Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.400
Filter
1.
Sci Immunol ; 9(96): eadd6774, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38875317

ABSTRACT

Pro-inflammatory CD4+ T cells are major drivers of autoimmune diseases, yet therapies modulating T cell phenotypes to promote an anti-inflammatory state are lacking. Here, we identify T helper 17 (TH17) cell plasticity in the kidneys of patients with antineutrophil cytoplasmic antibody-associated glomerulonephritis on the basis of single-cell (sc) T cell receptor analysis and scRNA velocity. To uncover molecules driving T cell polarization and plasticity, we established an in vivo pooled scCRISPR droplet sequencing (iCROP-seq) screen and applied it to mouse models of glomerulonephritis and colitis. CRISPR-based gene targeting in TH17 cells could be ranked according to the resulting transcriptional perturbations, and polarization biases into T helper 1 (TH1) and regulatory T cells could be quantified. Furthermore, we show that iCROP-seq can facilitate the identification of therapeutic targets by efficient functional stratification of genes and pathways in a disease- and tissue-specific manner. These findings uncover TH17 to TH1 cell plasticity in the human kidney in the context of renal autoimmunity.


Subject(s)
Single-Cell Analysis , Th17 Cells , Animals , Humans , Mice , Th17 Cells/immunology , Glomerulonephritis/immunology , Glomerulonephritis/genetics , Cell Plasticity/immunology , Cell Plasticity/genetics , Kidney/immunology , Kidney/pathology , Mice, Inbred C57BL , CRISPR-Cas Systems , Colitis/immunology , Colitis/genetics , Inflammation/immunology , Inflammation/genetics , Female , Male , Clustered Regularly Interspaced Short Palindromic Repeats/immunology
2.
Front Immunol ; 15: 1377913, 2024.
Article in English | MEDLINE | ID: mdl-38799420

ABSTRACT

Introduction: The atypical chemokine receptor 2 (ACKR2) is a chemokine scavenger receptor, which limits inflammation and organ damage in several experimental disease models including kidney diseases. However, potential roles of ACKR2 in reducing inflammation and tissue injury in autoimmune disorders like systemic lupus erythematosus (SLE) and lupus nephritis are unknown, as well as its effects on systemic autoimmunity. Methods: To characterize functional roles of ACKR2 in SLE, genetic Ackr2 deficiency was introduced into lupus-prone C57BL/6lpr (Ackr2-/- B6lpr) mice. Results: Upon inflammatory stimulation in vitro, secreted chemokine levels increased in Ackr2 deficient tubulointerstitial tissue but not glomeruli. Moreover, Ackr2 expression was induced in kidneys and lungs of female C57BL/6lpr mice developing SLE. However, female Ackr2-/- B6lpr mice at 28 weeks of age showed similar renal functional parameters as wildtype (WT)-B6lpr mice. Consistently, assessment of activity and chronicity indices for lupus nephritis revealed comparable renal injury. Interestingly, Ackr2-/- B6lpr mice showed significantly increased renal infiltrates of CD3+ T and B cells, but not neutrophils, macrophages or dendritic cells, with T cells predominantly accumulating in the tubulointerstitial compartment of Ackr2-/- B6lpr mice. In addition, histology demonstrated significantly increased peribronchial lung infiltrates of CD3+ T cells in Ackr2-/- B6lpr mice. Despite this, protein levels of pro-inflammatory chemokines and mRNA expression of inflammatory mediators were not different in kidneys and lungs of WT- and Ackr2-/- B6lpr mice. This data suggests compensatory mechanisms for sufficient chemokine clearance in Ackr2-deficient B6lpr mice in vivo. Analysis of systemic autoimmune responses revealed comparable levels of circulating lupus-associated autoantibodies and glomerular immunoglobulin deposition in the two genotypes. Interestingly, similar to kidney and lung CD4+ T cell numbers and activation were significantly increased in spleens of Ackr2-deficient B6lpr mice. In lymph nodes of Ackr2-/- B6lpr mice abundance of activated dendritic cells decreased, but CD4+ T cell numbers were comparable to WT. Moreover, increased plasma levels of CCL2 were present in Ackr2-/- B6lpr mice, which may facilitate T cell mobilization into spleens and peripheral organs. Discussion: In summary, we show that ACKR2 prevents expansion of T cells and formation of tertiary lymphoid tissue, but is not essential to limit autoimmune tissue injury in lupus-prone B6lpr mice.


Subject(s)
Lupus Erythematosus, Systemic , Lupus Nephritis , Mice, Inbred C57BL , Mice, Knockout , T-Lymphocytes , Tertiary Lymphoid Structures , Animals , Mice , Female , Lupus Erythematosus, Systemic/immunology , Tertiary Lymphoid Structures/immunology , Lupus Nephritis/immunology , Lupus Nephritis/metabolism , Lupus Nephritis/pathology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Disease Models, Animal , Kidney/pathology , Kidney/immunology , Kidney/metabolism , Autoimmunity , Duffy Blood-Group System/genetics , Lymphoid Tissue/immunology , Lymphoid Tissue/metabolism , Cell Proliferation , Chemokine Receptor D6
3.
PLoS One ; 19(5): e0301853, 2024.
Article in English | MEDLINE | ID: mdl-38709804

