills/pathology , Gills/metabolism , Oxidative Stress/drug effects , Water Pollutants, Chemical/toxicity
5.
Exp Clin Transplant ; 22(5): 396-398, 2024 May.
Article in English | MEDLINE | ID: mdl-38970284

ABSTRACT

Renal transplantation is the best modality of treatment for patients with end-stage renal disease. Donor shortage remains a substantial problem, for which different strategies are employed, including acceptance of marginal donors and donor kidneys with anatomic variations. We performed a successful kidney transplant of a donor kidney that had complete duplication of the ureter. After transplant, the recipient had no urinary complications.


Subject(s)
Kidney Transplantation , Tissue Donors , Ureter , Humans , Kidney Transplantation/adverse effects , Ureter/abnormalities , Ureter/surgery , Treatment Outcome , Kidney/abnormalities , Kidney/surgery , Male , Kidney Failure, Chronic/surgery , Kidney Failure, Chronic/diagnosis , Adult , Donor Selection , Female , Middle Aged
6.
Int J Med Robot ; 20(4): e2662, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38970290

ABSTRACT

BACKGROUND: Despite partial nephrectomy (PN) renal function preservation benefits, postoperative renal dysfunction may occur. Perirenal fat thickness (PFT) is associated with renal dysfunction such as diabetes; however, its role in renal tumour surgery is unclear. This study investigates the role of PFT in renal function after robot-assisted partial nephrectomy (RAPN). METHODS: Pre-operative factors for postoperative renal dysfunction were analysed in 156 patients undergoing RAPN with ≥1-year follow-up. PFT measured using computed tomography categorised patients with PFT >21.0 mm (median) as high-PFT. RESULTS: Tumour size, total R.E.N.A.L. nephrometry score and its N component, renal calyx opening, achievement of trifecta, and PFT were risk factors for renal dysfunction 1 year postoperatively. Age ≥75 years (p = 0.024), total RNS ≥7 (p = 0.036), and PFT >21.0 mm (p = 0.002) significantly correlated with postoperative renal dysfunction. CONCLUSIONS: CT-measured PFT is a valuable predictor of postoperative renal dysfunction.


Subject(s)
Adipose Tissue , Kidney Neoplasms , Kidney , Nephrectomy , Postoperative Complications , Robotic Surgical Procedures , Tomography, X-Ray Computed , Humans , Nephrectomy/methods , Nephrectomy/adverse effects , Robotic Surgical Procedures/methods , Female , Male , Kidney Neoplasms/surgery , Middle Aged , Aged , Kidney/physiopathology , Kidney/diagnostic imaging , Kidney/surgery , Postoperative Complications/etiology , Adipose Tissue/diagnostic imaging , Risk Factors , Adult , Retrospective Studies , Aged, 80 and over , Postoperative Period
7.
J Biomed Mater Res B Appl Biomater ; 112(7): e35443, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38968028

ABSTRACT

The aim of this work was to analyze the effects of long-term exposure to titanium dioxide (TiO2) micro- (MPs) and nanoparticles (NPs) (six and 12 months) on the biochemical and histopathological response of target organs using a murine model. Male Wistar rats were intraperitoneally injected with a suspension of TiO2 NPs (5 nm; TiO2-NP5 group) or MPs (45 µm; TiO2-NP5 group); the control group was injected with saline solution. Six and 12 months post-injection, titanium (Ti) concentration in plasma and target organs was determined spectrometrically (ICP-MS). Blood smears and organ tissue samples were evaluated by light microscopy. Liver and kidney function was evaluated using serum biochemical parameters. Oxidative metabolism was assessed 6 months post-injection (determination of superoxide anion by nitroblue tetrazolium (NBT) test, superoxide dismutase (SOD) and catalase (CAT), lipid peroxidation, and paraoxonase 1). Titanium (Ti) concentration in target organs and plasma was significantly higher in the TiO2-exposed groups than in the control group. Histological evaluation showed the presence of titanium-based particles in the target organs, which displayed no structural alterations, and in blood monocytes. Oxidative metabolism analysis showed that TiO2 NPs were more reactive over time than MPs (p < .05) and mobilization of antioxidant enzymes and membrane damage varied among the studied organs. Clearance of TiO2 micro and nanoparticles differed among the target organs, and lung clearance was more rapid than clearance from the lungs and kidneys (p < .05). Conversely, Ti concentration in plasma increased with time (p < .05). In conclusion, neither serum biochemical parameters nor oxidative metabolism markers appear to be useful as biomarkers of tissue damage in response to TiO2 micro- and nanoparticle deposits at chronic time points.


