Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56.948
Filter
2.
Kidney Int ; 105(1): 54-64, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38707675

ABSTRACT

The neonatal Fc receptor (FcRn) was initially discovered as the receptor that allowed passive immunity in newborns by transporting maternal IgG through the placenta and enterocytes. Since its initial discovery, FcRn has been found to exist throughout all stages of life and in many different cell types. Beyond passive immunity, FcRn is necessary for intrinsic albumin and IgG recycling and is important for antigen processing and presentation. Given its multiple important roles, FcRn has been utilized in many disease treatments including a new class of agents that were developed to inhibit FcRn for treatment of a variety of autoimmune diseases. Certain cell populations within the kidney also express high levels of this receptor. Specifically, podocytes, proximal tubule epithelial cells, and vascular endothelial cells have been found to utilize FcRn. In this review, we summarize what is known about FcRn and its function within the kidney. We also discuss how FcRn has been used for therapeutic benefit, including how newer FcRn inhibiting agents are being used to treat autoimmune diseases. Lastly, we will discuss what renal diseases may respond to FcRn inhibitors and how further work studying FcRn within the kidney may lead to therapies for kidney diseases.


Subject(s)
Histocompatibility Antigens Class I , Kidney Diseases , Receptors, Fc , Humans , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/genetics , Receptors, Fc/metabolism , Receptors, Fc/immunology , Receptors, Fc/genetics , Kidney Diseases/metabolism , Kidney Diseases/drug therapy , Kidney Diseases/therapy , Kidney Diseases/immunology , Animals , Kidney/metabolism , Kidney/immunology , Kidney/pathology , Podocytes/metabolism , Podocytes/immunology , Immunoglobulin G/metabolism , Immunoglobulin G/immunology , Autoimmune Diseases/drug therapy , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism
3.
PLoS One ; 19(5): e0302691, 2024.
Article in English | MEDLINE | ID: mdl-38709735

ABSTRACT

Parabens are being used as preservatives due to their antifungal and antimicrobial effects. They are emerging as aquatic pollutants due to their excessive use in many products. The purpose of this study was to determine the toxic effect of ethyl paraben (C9H10O3) on the hematobiochemical, histological, oxidative, and anti-oxidant enzymatic and non-enzymatic activity; the study also evaluates the potential of ethyl paraben to cause genotoxicity in Rohu Labeo rohita. A number of 15 fish with an average weight of 35.45±1.34g were placed in each group and exposed to ethyl paraben for 21 days. Three different concentrations of ethyl paraben, i.e., T1 (2000µg/L), T2 (4000 µg/L), andT3 (6000 µg/L) on which fish were exposed as compared to the control T0 (0.00 µg/L). Blood was used for hematobiochemical and comet assay. Gills, kidneys, and liver were removed for histological alterations. The results showed a significant rise in all hemato-biochemical parameters such as RBCs, WBCs, PLT count, blood sugar, albumin, globulin, and cholesterol. An increase in aspartate aminotransferase (AST) and alanine transaminase (ALT) levels directed the hepatocytic damage. Histological alterations in the liver, gills and kidneys of fish were found. Ethylparaben induces oxidative stress by suppressing antioxidant enzyme activity such as SOD, GSH, CAT and POD. Based on the comet assay, DNA damage was also observed in blood cells, resulting in genotoxicity. Findings from the present study indicate that ethyl paraben induces hemato-biochemical alterations, tissue damage, oxidative stress, and genotoxicity.


Subject(s)
Antioxidants , Biomarkers , DNA Damage , Animals , Biomarkers/metabolism , Antioxidants/metabolism , DNA Damage/drug effects , Water Pollutants, Chemical/toxicity , Gills/drug effects , Gills/pathology , Gills/metabolism , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Liver/drug effects , Liver/pathology , Liver/metabolism , Oxidative Stress/drug effects , Parabens/toxicity , Comet Assay , Cyprinidae/metabolism , Oxidants/metabolism , Oxidants/toxicity
4.
PLoS One ; 19(5): e0301853, 2024.
Article in English | MEDLINE | ID: mdl-38709804