ABSTRACT

BACKGROUND: Altered immunological responses in the palatine tonsils may be involved in the pathogenesis of IgA nephropathy (IgAN). The germinal center serves as the site for antigen-specific humoral immune responses in the palatine tonsils. Germinal center involution is frequently observed in the palatine tonsils of IgAN (IgAN tonsils). However, the pathogenic significance of these characteristic changes remains unclear. This study aimed to investigate the morphological changes in secondary lymphoid follicles in IgAN tonsils and to evaluate the correlation between the morphometric results and the clinicopathological severity of IgAN. METHODS: The tonsils of age-matched patients with recurrent tonsillitis (RT tonsils) were used as controls. The correlation between the degree of lymphoid follicular involution and histopathological severities in clinical or kidney biopsy was evaluated. RESULTS: In total, 87 patients with IgAN were included (48% male, median age 35 years, median estimated glomerular filtration rate: 74 mL/min/1.73 m2). Compared to RT tonsils, IgAN tonsils showed smaller median sizes of lymphoid follicles and germinal centers (P < 0.001). The relative areas of lymphoid follicles (%LFA) and germinal centers (%GCA) in the total tonsillar tissue were smaller in the IgAN tonsils than in the RT tonsils (P < 0.001). In contrast, the median proportion of mantle zones in the total tonsillar tissue was comparable between the groups. A lower %LFA was associated with a longer period from the onset of urinary abnormalities to biopsy diagnosis and higher urinary protein excretion (P = 0.01). %LFA showed significant negative correlations with frequencies of glomeruli with both global and segmental sclerosis. CONCLUSIONS: The present study confirmed accelerated germinal center involution in the tonsils of patients with IgAN. This characteristic change in the IgAN tonsil correlates with heavy proteinuria and advanced chronic histopathological changes in the kidneys, thereby suggesting the involvement of repeated tonsillar immunoreactions during IgAN progression.


Subject(s)
Germinal Center , Glomerulonephritis, IGA , Palatine Tonsil , Humans , Glomerulonephritis, IGA/pathology , Glomerulonephritis, IGA/immunology , Palatine Tonsil/pathology , Palatine Tonsil/immunology , Germinal Center/immunology , Germinal Center/pathology , Male , Female , Adult , Tonsillitis/pathology , Tonsillitis/immunology , Middle Aged , Young Adult , Kidney/pathology , Kidney/immunology
5.
Front Immunol ; 15: 1365226, 2024.
Article in English | MEDLINE | ID: mdl-38812511

ABSTRACT

Objective: The aberrant mobilization and activation of various T lymphocyte subpopulations play a pivotal role in the pathogenesis of diabetic kidney disease (DKD), yet the regulatory mechanisms underlying these processes remain poorly understood. Our study is premised on the hypothesis that the dysregulation of immune checkpoint molecules on T lymphocytes disrupts kidney homeostasis, instigates pathological inflammation, and promotes DKD progression. Methods: A total of 360 adult patients with DKD were recruited for this study. The expression of immune checkpoint molecules on T lymphocytes was assessed by flow cytometry for peripheral blood and immunofluorescence staining for kidney tissue. Single-cell sequencing (scRNA-seq) data from the kidneys of DKD mouse model were analyzed. Results: Patients with DKD exhibited a reduction in the proportion of CD3+TIM-3+ T cells in circulation concurrent with the emergence of significant albuminuria and hematuria (p=0.008 and 0.02, respectively). Conversely, the incidence of infection during DKD progression correlated with an elevation of peripheral CD3+TIM-3+ T cells (p=0.01). Both univariate and multivariate logistic regression analysis revealed a significant inverse relationship between the proportion of peripheral CD3+TIM-3+ T cells and severe interstitial mononuclear infiltration (OR: 0.193, 95%CI: 0.040,0.926, p=0.04). Immunofluorescence assays demonstrated an increase of CD3+, TIM-3+ and CD3+TIM-3+ interstitial mononuclear cells in the kidneys of DKD patients as compared to patients diagnosed with minimal change disease (p=0.03, 0.02 and 0.002, respectively). ScRNA-seq analysis revealed decreased gene expression of TIM3 on T lymphocytes in DKD compared to control. And one of TIM-3's main ligands, Galectin-9 on immune cells showed a decreasing trend in gene expression as kidney damage worsened. Conclusion: Our study underscores the potential protective role of TIM-3 on T lymphocytes in attenuating the progression of DKD and suggests that monitoring circulating CD3+TIM3+ T cells may serve as a viable strategy for identifying DKD patients at heightened risk of disease progression.


Subject(s)
Diabetic Nephropathies , Hepatitis A Virus Cellular Receptor 2 , T-Lymphocytes , Hepatitis A Virus Cellular Receptor 2/metabolism , Humans , Diabetic Nephropathies/immunology , Diabetic Nephropathies/etiology , Diabetic Nephropathies/pathology , Female , Middle Aged , Male , Animals , Mice , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Aged , Adult , Inflammation/immunology , Kidney/pathology , Kidney/immunology , Mice, Inbred C57BL , Disease Progression
6.
Fish Shellfish Immunol ; 150: 109603, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38704112