Subject(s)
Rats, Wistar , Titanium , Titanium/chemistry , Animals , Male , Rats , Metal Nanoparticles/chemistry , Kidney/metabolism , Kidney/pathology , Kidney/drug effects , Oxidative Stress/drug effects , Nanoparticles/chemistry , Liver/metabolism , Liver/pathology
8.
Pediatr Surg Int ; 40(1): 177, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38969779

ABSTRACT

PURPOSE: We investigated the postoperative renal function in persistent cloaca (PC) patients who underwent posterior sagittal anorecto-urethro-vaginopalsty (PSARUVP) and factors influencing the renal functional outcomes. METHODS: A questionnaire survey was distributed to 244 university and children's hospitals across Japan. Of the 169 patients underwent PSARUVP, 103 patients were enrolled in the present study. Exclusion criteria was patients without data of renal prognosis. RESULTS: The present study showed that renal anomalies (p = 0.09), vesicoureteral reflux (VUR) (p = 0.01), and hydrocolpos (p = 0.07) were potential factors influencing a decline in the renal function. Approximately half of the patients had a normal kidney function, but 45.6% had a reduced renal function (Stage ≥ 2 chronic kidney disease: CKD). The incidence of VUR was significantly higher in the renal function decline (RFD) group than those in the preservation (RFP) group (p = 0.01). Vesicostomy was significantly more frequent in the RFD group than in the RFP group (p = 0.04). Urinary tract infections (p < 0.01) and bladder dysfunction (p = 0.04) were significantly more common in patients with VUR than in patients without VUR. There was no association between the VUR status and the bowel function. CONCLUSIONS: Prompt assessment and treatment of VUR along with bladder management may minimize the decline in the renal function.


Subject(s)
Cloaca , Kidney , Humans , Japan/epidemiology , Female , Male , Cloaca/abnormalities , Cloaca/surgery , Kidney/abnormalities , Kidney/surgery , Kidney/physiopathology , Surveys and Questionnaires , Infant , Vagina/surgery , Urethra/surgery , Urethra/abnormalities , Postoperative Complications/epidemiology , Anal Canal/surgery , Anal Canal/abnormalities , Rectum/surgery , Infant, Newborn , Child, Preschool
9.
Clin Exp Med ; 24(1): 148, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38960929

ABSTRACT

Warfarin-related nephropathy (WRN) is defined as acute kidney injury subsequent to excessive anticoagulation with warfarin. Patients with mechanical prosthetic valves require long-term anticoagulant therapy. Nonetheless, warfarin remains the sole available option for anticoagulant therapy. Consequently, patients with mechanical prosthetic valves constitute a special group among the entire anticoagulant population. The present study recorded two cases of patients who had undergone mechanical prosthetic valve surgery and were receiving warfarin therapy. They presented to the hospital with gross hematuria and progressive creatinine levels. Notably, their international normalized ratio (INR) did not exceed three. Subsequent renal biopsies confirmed WRN with IgA nephropathy. The two patients continued to receive warfarin as anticoagulation therapy and were prescribed oral corticosteroids and cyclophosphamide, which resulted in improved renal function during the follow-up. Based on a review of all relevant literature and the present study, we proposed a new challenge: must elevated INR levels be one of the criteria for clinical diagnosis of WRN? Perhaps some inspiration can be drawn from the present article.


Subject(s)
Anticoagulants , Warfarin , Humans , Warfarin/adverse effects , Anticoagulants/adverse effects , Male , Middle Aged , Female , International Normalized Ratio , Aged , Glomerulonephritis, IGA , Biopsy , Acute Kidney Injury/chemically induced , Kidney/pathology , Kidney/drug effects , Cyclophosphamide/adverse effects , Adrenal Cortex Hormones/therapeutic use , Adrenal Cortex Hormones/adverse effects , Adrenal Cortex Hormones/administration & dosage
10.
Amino Acids ; 56(1): 44, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38960916