ABSTRACT

BACKGROUND: Altered immunological responses in the palatine tonsils may be involved in the pathogenesis of IgA nephropathy (IgAN). The germinal center serves as the site for antigen-specific humoral immune responses in the palatine tonsils. Germinal center involution is frequently observed in the palatine tonsils of IgAN (IgAN tonsils). However, the pathogenic significance of these characteristic changes remains unclear. This study aimed to investigate the morphological changes in secondary lymphoid follicles in IgAN tonsils and to evaluate the correlation between the morphometric results and the clinicopathological severity of IgAN. METHODS: The tonsils of age-matched patients with recurrent tonsillitis (RT tonsils) were used as controls. The correlation between the degree of lymphoid follicular involution and histopathological severities in clinical or kidney biopsy was evaluated. RESULTS: In total, 87 patients with IgAN were included (48% male, median age 35 years, median estimated glomerular filtration rate: 74 mL/min/1.73 m2). Compared to RT tonsils, IgAN tonsils showed smaller median sizes of lymphoid follicles and germinal centers (P < 0.001). The relative areas of lymphoid follicles (%LFA) and germinal centers (%GCA) in the total tonsillar tissue were smaller in the IgAN tonsils than in the RT tonsils (P < 0.001). In contrast, the median proportion of mantle zones in the total tonsillar tissue was comparable between the groups. A lower %LFA was associated with a longer period from the onset of urinary abnormalities to biopsy diagnosis and higher urinary protein excretion (P = 0.01). %LFA showed significant negative correlations with frequencies of glomeruli with both global and segmental sclerosis. CONCLUSIONS: The present study confirmed accelerated germinal center involution in the tonsils of patients with IgAN. This characteristic change in the IgAN tonsil correlates with heavy proteinuria and advanced chronic histopathological changes in the kidneys, thereby suggesting the involvement of repeated tonsillar immunoreactions during IgAN progression.


Subject(s)
Germinal Center , Glomerulonephritis, IGA , Palatine Tonsil , Humans , Glomerulonephritis, IGA/pathology , Glomerulonephritis, IGA/immunology , Palatine Tonsil/pathology , Palatine Tonsil/immunology , Germinal Center/immunology , Germinal Center/pathology , Male , Female , Adult , Tonsillitis/pathology , Tonsillitis/immunology , Middle Aged , Young Adult , Kidney/pathology , Kidney/immunology
5.
Arch Esp Urol ; 77(3): 235-241, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38715163

ABSTRACT

OBJECTIVE: The objective of this study was to examine the influence of total intravenous anaesthesia (TIVA) compared to combined intravenous and inhalation anaesthesia (CIIA) in paediatric patients undergoing renal biopsy. METHODS: A total of 86 children with nephrotic syndrome, acute glomerulonephritis, chronic glomerulonephritis, IgG nephropathy, systemic lupus erythematosus and purpura nephritis were selected from January 2018 to January 2023 in our hospital. All children were divided into the total intravenous anaesthesia group and intravenous inhalational anaesthesia group according to the anaesthesia method. The experimental group comprised 46 children with renal diseases who underwent static aspiration compound anaesthesia during renal biopsy at our hospital from January 2018 to January 2023. Conversely, the control group included 40 children with renal diseases who underwent total intravenous anaesthesia during renal biopsy at the hospital within the same period. Hemodynamic parameters, such as mean arterial pressure (MAP), heart rate (HR), and oxygen saturation (SPO2), were assessed at four different time points: Before anesthesia induction (T0), during anesthesia induction (T1), after anesthesia induction (T2), and at the conclusion of the surgery (T3). Puncture success rate, time to renal puncture, time to get out of bed, postoperative recovery from anaesthesia (including time to postoperative awakening and time to return to spontaneous respiration) and incidence of adverse anaesthetic reactions were also included. RESULTS: We observed notable variations in HR and MAP at T2 and T3, as well as SPO2 levels, duration of awakening from anaesthesia and time taken to resume spontaneous respiration between the two groups at T2 (p < 0.05). No statistically significant variances were detected between the two groups concerning adverse reactions to anaesthesia, puncture success rate, duration to renal puncture and time to mobilisation from bed (p > 0.05). CONCLUSIONS: In conclusion, compared with the total intravenous anaesthesia, the implementation of the sedation-aspiration-combined anaesthesia in renal biopsy in children with renal disease features less haemodynamic fluctuation, better postoperative anaesthesia recovery and does not increase the incidence of adverse reactions.