ABSTRACT

Infection-induced hemolysis results in intravascular hemolysis, which releases hemoglobin (Hb) into the tissues. Free Hb exhibits cytotoxic, oxidative, and pro-inflammatory effects, leading to systemic inflammation, vascular constriction dysfunction, thrombosis, and proliferative vascular lesions. Currently, the impact of intravascular hemolysis on the middle kidney in fish is unclear. Here, the injection of phenylhydrazine (PHZ) was used to establish a persistent hemolysis model in grass carp. The determination results revealed that the PHZ-induced hemolysis caused conspicuous tissue damage in the kidneys of grass carp, increased the levels of Cr in the serum and the expression indicators of kidney injury-related genes in the middle kidney. Prussian blue staining indicated that PHZ-induced hemolysis significantly increased the deposition of iron ions in the kidneys of grass carp, and activated the expression levels of iron metabolism-related genes. The results of oxidative damage-related experiments indicate that under PHZ treatment, the activity of middle kidney cells decreases, and the production of oxidative damage markers malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) increases, simultaneously inhibiting the activity of antioxidant enzymes and upregulating the transcription levels of antioxidant enzyme-related genes. Additionally, the analysis of inflammatory factors revealed a significant upregulation of genes associated with inflammation induced by PHZ-induced hemolysis. The transcriptome analysis was performed to further explore the molecular regulatory effects of hemolysis on tissues, the analysis revealed the treatment of PHZ activated various of programmed cell death (PCD) pathways, including ferroptosis, apoptosis, and autophagy. In summary, this study found that sustained hemolysis in fish results in Hb and iron ion deposition in middle kidney, promoting oxidative damage, ultimately inducing various forms of PCD.


Subject(s)
Carps , Fish Diseases , Hemolysis , Animals , Carps/immunology , Fish Diseases/immunology , Phenylhydrazines/adverse effects , Phenylhydrazines/toxicity , Kidney Diseases/veterinary , Kidney Diseases/etiology , Kidney Diseases/immunology , Kidney/immunology , Kidney/drug effects , Oxidative Stress/drug effects
7.
Biochem Biophys Res Commun ; 722: 150147, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38788356

ABSTRACT

We used an animal model of salt-sensitive hypertension (SSH) in which ovariectomized (oVx) rats developed hypertension with high salt (HS) intake. Hypertension is accompanied by changes in the percentage of CD4+ T lymphocytes, immune CD45+ cell infiltration into renal tissue, and changes in Na+, K+- ATPase (NKA) expression in both renal tissue and peripheral blood mononuclear cells (PBMCs). To determine whether the observed changes resulted from HS intake, high blood pressure, or both, hydralazine (HDZ) was used to lower blood pressure. The oVx HS rats received two HDZ schedules either to prevent or to treat hypertension. NKA was overexpressed in the kidneys of all oVx groups and in PBMCs of oVx HS rats. This pattern was not altered with HDZ treatment. Changes in CD4+ T lymphocytes and renal infiltration of CD45+ cells were not reversed either. High salt, but not high blood pressure, induces immune cell activation and renal infiltration. Overexpressed NKA is the primary event, and HS is the perturbation to the system in this model of SSH, which resembles the postmenopausal state.


Subject(s)
Hypertension , Kidney , Ovariectomy , Rats, Wistar , Animals , Female , Rats , Kidney/pathology , Kidney/metabolism , Kidney/immunology , Hypertension/immunology , Hypertension/pathology , Hypertension/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Sodium Chloride, Dietary/adverse effects , Blood Pressure/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Hydralazine/pharmacology
8.
Immunity ; 57(6): 1306-1323.e8, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38815582

ABSTRACT

Group 3 innate lymphoid cells (ILC3s) regulate inflammation and tissue repair at mucosal sites, but whether these functions pertain to other tissues-like the kidneys-remains unclear. Here, we observed that renal fibrosis in humans was associated with increased ILC3s in the kidneys and blood. In mice, we showed that CXCR6+ ILC3s rapidly migrated from the intestinal mucosa and accumulated in the kidney via CXCL16 released from the injured tubules. Within the fibrotic kidney, ILC3s increased the expression of programmed cell death-1 (PD-1) and subsequent IL-17A production to directly activate myofibroblasts and fibrotic niche formation. ILC3 expression of PD-1 inhibited IL-23R endocytosis and consequently amplified the JAK2/STAT3/RORγt/IL-17A pathway that was essential for the pro-fibrogenic effect of ILC3s. Thus, we reveal a hitherto unrecognized migration pathway of ILC3s from the intestine to the kidney and the PD-1-dependent function of ILC3s in promoting renal fibrosis.


Subject(s)
Cell Movement , Fibrosis , Kidney , Lymphocytes , Programmed Cell Death 1 Receptor , Receptors, CXCR6 , Receptors, Interleukin , Signal Transduction , Animals , Fibrosis/immunology , Mice , Receptors, CXCR6/metabolism , Receptors, CXCR6/immunology , Programmed Cell Death 1 Receptor/metabolism , Signal Transduction/immunology , Cell Movement/immunology , Humans , Kidney/pathology , Kidney/immunology , Kidney/metabolism , Lymphocytes/immunology , Lymphocytes/metabolism , Receptors, Interleukin/metabolism , Receptors, Interleukin/immunology , Mice, Inbred C57BL , Kidney Diseases/immunology , Kidney Diseases/metabolism , Kidney Diseases/pathology , Immunity, Innate/immunology , Mice, Knockout , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Intestines/immunology , Intestines/pathology
9.
Lupus Sci Med ; 11(1)2024 May 28.
Article in English | MEDLINE | ID: mdl-38806217