ABSTRACT

Carnosine's protective effect in rodent models of glycoxidative stress have provided a rational for translation of these findings in therapeutic concepts in patient with diabetic kidney disease. In contrast to rodents however, carnosine is rapidly degraded by the carnosinase-1 enzyme. To overcome this hurdle, we sought to protect hydrolysis of carnosine by conjugation to Methoxypolyethylene glycol amine (mPEG-NH2). PEGylated carnosine (PEG-car) was used to study the hydrolysis of carnosine by human serum as well as to compare the pharmacokinetics of PEG-car and L-carnosine in mice after intravenous (IV) injection. While L-carnosine was rapidly hydrolyzed in human serum, PEG-car was highly resistant to hydrolysis. Addition of unconjugated PEG to carnosine or PEG-car did not influence hydrolysis of carnosine in serum. In mice PEG-car and L-carnosine exhibited similar pharmacokinetics in serum but differed in half-life time (t1/2) in kidney, with PEG-car showing a significantly higher t1/2 compared to L-carnosine. Hence, PEGylation of carnosine is an effective approach to prevent carnosine degradations and to achieve higher renal carnosine levels. However, further studies are warranted to test if the protective properties of carnosine are preserved after PEGylation.


Subject(s)
Carnosine , Dipeptidases , Kidney , Polyethylene Glycols , Carnosine/metabolism , Animals , Polyethylene Glycols/chemistry , Hydrolysis , Dipeptidases/metabolism , Mice , Humans , Kidney/metabolism , Male
11.
Sci Rep ; 14(1): 15325, 2024 07 03.
Article in English | MEDLINE | ID: mdl-38961140

ABSTRACT

This study was performed to segment the urinary system as the basis for diagnosing urinary system diseases on non-contrast computed tomography (CT). This study was conducted with images obtained between January 2016 and December 2020. During the study period, non-contrast abdominopelvic CT scans of patients and diagnosed and treated with urinary stones at the emergency departments of two institutions were collected. Region of interest extraction was first performed, and urinary system segmentation was performed using a modified U-Net. Thereafter, fivefold cross-validation was performed to evaluate the robustness of the model performance. In fivefold cross-validation results of the segmentation of the urinary system, the average dice coefficient was 0.8673, and the dice coefficients for each class (kidney, ureter, and urinary bladder) were 0.9651, 0.7172, and 0.9196, respectively. In the test dataset, the average dice coefficient of best performing model in fivefold cross validation for whole urinary system was 0.8623, and the dice coefficients for each class (kidney, ureter, and urinary bladder) were 0.9613, 0.7225, and 0.9032, respectively. The segmentation of the urinary system using the modified U-Net proposed in this study could be the basis for the detection of kidney, ureter, and urinary bladder lesions, such as stones and tumours, through machine learning.


Subject(s)
Kidney , Tomography, X-Ray Computed , Ureter , Urinary Bladder , Humans , Tomography, X-Ray Computed/methods , Urinary Bladder/diagnostic imaging , Ureter/diagnostic imaging , Kidney/diagnostic imaging , Female , Male , Middle Aged , Adult , Aged , Image Processing, Computer-Assisted/methods , Neural Networks, Computer
12.
Sci Rep ; 14(1): 15407, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38965251

ABSTRACT

The kidney and brain play critical roles in the regulation of blood pressure. Neuropeptide FF (NPFF), originally isolated from the bovine brain, has been suggested to contribute to the pathogenesis of hypertension. However, the roles of NPFF and its receptors, NPFF-R1 and NPFF-R2, in the regulation of blood pressure, via the kidney, are not known. In this study, we found that the transcripts and proteins of NPFF and its receptors, NPFF-R1 and NPFF-R2, were expressed in mouse and human renal proximal tubules (RPTs). In mouse RPT cells (RPTCs), NPFF, but not RF-amide-related peptide-2 (RFRP-2), decreased the forskolin-stimulated cAMP production in a concentration- and time-dependent manner. Furthermore, dopamine D1-like receptors colocalized and co-immunoprecipitated with NPFF-R1 and NPFF-R2 in human RPTCs. The increase in cAMP production in human RPTCs caused by fenoldopam, a D1-like receptor agonist, was attenuated by NPFF, indicating an antagonistic interaction between NPFF and D1-like receptors. The renal subcapsular infusion of NPFF in C57BL/6 mice decreased renal sodium excretion and increased blood pressure. The NPFF-mediated increase in blood pressure was prevented by RF-9, an antagonist of NPFF receptors. Taken together, our findings suggest that autocrine NPFF and its receptors in the kidney regulate blood pressure, but the mechanisms remain to be determined.