Subject(s)
Anesthesia, Inhalation , Anesthesia, Intravenous , Kidney , Humans , Child , Male , Female , Anesthesia, Intravenous/adverse effects , Anesthesia, Inhalation/adverse effects , Kidney/pathology , Biopsy/adverse effects , Child, Preschool , Kidney Diseases/etiology , Kidney Diseases/pathology , Adolescent , Postoperative Complications/etiology , Postoperative Complications/epidemiology
6.
Physiol Res ; 73(2): 227-237, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38710058

ABSTRACT

Nephrotoxicity as a cause of acute kidney injury (AKI) induced by cisplatin (CP), limits its usefulness as an anticancer agent. Diminazene, an angiotensin converting enzyme 2 activator, exhibited renoprotective properties on rat models of kidney diseases. This research aims to investigate the salutary effect of diminazene in comparison with lisinopril or valsartan in CP-induced AKI. The first and second groups of rats received oral vehicle (distilled water) for 9 days, and saline injection or intraperitoneal CP (6 mg/kg) on day 6, respectively. Third, fourth, and fifth groups received intraperitoneal injections of CP on day 6 and diminazene (15 mg/kg/day, orally), lisinopril (10 mg/kg/day, orally), or valsartan (30 mg/kg/day, orally), for 9 days, respectively. 24h after the last day of treatment, blood and kidneys were removed under anesthesia for biochemical and histopathological examination. Urine during the last 24 h before sacrificing the rats was also collected. CP significantly increased plasma urea, creatinine, neutrophil gelatinase-associated lipocalin, calcium, phosphorus, and uric acid. It also increased urinary albumin/creatinine ratio, N-Acetyl-beta-D-Glucosaminidase/creatinine ratio, and reduced creatinine clearance, as well the plasma concentrations of inflammatory cytokines [plasma tumor necrosis factor-alpha, and interleukin-1beta], and significantly reduced antioxidant indices [catalase, glutathione reductase , and superoxide dismutase]. Histopathologically, CP treatment caused necrosis of renal tubules, tubular casts, shrunken glomeruli, and increased renal fibrosis. Diminazine, lisinopril, and valsartan ameliorated CP-induced biochemical and histopathological changes to a similar extent. The salutary effect of the three drugs used is, at least partially, due to their anti-inflammatory and antioxidant effects. Keywords: Cisplatin, Diminazene, ACE2 activator, Lisinopril, Valsartan, Acute kidney injury.


Subject(s)
Acute Kidney Injury , Cisplatin , Diminazene , Lisinopril , Rats, Wistar , Valsartan , Animals , Acute Kidney Injury/chemically induced , Acute Kidney Injury/pathology , Acute Kidney Injury/metabolism , Acute Kidney Injury/prevention & control , Acute Kidney Injury/drug therapy , Lisinopril/pharmacology , Cisplatin/toxicity , Valsartan/pharmacology , Male , Diminazene/analogs & derivatives , Diminazene/pharmacology , Diminazene/therapeutic use , Rats , Antineoplastic Agents/toxicity , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Kidney/drug effects , Kidney/pathology , Kidney/metabolism
7.
Rev Assoc Med Bras (1992) ; 70(4): e20230871, 2024.
Article in English | MEDLINE | ID: mdl-38716932