ABSTRACT

OBJECTIVES: To investigate the effectiveness of belimumab on active lupus nephritis (LN) and explore the predictors, including serological biomarkers, of renal response to belimumab in a real-world setting. METHODS: This multicentre, real-world observational study enrolled patients with active LN receiving intravenous belimumab as an add-on therapy with 24-hour urine protein≥1 g and estimated glomerular filtration rate≥30 mL/min/1.73 m2 at baseline. Complete renal response (CRR), partial renal response (PRR), no renal response (NRR) and primary efficacy renal response (PERR) were evaluated. Multivariable logistic regression was used to identify risk factors for NRR to belimumab at 6 months. RESULTS: Among the 122 patients enrolled, the proportions of patients achieving CRR, PRR, NRR and PERR were 35.9%, 17.1%, 47.0% and 44.4% at 6 months (n=117) and 55.6%, 19.4%, 26.4% and 58.3% at 12 months (n=72), respectively. Proteinuria, daily prednisone dosage and Systemic Lupus Erythematosus Disease Activity Index 2000 scores significantly decreased at 6 and 12 months (p<0.0001). NRR at 6 months (NRR6) was the strongest negative predictor of CRR at 12 months. Baseline anti-dsDNA positivity inversely predicted NRR6 (OR=0.32,95% CI=0.10 to 0.98, p=0.049), while anti-SSA/Ro60 positively predicted NRR6 (OR=3.16, 95% CI=1.14 to 8.74, p=0.027). The combination of anti-SSA/Ro60 and anti-dsDNA serotype quantitatively predicted belimumab renal response. CONCLUSION: The effectiveness of belimumab was reproducible in Chinese patients with active LN. The simple yet interesting serotype predictive model needs further validation and its possible underlying mechanistic relevance deserves further exploration.


Subject(s)
Antibodies, Antinuclear , Antibodies, Monoclonal, Humanized , Glomerular Filtration Rate , Immunosuppressive Agents , Lupus Nephritis , Humans , Lupus Nephritis/drug therapy , Lupus Nephritis/immunology , Female , Male , Antibodies, Monoclonal, Humanized/therapeutic use , Adult , Antibodies, Antinuclear/blood , Immunosuppressive Agents/therapeutic use , Middle Aged , Glomerular Filtration Rate/drug effects , Treatment Outcome , Kidney/physiopathology , Kidney/drug effects , Kidney/immunology , Biomarkers/blood , Young Adult , Proteinuria/drug therapy , DNA
10.
Kidney Int ; 105(1): 54-64, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38707675

ABSTRACT

The neonatal Fc receptor (FcRn) was initially discovered as the receptor that allowed passive immunity in newborns by transporting maternal IgG through the placenta and enterocytes. Since its initial discovery, FcRn has been found to exist throughout all stages of life and in many different cell types. Beyond passive immunity, FcRn is necessary for intrinsic albumin and IgG recycling and is important for antigen processing and presentation. Given its multiple important roles, FcRn has been utilized in many disease treatments including a new class of agents that were developed to inhibit FcRn for treatment of a variety of autoimmune diseases. Certain cell populations within the kidney also express high levels of this receptor. Specifically, podocytes, proximal tubule epithelial cells, and vascular endothelial cells have been found to utilize FcRn. In this review, we summarize what is known about FcRn and its function within the kidney. We also discuss how FcRn has been used for therapeutic benefit, including how newer FcRn inhibiting agents are being used to treat autoimmune diseases. Lastly, we will discuss what renal diseases may respond to FcRn inhibitors and how further work studying FcRn within the kidney may lead to therapies for kidney diseases.


Subject(s)
Histocompatibility Antigens Class I , Kidney Diseases , Receptors, Fc , Humans , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/genetics , Receptors, Fc/metabolism , Receptors, Fc/immunology , Receptors, Fc/genetics , Kidney Diseases/metabolism , Kidney Diseases/drug therapy , Kidney Diseases/therapy , Kidney Diseases/immunology , Animals , Kidney/metabolism , Kidney/immunology , Kidney/pathology , Podocytes/metabolism , Podocytes/immunology , Immunoglobulin G/metabolism , Immunoglobulin G/immunology , Autoimmune Diseases/drug therapy , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism
11.
Transpl Int ; 37: 12468, 2024.
Article in English | MEDLINE | ID: mdl-38699175

ABSTRACT

Kidney organoids are an innovative tool in transplantation research. The aim of the present study was to investigate whether kidney organoids are susceptible for allo-immune attack and whether they can be used as a model to study allo-immunity in kidney transplantation. Human induced pluripotent stem cell-derived kidney organoids were co-cultured with human peripheral blood mononuclear cells (PBMC), which resulted in invasion of allogeneic T-cells around nephron structures and macrophages in the stromal cell compartment of the organoids. This process was associated with the induction of fibrosis. Subcutaneous implantation of kidney organoids in immune-deficient mice followed by adoptive transfer of human PBMC led to the invasion of diverse T-cell subsets. Single cell transcriptomic analysis revealed that stromal cells in the organoids upregulated expression of immune response genes upon immune cell invasion. Moreover, immune regulatory PD-L1 protein was elevated in epithelial cells while genes related to nephron differentiation and function were downregulated. This study characterized the interaction between immune cells and kidney organoids, which will advance the use of kidney organoids for transplantation research.