Subject(s)
Autocrine Communication , Blood Pressure , Cyclic AMP , Oligopeptides , Signal Transduction , Animals , Humans , Mice , Cyclic AMP/metabolism , Oligopeptides/pharmacology , Oligopeptides/metabolism , Receptors, Neuropeptide/metabolism , Kidney Tubules, Proximal/metabolism , Male , Kidney/metabolism , Mice, Inbred C57BL , Receptors, Dopamine D1/metabolism
13.
Sci Rep ; 14(1): 15449, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38965392

ABSTRACT

Hyperuricemia (HUA), a metabolic disease caused by excessive production or decreased excretion of uric acid (UA), has been reported to be closely associated with a variety of UA transporters. Clerodendranthus spicatus (C. spicatus) is an herbal widely used in China for the treatment of HUA. However, the mechanism has not been clarified. Here, the rat model of HUA was induced via 10% fructose. The levels of biochemical indicators, including UA, xanthine oxidase (XOD), adenosine deaminase (ADA), blood urea nitrogen (BUN), and creatinine (Cre), were measured. Western blotting was applied to explore its effect on renal UA transporters, such as urate transporter1 (URAT1), glucose transporter 9 (GLUT9), and ATP-binding cassette super-family G member 2 (ABCG2). Furthermore, the effect of C. spicatus on plasma metabolites was identified by metabolomics. Our results showed that C. spicatus could significantly reduce the serum levels of UA, XOD, ADA and Cre, and improve the renal pathological changes in HUA rats. Meanwhile, C. spicatus significantly inhibited the expression of URAT1 and GLUT9, while increased the expression of ABCG2 in a dose-dependent manner. Metabolomics showed that 13 components, including 1-Palmitoyl-2-Arachidonoyl-sn-glycero-3-PE, Tyr-Leu and N-cis-15-Tetracosenoyl-C18-sphingosine, were identified as potential biomarkers for the UA-lowering effect of C. spicatus. In addition, pathway enrichment analysis revealed that arginine biosynthesis, biosynthesis of amino acids, pyrimidine metabolism and other metabolic pathways might be involved in the protection of C. spicatus against HUA. This study is the first to explore the mechanism of anti-HUA of C. spicatus through molecular biology and metabolomics analysis, which provides new ideas for the treatment of HUA.


Subject(s)
Hyperuricemia , Metabolomics , Uric Acid , Animals , Hyperuricemia/drug therapy , Hyperuricemia/metabolism , Rats , Metabolomics/methods , Uric Acid/blood , Male , Kidney/metabolism , Kidney/drug effects , Kidney/pathology , Organic Anion Transporters/metabolism , Organic Anion Transporters/genetics , Rats, Sprague-Dawley , Plant Extracts/pharmacology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Xanthine Oxidase/metabolism , Disease Models, Animal
14.
J Vis Exp ; (208)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38975755

ABSTRACT

A range of conditions involving the kidneys and urinary bladder can cause organ-threatening complications that are preventable if diagnosed promptly with diagnostic imaging. Common imaging modalities include either computed tomography or diagnostic ultrasound. Traditionally, ultrasound of the kidney-genitourinary system has required consultative teams consisting of a sonographer performing image acquisition and a radiologist performing image interpretation. However, diagnostic point-of-care ultrasound (POCUS) has recently emerged as a useful tool to troubleshoot acute kidney injury at the bedside. Studies have shown that non-radiologists can be trained to perform diagnostic POCUS of the kidneys and bladder with high accuracy for a set number of important conditions. Currently, diagnostic POCUS of the kidney-genitourinary system remains underused in actual clinical practice. This is likely because image acquisition for this organ system is unfamiliar to most clinicians in specialties that encounter acute kidney injury, including primary care, emergency medicine, intensive care, anesthesiology, nephrology, and urology. To address this multi-specialty educational gap, this narrative review was developed by a multi-disciplinary group to provide a specialty-agnostic framework for kidney-genitourinary POCUS image acquisition: indications/contraindications, patient positioning, transducer selection, acquisition sequence, and exam limitations. Finally, we describe foundational concepts in kidney-genitourinary ultrasound image interpretation, including key abnormal findings that every bedside clinician performing this modality should know.