Subject(s)
Kidney Transplantation , Kidney , Organoids , Humans , Organoids/immunology , Animals , Kidney/immunology , Mice , Coculture Techniques , Leukocytes, Mononuclear/immunology , Induced Pluripotent Stem Cells/cytology , T-Lymphocytes/immunology , Immune System , B7-H1 Antigen/metabolism , Macrophages/immunology
12.
PLoS One ; 19(5): e0302286, 2024.
Article in English | MEDLINE | ID: mdl-38805503

ABSTRACT

Studies of the interplay between metabolism and immunity, known as immunometabolism, is steadily transforming immunological research into new understandings of how environmental cues like diet are affecting innate and adaptive immune responses. The aim of this study was to explore antiviral transcriptomic responses under various levels of polyunsaturated fatty acid. Atlantic salmon kidney cells (ASK cell line) were incubated for one week in different levels of the unsaturated n-3 eicosapentaneoic acid (EPA) resulting in cellular levels ranging from 2-20% of total fatty acid. These cells were then stimulated with the viral mimic and interferon inducer poly I:C (30 ug/ml) for 24 hours before total RNA was isolated and sequenced for transcriptomic analyses. Up to 200 uM EPA had no detrimental effects on cell viability and induced very few transcriptional changes in these cells. However, in combination with poly I:C, our results shows that the level of EPA in the cellular membranes exert profound dose dependent effects of the transcriptional profiles induced by this treatment. Metabolic pathways like autophagy, apelin and VEGF signaling were attenuated by EPA whereas transcripts related to fatty acid metabolism, ferroptosis and the PPAR signaling pathways were upregulated. These results suggests that innate antiviral responses are heavily influenced by the fatty acid profile of salmonid cells and constitute another example of the strong linkage between general metabolic pathways and inflammatory responses.


Subject(s)
Eicosapentaenoic Acid , Immunity, Innate , Kidney , Poly I-C , Salmo salar , Animals , Salmo salar/immunology , Salmo salar/genetics , Salmo salar/virology , Immunity, Innate/drug effects , Eicosapentaenoic Acid/pharmacology , Cell Line , Poly I-C/pharmacology , Kidney/drug effects , Kidney/immunology , Kidney/metabolism , Transcriptome/drug effects , Signal Transduction/drug effects , Cell Survival/drug effects , Gene Expression Profiling
13.
Lupus ; 33(8): 816-827, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38622764

ABSTRACT

OBJECTIVE: This study aimed to investigate the role of the programmed cell death protein 1 (PD-1) pathway and T peripheral helper (Tph) cells in the pathogenesis of lupus nephritis using lupus-prone BXSB-Yaa mice. METHODS: Male BXSB-Yaa mice and age-matched male C57BL/6 mice were used. The expression of PD-1 and its ligands (programmed cell death 1 ligand-1, PD-L1 and programmed cell death 1 ligand-2, PD-L2) and the phenotypes of kidney-derived cells and splenocytes expressing these molecules were analyzed by immunofluorescence and flow cytometry. RESULTS: Nephritis spontaneously developed in 16-week-old but not in 8-week-old BXSB-Yaa or C57BL/6 mice. PD-1 was expressed on CD4+ mononuclear cells (MNCs) that infiltrated the glomeruli of 16-week-old BXSB-Yaa mice. The frequency of CD4+PD-1+CXCR5-ICOS+ kidney-derived Tph cells was higher in 16-week-old than in 8-week-old BXSB-Yaa and C57BL/6 mice, whereas the frequency of CD4+PD-1+CXCR5+ICOS+ kidney-derived T follicular helper (Tfh) cells was not significantly different between the mice. PD-L1 was constitutively expressed in the renal tubules. PD-L2 was expressed in the glomeruli of 16-week-old BXSB-Yaa mice. The frequency of PD-L1highCD11c+CD3-CD19- and PD-L2+CD11c+CD3-CD19- kidney-derived MNCs in 16-week-old BXSB-Yaa mice was significantly higher than that of the control mice. The percentage of kidney-derived Tph cells but not Tfh cells was correlated with the urinary protein levels in the nephritic mice. CONCLUSION: The results of this study suggest that kidney-infiltrating PD-1+ Tph cells expanded concomitantly with the upregulation of PD-L1 and PD-L2 in the kidneys and the progression of lupus nephritis.


Subject(s)
B7-H1 Antigen , Kidney , Lupus Nephritis , Mice, Inbred C57BL , Programmed Cell Death 1 Ligand 2 Protein , Programmed Cell Death 1 Receptor , T-Lymphocytes, Helper-Inducer , Up-Regulation , Animals , Programmed Cell Death 1 Receptor/metabolism , Lupus Nephritis/immunology , Lupus Nephritis/metabolism , Lupus Nephritis/pathology , Mice , Male , Programmed Cell Death 1 Ligand 2 Protein/metabolism , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , B7-H1 Antigen/metabolism , Kidney/pathology , Kidney/metabolism , Kidney/immunology , Disease Models, Animal
14.
Vaccine ; 42(13): 3220-3229, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38641497

ABSTRACT

Leptospirosis, a globally significant zoonotic disease caused by pathogenic Leptospira, continues to threaten the health and public safety of both humans and animals. Current clinical treatment of leptospirosis mainly relies on antibiotics but their efficacy in severe cases is controversial. Passive immunization has a protective effect in the treatment of infectious diseases. In addition, chicken egg yolk antibody (IgY) has gained increasing attention as a safe passive immunization agent. This study aimed to investigate whether hens produce specific IgY after immunization with inactivated Leptospira and the protective effect of specific IgY against leptospirosis. First, it was demonstrated that specific IgY could be extracted from the eggs of hens vaccinated with inactivated Leptospira and that specific IgY can specifically recognize and bind homotypic Leptospira with a high titre, as shown by MAT and ELISA. Next, we tested the therapeutic effects of IgY in early and late leptospirosis using a hamster model. The results showed that early specific IgY treatment increased the survival rate of hamsters to 100%, alleviated pathological damage to the liver, kidney, and lung, reduced leptospiral burden, and restored haematological indices as well as functional indicators of the liver and kidney. The therapeutic effect of early specific IgY was comparable to that of doxycycline. Late IgY treatment also enhanced the survival rate of hamsters and improved the symptoms of leptospirosis similar to early IgY treatment. However, the therapeutic effect of late IgY treatment was better when combined with doxycycline. Furthermore, no Leptospira colonization was observed in the kidneys, livers, or lungs of the surviving hamsters treated with specific IgY. Mechanistically, IgY was found to inhibit the growth and adhesion to cells of Leptospira. In conclusion, passive immunotherapy with specific IgY can be considered an effective treatment for leptospirosis, and may replace antibiotics regarding its therapeutic effects.


Subject(s)
Antibodies, Bacterial , Immunization, Passive , Immunoglobulins , Leptospira , Leptospirosis , Animals , Cricetinae , Female , Antibodies, Bacterial/immunology , Chickens/immunology , Disease Models, Animal , Doxycycline/therapeutic use , Doxycycline/administration & dosage , Doxycycline/pharmacology , Egg Yolk/immunology , Immunization, Passive/methods , Immunoglobulins/immunology , Immunoglobulins/administration & dosage , Kidney/pathology , Kidney/immunology , Kidney/microbiology , Leptospira/immunology , Leptospirosis/immunology , Leptospirosis/prevention & control , Leptospirosis/therapy , Liver/immunology , Liver/pathology , Liver/microbiology , Mesocricetus , Vaccines, Inactivated/immunology , Vaccines, Inactivated/administration & dosage
15.
Am J Physiol Renal Physiol ; 326(6): F942-F956, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38634135

ABSTRACT

T cells mediate organ injury and repair. A proportion of unconventional kidney T cells called double-negative (DN) T cells (TCR+ CD4- CD8-), with anti-inflammatory properties, were previously demonstrated to protect from early injury in moderate experimental acute kidney injury (AKI). However, their role in repair after AKI has not been studied. We hypothesized that DN T cells mediate repair after severe AKI. C57B6 mice underwent severe (40 min) unilateral ischemia-reperfusion injury (IRI). Kidney DN T cells were studied by flow cytometry and compared with gold-standard anti-inflammatory CD4+ regulatory T cells (Tregs). In vitro effects of DN T cells and Tregs on renal tubular epithelial cell (RTEC) repair after injury were quantified with live-cell analysis. DN T cells, Tregs, CD4, or vehicle were adoptively transferred after severe AKI. Glomerular filtration rate (GFR) was measured using fluorescein isothiocyanate (FITC)-sinistrin. Fibrosis was assessed with Masson's trichrome staining. Profibrotic genes were measured with qRT-PCR. Percentages and the numbers of DN T cells substantially decreased during repair phase after severe AKI, as well as their activation and proliferation. Both DN T cells and Tregs accelerated RTEC cell repair in vitro. Post-AKI transfer of DN T cells reduced kidney fibrosis and improved GFR, as did Treg transfer. DN T cell transfer lowered transforming growth factor (TGF)ß1 and α-smooth muscle actin (αSMA) expression. DN T cells reduced effector-memory CD4+ T cells and IL-17 expression. DN T cells undergo quantitative and phenotypical changes after severe AKI, accelerate RTEC repair in vitro as well as improve GFR and renal fibrosis in vivo. DN T cells have potential as immunotherapy to accelerate repair after AKI.NEW & NOTEWORTHY Double-negative (DN) T cells (CD4- CD8-) are unconventional kidney T cells with regulatory abilities. Their role in repair from acute kidney injury (AKI) is unknown. Kidney DN T cell population decreased during repair after ischemic AKI, in contrast to regulatory T cells (Tregs) which increased. DN T cell administration accelerated tubular repair in vitro, while after severe in vivo ischemic injury reduced kidney fibrosis and increased glomerular filtration rate (GFR). DN T cell infusion is a potential therapeutic agent to improve outcome from severe AKI.