Subject(s)
Kidney , Point-of-Care Systems , Ultrasonography , Humans , Ultrasonography/methods , Kidney/diagnostic imaging , Adult , Male , Female , Urogenital System/diagnostic imaging , Urogenital System/injuries , Kidney Diseases/diagnostic imaging
15.
Xenotransplantation ; 31(4): e12873, 2024.
Article in English | MEDLINE | ID: mdl-38961605

ABSTRACT

BACKGROUND: Significant progress has been made in kidney xenotransplantation in the past few years, and this field is accelerating towards clinical translation. Therefore, surveillance of the xenograft with appropriate tools is of great importance. Ultrasonography has been widely used in kidney allotransplantation and served as an economical and non-invasive method to monitor the allograft. However, questions remain whether the ultrasonographic criteria established for human kidney allograft could also be applied in xenotransplantation. METHODS: In the current study, we established a porcine-rhesus life sustaining kidney xenotransplantation model. The xenograft underwent intensive surveillance using gray-scale, colorful Doppler ultrasound as well as 2D shear wave elastography. The kidney growth, blood perfusion, and cortical stiffness were measured twice a day. These parameters were compared with the clinical data including urine output, chemistry, and pathological findings. RESULTS: The observation continued for 16 days after transplantation. Decline of urine output and elevated serum creatinine were observed on POD9 and biopsy proven antibody-mediated rejection was seen on the same day. The xenograft underwent substantial growth, with the long axis length increased by 32% and the volume increased by threefold at the end of observation. The resistive index of the xenograft arteries elevated in response to rejection, together with impaired cortical perfusion, while the peak systolic velocity (PSV) was not compromised. The cortical stiffness also increased along with rejection. CONCLUSION: In summary, the ultrasound findings of kidney xenograft shared similarities with those in allograft but possessed some unique features. A modified criteria needs to be established for further application of ultrasound in kidney xenotransplantation.


Subject(s)
Graft Rejection , Heterografts , Kidney Transplantation , Kidney , Macaca mulatta , Transplantation, Heterologous , Animals , Transplantation, Heterologous/methods , Kidney Transplantation/methods , Swine , Kidney/diagnostic imaging , Humans , Ultrasonography/methods
16.
Ren Fail ; 46(2): 2371988, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38952291

ABSTRACT

AIMS: Abnormal renal lipid metabolism causes renal lipid deposition, which leads to the development of renal fibrosis in diabetic kidney disease (DKD). The aim of this study was to investigate the effect and mechanism of chlorogenic acid (CA) on reducing renal lipid accumulation and improving DKD renal fibrosis. METHODS: This study evaluated the effects of CA on renal fibrosis, lipid deposition and lipid metabolism by constructing in vitro and in vivo models of DKD, and detected the improvement of Notch1 and Stat3 signaling pathways. Molecular docking was used to predict the binding between CA and the extracellular domain NRR1 of Notch1 protein. RESULTS: In vitro studies have shown that CA decreased the expression of Fibronectin, α-smooth muscle actin (α-SMA), p-smad3/smad3, alleviated lipid deposition, promoted the expression of carnitine palmitoyl transferase 1 A (CPT1A), and inhibited the expression of cholesterol regulatory element binding protein 1c (SREBP1c). The expression of Notch1, Cleaved Notch1, Hes1, and p-stat3/stat3 were inhibited. These results suggested that CA might reduce intercellular lipid deposition in human kidney cells (HK2) by inhibiting Notch1 and stat3 signaling pathways, thereby improving fibrosis. Further, in vivo studies demonstrated that CA improved renal fibrosis and renal lipid deposition in DKD mice by inhibiting Notch1 and stat3 signaling pathways. Finally, molecular docking experiments showed that the binding energy of CA and NRR1 was -6.6 kcal/mol, which preliminarily predicted the possible action of CA on Notch1 extracellular domain NRR1. CONCLUSION: CA reduces renal lipid accumulation and improves DKD renal fibrosis by inhibiting Notch1 and stat3 signaling pathways.