Subject(s)
Acute Kidney Injury , Glomerular Filtration Rate , Mice, Inbred C57BL , Reperfusion Injury , T-Lymphocytes, Regulatory , Animals , Acute Kidney Injury/immunology , Acute Kidney Injury/pathology , Acute Kidney Injury/metabolism , Acute Kidney Injury/physiopathology , Reperfusion Injury/immunology , Reperfusion Injury/pathology , Reperfusion Injury/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Male , Disease Models, Animal , Fibrosis , Epithelial Cells/metabolism , Epithelial Cells/pathology , Adoptive Transfer , Mice , Kidney/pathology , Kidney/immunology , Kidney/metabolism , Phenotype , Kidney Tubules/pathology , Kidney Tubules/metabolism , Regeneration , Cells, Cultured
16.
J Nephrol ; 37(3): 625-634, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38512375

ABSTRACT

BACKGROUND: Fabry nephropathy is a consequence of the deposition of globotriaosylceramide, caused by deficient GLA enzyme activity in all types of kidney cells. These deposits are perceived as damage signals leading to activation of inflammation resulting in renal fibrosis. There are few studies related to immunophenotype characterization of the renal infiltrate in kidneys in patients with Fabry disease and its relationship to mechanisms of fibrosis. This work aims to quantify TGF-ß1 and active caspase 3 expression and to analyze the profile of cells in inflammatory infiltration in kidney biopsies from Fabry naïve-patients, and to investigate correlations with clinical parameters. METHODS: Renal biopsies from 15 treatment-naïve Fabry patients were included in this study. Immunostaining was performed to analyze active caspase 3, TGF-ß1, TNF-α, CD3, CD20, CD68 and CD163. Clinical data were retrospectively gathered at time of kidney biopsy. RESULTS: Our results suggest the production of TNFα and TGFß1 by tubular cells, in Fabry patients. Active caspase 3 staining revealed that tubular cells are in apoptosis, and apoptotic levels correlated with clinical signs of chronic kidney disease, proteinuria, and inversely with glomerular filtration rate. The cell infiltrates consisted of macrophages, T and B cells. CD163 macrophages were found in biopsy specimens and their number correlates with TGFß1 and active caspase 3 tubular expression. CONCLUSIONS: These results suggest that CD163+ cells could be relevant mediators of fibrosis in Fabry nephropathy, playing a role in the induction of TGFß1 and apoptotic cell death by tubular cells. These cells may represent a new player in the pathogenic mechanisms of Fabry nephropathy.


Subject(s)
Antigens, Differentiation, Myelomonocytic , Apoptosis , Caspase 3 , Fabry Disease , Fibrosis , Transforming Growth Factor beta1 , Humans , Fabry Disease/pathology , Fabry Disease/complications , Male , Adult , Female , Middle Aged , Antigens, Differentiation, Myelomonocytic/metabolism , Caspase 3/metabolism , Transforming Growth Factor beta1/metabolism , Biopsy , Antigens, CD/metabolism , Kidney/pathology , Kidney/immunology , Retrospective Studies , Tumor Necrosis Factor-alpha/metabolism , Macrophages/pathology , Receptors, Cell Surface/metabolism , Glomerular Filtration Rate , Young Adult , Kidney Diseases/pathology , Kidney Diseases/etiology , Kidney Tubules/pathology , Trihexosylceramides/metabolism , T-Lymphocytes/immunology
17.
Am J Physiol Renal Physiol ; 326(5): F839-F854, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38450434

ABSTRACT

Resident memory T cells (TRMs), which are memory T cells that are retained locally within tissues, have recently been described as antigen-specific frontline defenders against pathogens in barrier and nonbarrier epithelial tissues. They have also been noted for perpetuating chronic inflammation. The conditions responsible for TRM differentiation are still poorly understood, and their contributions, if any, to sterile models of chronic kidney disease (CKD) remain a mystery. In this study, we subjected male C57BL/6J mice and OT-1 transgenic mice to five consecutive days of 2 mg/kg aristolochic acid (AA) injections intraperitoneally to induce CKD or saline injections as a control. We evaluated their kidney immune profiles at 2 wk, 6 wk, and 6 mo after treatment. We identified a substantial population of TRMs in the kidneys of mice with AA-induced CKD. Flow cytometry of injured kidneys showed T cells bearing TRM surface markers and single-cell (sc) RNA sequencing revealed these cells as expressing well-known TRM transcription factors and receptors responsible for TRM differentiation and maintenance. Although kidney TRMs expressed Cd44, a marker of antigen experience and T cell activation, their derivation was independent of cognate antigen-T cell receptor interactions, as the kidneys of transgenic OT-1 mice still harbored considerable proportions of TRMs after injury. Our results suggest a nonantigen-specific or antigen-independent mechanism capable of generating TRMs in the kidney and highlight the need to better understand TRMs and their involvement in CKD.NEW & NOTEWORTHY Resident memory T cells (TRMs) differentiate and are retained within the kidneys of mice with aristolochic acid (AA)-induced chronic kidney disease (CKD). Here, we characterized this kidney TRM population and demonstrated TRM derivation in the kidneys of OT-1 transgenic mice with AA-induced CKD. A better understanding of TRMs and the processes by which they can differentiate independent of antigen may help our understanding of the interactions between the immune system and kidneys.