Subject(s)
Chlorogenic Acid , Diabetic Nephropathies , Fibrosis , Kidney , Lipid Metabolism , Receptor, Notch1 , STAT3 Transcription Factor , Signal Transduction , STAT3 Transcription Factor/metabolism , Receptor, Notch1/metabolism , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Animals , Signal Transduction/drug effects , Fibrosis/drug therapy , Chlorogenic Acid/pharmacology , Chlorogenic Acid/therapeutic use , Humans , Mice , Male , Kidney/pathology , Kidney/drug effects , Kidney/metabolism , Lipid Metabolism/drug effects , Molecular Docking Simulation , Mice, Inbred C57BL , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Cell Line
17.
Sci Rep ; 14(1): 15140, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956234

ABSTRACT

Rapamycin slows cystogenesis in murine models of polycystic kidney disease (PKD) but failed in clinical trials, potentially due to insufficient drug dosing. To improve drug efficiency without increasing dose, kidney-specific drug delivery may be used. Mesoscale nanoparticles (MNP) selectively target the proximal tubules in rodents. We explored whether MNPs can target cystic kidney tubules and whether rapamycin-encapsulated-MNPs (RapaMNPs) can slow cyst growth in Pkd1 knockout (KO) mice. MNP was intravenously administered in adult Pkd1KO mice. Serum and organs were harvested after 8, 24, 48 or 72 h to measure MNP localization, mTOR levels, and rapamycin concentration. Pkd1KO mice were then injected bi-weekly for 6 weeks with RapaMNP, rapamycin, or vehicle to determine drug efficacy on kidney cyst growth. Single MNP injections lead to kidney-preferential accumulation over other organs, specifically in tubules and cysts. Likewise, one RapaMNP injection resulted in higher drug delivery to the kidney compared to the liver, and displayed sustained mTOR inhibition. Bi-weekly injections with RapaMNP, rapamycin or vehicle for 6 weeks resulted in inconsistent mTOR inhibition and little change in cyst index, however. MNPs serve as an effective short-term, kidney-specific delivery system, but long-term RapaMNP failed to slow cyst progression in Pkd1KO mice.


Subject(s)
Disease Models, Animal , Mice, Knockout , Nanoparticles , Polycystic Kidney Diseases , Sirolimus , Animals , Sirolimus/administration & dosage , Sirolimus/pharmacology , Mice , Polycystic Kidney Diseases/drug therapy , Polycystic Kidney Diseases/metabolism , Polycystic Kidney Diseases/genetics , Polycystic Kidney Diseases/pathology , Nanoparticles/administration & dosage , TOR Serine-Threonine Kinases/metabolism , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism , Kidney/metabolism , Kidney/drug effects , Kidney/pathology , Drug Delivery Systems , Male
18.
FASEB J ; 38(13): e23769, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38958951

ABSTRACT

Renal ischemia-reperfusion injury (IRI) is an integral process in renal transplantation, which results in compromised graft survival. Macrophages play an important role in both the early inflammatory period and late fibrotic period in response to IRI. In this study, we investigated whether scutellarin (SCU) could protect against renal IRI by regulating macrophage polarization. Mice were given SCU (5-50 mg/kg) by gavage 1 h earlier, followed by a unilateral renal IRI. Renal function and pathological injury were assessed 24 h after reperfusion. The results showed that administration of 50 mg/kg SCU significantly improved renal function and renal pathology in IRI mice. In addition, SCU alleviated IRI-induced apoptosis. Meanwhile, it reduced macrophage infiltration and inhibited pro-inflammatory macrophage polarization. Moreover, in RAW 264.7 cells and primary bone marrow-derived macrophages (BMDMs) exposed to SCU, we found that 150 µM SCU inhibited these cells to polarize to an inflammatory phenotype induced by lipopolysaccharide (LPS) and interferon-γ (IFN-γ). However, SCU has no influence on anti-inflammatory macrophage polarization in vivo and in vitro induced by in interleukin-4 (IL-4). Finally, we explored the effect of SCU on the activation of the mitogen-activated protein kinase (MAPK) pathway both in vivo and in vitro. We found that SCU suppressed the activation of the MAPK pathway, including the extracellular signal-regulated kinase (ERK), Jun N-terminal kinase (JNK), and p38. Our results demonstrated that SCU protects the kidney against IRI by inhibiting macrophage infiltration and polarization toward pro-inflammatory phenotype via the MAPK pathway, suggesting that SCU may be therapeutically important in treatment of IRI.


Subject(s)
Apigenin , Glucuronates , MAP Kinase Signaling System , Macrophages , Mice, Inbred C57BL , Reperfusion Injury , Animals , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Mice , Apigenin/pharmacology , Glucuronates/pharmacology , Glucuronates/therapeutic use , Macrophages/drug effects , Macrophages/metabolism , RAW 264.7 Cells , Male , MAP Kinase Signaling System/drug effects , Kidney/metabolism , Kidney/drug effects , Kidney/pathology , Apoptosis/drug effects , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/prevention & control , Inflammation/pathology
19.
Pancreas ; 53(7): e588-e594, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38986079

ABSTRACT

OBJECTIVE: It was targeted to assess the efficacy of certolizumab on pancreas and target organs via biochemical parameters and histopathologic scores in experimental acute pancreatitis (AP). MATERIALS AND METHODS: Forty male Sprague Dawley rats were divided into the following 5 equal groups: group 1 (sham group), group 2 (AP group), group 3 (AP + low-dose certolizumab group), group 4 (AP + high-dose certolizumab group), and group 5 (placebo group). Rats in all groups were sacrificed 24 hours after the last injection and amylase, tumor necrosis factor α, transforming growth factor ß, interleukin 1ß, malondialdehyde, superoxide dismutase, and glutathione peroxidase levels were studied in blood samples. Histopathological investigation of both the pancreas and target organs (lungs, liver, heart, kidneys) was performed by a pathologist blind to the groups. In silico analysis were also accomplished. RESULTS: The biochemical results in the certolizumab treatment groups were identified to be significantly favorable compared to the AP group (P < 0.001). The difference between the high-dose group (group 4) and low-dose treatment group (group 3) was found to be significant in terms of biochemical parameters and histopathological scores (P < 0.001). In terms of the effect of certolizumab treatment on the target organs (especially on lung tissue), the differences between the low-dose treatment group (group 3) and high-dose treatment group (group 4) with the AP group (group 2) were significant. CONCLUSIONS: Certolizumab has favorable protective effects on pancreas and target organs in AP. It may be a beneficial agent for AP treatment and may prevent target organ damage.


Subject(s)
Amylases , Lung , Pancreas , Pancreatitis , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha , Animals , Male , Pancreatitis/prevention & control , Pancreatitis/chemically induced , Pancreatitis/pathology , Pancreatitis/drug therapy , Pancreas/drug effects , Pancreas/pathology , Pancreas/metabolism , Amylases/blood , Acute Disease , Lung/drug effects , Lung/pathology , Lung/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/blood , Certolizumab Pegol/pharmacology , Malondialdehyde/metabolism , Liver/drug effects , Liver/pathology , Liver/metabolism , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Interleukin-1beta/blood , Interleukin-1beta/metabolism , Superoxide Dismutase/metabolism , Glutathione Peroxidase/metabolism , Myocardium/pathology , Myocardium/metabolism , Transforming Growth Factor beta/metabolism , Rats , Disease Models, Animal , Oxidative Stress/drug effects
20.
Nat Commun ; 15(1): 5832, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992020

ABSTRACT

While second near-infrared (NIR-II) fluorescence imaging is a promising tool for real-time surveillance of surgical operations, the previously reported organic NIR-II luminescent materials for in vivo imaging are predominantly activated by expensive lasers or X-ray with high power and poor illumination homogeneity, which significantly limits their clinical applications. Here we report a white-light activatable NIR-II organic imaging agent by taking advantages of the strong intramolecular/intermolecular D-A interactions of conjugated Y6CT molecules in nanoparticles (Y6CT-NPs), with the brightness of as high as 13315.1, which is over two times that of the brightest laser-activated NIR-II organic contrast agents reported thus far. Upon white-light activation, Y6CT-NPs can achieve not only in vivo imaging of hepatic ischemia reperfusion, but also real-time monitoring of kidney transplantation surgery. During the surgery, identification of the renal vasculature, post-reconstruction assessment of renal allograft vascular integrity, and blood supply analysis of the ureter can be vividly depicted by using Y6CT-NPs with high signal-to-noise ratios upon clinical laparoscopic LED white-light activation. Our work provides efficient molecular design guidelines towards white-light activatable imaging agent and highlights an opportunity for precision imaging theranostics.


Subject(s)
Optical Imaging , Surgery, Computer-Assisted , Animals , Surgery, Computer-Assisted/methods , Mice , Optical Imaging/methods , Light , Nanostructures/chemistry , Kidney Transplantation/methods , Humans , Liver/diagnostic imaging , Liver/surgery , Nanoparticles/chemistry , Infrared Rays , Luminescence , Kidney/diagnostic imaging , Kidney/surgery , Male , Spectroscopy, Near-Infrared/methods , Contrast Media/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...