Subject(s)
Aristolochic Acids , Cell Differentiation , Kidney , Memory T Cells , Mice, Inbred C57BL , Renal Insufficiency, Chronic , Animals , Renal Insufficiency, Chronic/immunology , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/metabolism , Male , Aristolochic Acids/toxicity , Kidney/immunology , Kidney/metabolism , Kidney/pathology , Memory T Cells/immunology , Memory T Cells/metabolism , Mice, Transgenic , Immunologic Memory , Disease Models, Animal , Mice
18.
Fish Shellfish Immunol ; 149: 109524, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38527657

ABSTRACT

Recent studies have increasingly linked miRNAs with the modulation of inflammatory responses and immunosuppressive activities. This investigation reveals that mir-30e-3p selectively binds to and modulates gimap8, as demonstrated by luciferase reporter assays and qPCR analyses. Upon LPS stimulation of CIK cells, mir-30e-3p expression was notably elevated, inversely correlating with a decrease in gimap8 mRNA levels. Overexpression of mir-30e-3p attenuated the mRNA levels of pro-inflammatory cytokines beyond the effect of LPS alone, suggesting a regulatory role of mir-30e-3p in inflammation mediated by the gimap8 gene. These insights contribute to our understanding of the complex mechanisms governing inflammatory and immune responses.


Subject(s)
Carps , Fish Proteins , Inflammation , Lipopolysaccharides , MicroRNAs , Animals , MicroRNAs/genetics , Fish Proteins/genetics , Fish Proteins/immunology , Lipopolysaccharides/pharmacology , Carps/genetics , Carps/immunology , Inflammation/genetics , Inflammation/immunology , Gene Expression Regulation/immunology , Gene Expression Regulation/drug effects , Kidney/immunology , Immunity, Innate/genetics , Cell Line
19.
Immunology ; 172(2): 269-278, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38430118

ABSTRACT

The aetiology and progression of systemic lupus erythematosus (SLE) resulted from a complex sequence of events generated both from genetic and epigenetic processes. In the current research, the effect of methyl-supplemented nutrition on the development of SLE was studied in the pristane-induced mouse model of the disease. The results clearly demonstrated decreased anti-dsDNA antibody and proteinuria levels, modulation of cytokines and protected renal structures in the group of treated mice. An additional increase in the DNA methylation of mouse B lymphocytes was also observed. The beneficial effect of the diet is due to the methyl-containing micronutrients with possible anti-inflammatory and immunomodulating effects on cell proliferation and gene expression. Since these components are responsible for maintaining the physiological methylation level of DNA, the results point to the central role of methylation processes in environmentally triggered lupus. As nutrition represents one of the major epigenetic factors, these micronutrients may be considered novel agents with significant therapeutic outcomes.


Subject(s)
Antibodies, Antinuclear , B-Lymphocytes , DNA Methylation , Dietary Supplements , Disease Models, Animal , Lupus Erythematosus, Systemic , Terpenes , Animals , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/chemically induced , Mice , Antibodies, Antinuclear/immunology , Antibodies, Antinuclear/blood , Female , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cytokines/metabolism , Epigenesis, Genetic , Micronutrients/administration & dosage , Proteinuria/immunology , Kidney/immunology , Kidney/metabolism , Kidney/pathology , Kidney/drug effects
20.
Kidney Int ; 105(6): 1291-1305, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38537677

ABSTRACT

Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a systemic autoimmune disease pathologically characterized by vascular necrosis with inflammation. During AAV development, activated neutrophils produce reactive oxygen species (ROS), leading to the aberrant formation of neutrophil extracellular traps (NETs) via NETosis and subsequent fibrinoid vascular necrosis. Nuclear factor-erythroid 2-related factor 2 (Nrf2) functions as an intracellular defense system to counteract oxidative stress by providing antioxidant properties. Herein, we explored the role of Nrf2 in the pathogenesis of AAV. The role and mechanism of Nrf2 in ANCA-stimulated neutrophils and subsequent endothelial injury were evaluated in vitro using Nrf2 genetic deletion and Nrf2 activator treatment. In corresponding in vivo studies, the role of Nrf2 in ANCA-transfer AAV and spontaneous AAV murine models was examined. Pharmacological activation of Nrf2 in vitro suppressed ANCA-induced NET formation via the inhibition of ROS. In contrast, NET formation was enhanced in Nrf2-deficient neutrophils. Furthermore, Nrf2 activation protected endothelial cells from ANC-induced NETs-mediated injury. In vivo, Nrf2 activation ameliorated glomerulonephritis in two AAV models by upregulating antioxidants and inhibiting ROS-mediated NETs. Furthermore, Nrf2 activation restrained the expansion of splenic immune cells, including T lymphocytes and limited the infiltration of Th17 cells into the kidney. In contrast, Nrf2 genetic deficiency exacerbated vasculitis in a spontaneous AAV model. Thus, the pathophysiological process in AAV may be downregulated by Nrf2 activation, potentially leading to a new therapeutic strategy by regulating NETosis.


Subject(s)
Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis , Disease Models, Animal , Extracellular Traps , Mice, Knockout , NF-E2-Related Factor 2 , Neutrophils , Peroxidase , Reactive Oxygen Species , Animals , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Extracellular Traps/immunology , Extracellular Traps/metabolism , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/immunology , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/pathology , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/genetics , Neutrophils/immunology , Neutrophils/metabolism , Reactive Oxygen Species/metabolism , Peroxidase/metabolism , Peroxidase/genetics , Mice , Humans , Oxidative Stress/immunology , Mice, Inbred C57BL , Endothelial Cells/immunology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Glomerulonephritis/immunology , Glomerulonephritis/pathology , Glomerulonephritis/genetics , Glomerulonephritis/metabolism , Glomerulonephritis/etiology , Antibodies, Antineutrophil Cytoplasmic/immunology , Male , Kidney/pathology , Kidney/immunology , Signal Transduction/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...