ABSTRACT

OBJECTIVE: The purpose of this study was to analyze the clinical, pathological, prognostic features and treatment response of the coexistence of focal segmental glomerulosclerosis lesions with idiopathic membranous nephropathy. METHODS: This is a two-center retrospective cohort study. Patients of idiopathic membranous nephropathy were enrolled and divided into two groups with or without focal segmental glomerulosclerosis lesions according to the renal biopsy. Laboratory data and pathological manifestation were compared. Renal phospholipase A2 receptor was detected by immunofluorescence. During the follow-up, the effects of different therapies and renal function were estimated. RESULTS: A total of 236 patients were finally enrolled in this study, of which 60 and 176 idiopathic membranous nephropathy patients were enrolled in the FSGS+ and FSGS- groups, respectively. The FSGS+ group showed a higher percentage of hypertension history (38.3 vs. 20.0%, p=0.004), with a significantly higher level of systolic pressure [137 (120, 160) mmHg vs. 130 (120, 140) mmHg, p=0.009]. Main laboratory findings, including serial albumin (20.4±7.8 g/L vs. 24.5±6.7 g/L, p<0.001), 24-h proteinuria [5.61 (3.10, 7.87) g/day vs. 3.82 (2.31, 5.79) g/day, p=0.002], serial creatinine [80.8 (65.8, 97.9) µmol/L vs. 72.0 (58.7, 84.9) µmol/L, p=0.003], and estimated glomerular filtration rate [86 (66, 101) mL/min/1.73 m2 vs. 95 (81, 108) mL/min/1.73 m2, p=0.007] showed significant differences between the two groups. Pathologically, patients with focal segmental glomerulosclerosis lesions appeared with a higher percentage of crescents, a more severe degree of interstitial fibrosis, and a higher level of membranous nephropathy stage. Renal phospholipase A2 receptor showed a relatively lower positive rate of only 75.0% in the FSGS+ group in comparison with the positive rate of 90.3% in the FSGS- group (p=0.031). The prognosis was generally similar between the two groups. Among patients who were given non-immunosuppression treatment, those with focal segmental glomerulosclerosis lesions took a relatively longer period of time to achieve complete remission (29.3±7.0 m vs. 15.4±8.9 m, p=0.025) and experienced a higher rate of renal function deterioration (37.5 vs. 5.4%, p=0.033) compared with the other ones. While among those receiving immunosuppression treatment, both groups received similar remission rates. CONCLUSION: Compared with FSGS- group, idiopathic membranous nephropathy with focal segmental glomerulosclerosis lesions represented more severe nephrotic syndrome and worse renal function. In view of the renal function decline during the follow-up, more aggressive treatment with the use of immunosuppressants should be considered for idiopathic membranous nephropathy patients with focal segmental glomerulosclerosis lesions.


Subject(s)
Glomerulonephritis, Membranous , Glomerulosclerosis, Focal Segmental , Immunosuppressive Agents , Humans , Glomerulonephritis, Membranous/pathology , Glomerulonephritis, Membranous/drug therapy , Glomerulonephritis, Membranous/complications , Glomerulonephritis, Membranous/physiopathology , Female , Male , Glomerulosclerosis, Focal Segmental/pathology , Glomerulosclerosis, Focal Segmental/drug therapy , Glomerulosclerosis, Focal Segmental/complications , Retrospective Studies , Middle Aged , Adult , Immunosuppressive Agents/therapeutic use , Biopsy , Glomerular Filtration Rate , Proteinuria/etiology , Receptors, Phospholipase A2/immunology , Prognosis , Treatment Outcome , Kidney/pathology , Kidney/physiopathology
8.
Rev Assoc Med Bras (1992) ; 70(4): e20230990, 2024.
Article in English | MEDLINE | ID: mdl-38716935

ABSTRACT

OBJECTIVE: We aimed to investigate the effect of coenzyme q10 on cyclophosphamide-induced kidney damage in rats. METHODS: A total of 30 female Wistar-Albino rats were utilized to form three groups. In group 1 (control group) (n=10), no drugs were given. In group 2 (cyclophosphamide group) (n=10), 30 mg/kg intraperitoneal cyclophosphamide was administered for 7 days. In group 3 (cyclophosphamide+coenzyme q10 group) (n=10), 30 mg/kg cyclophosphamide and 10 mg/kg coenzyme q10 were given for 7 days via intraperitoneal route. Right kidneys were removed in all groups. Blood malondialdehyde levels and activities of catalase and superoxide dismutase were measured. Histopathological damage was evaluated by examining the slides prepared from kidney tissue using a light microscope. RESULTS: Tissue damage was significantly higher in the cyclophosphamide group than in the cyclophosphamide+coenzyme q10 group (p<0.05). The malondialdehyde levels were significantly higher and the activities of superoxide dismutase and catalase were lower in the cyclophosphamide group than in the cyclophosphamide+coenzyme q10 group (p<0.05). CONCLUSION: Coenzyme q10 may be a good option to prevent cyclophosphamide-induced kidney damage.


Subject(s)
Catalase , Cyclophosphamide , Malondialdehyde , Rats, Wistar , Superoxide Dismutase , Ubiquinone , Animals , Ubiquinone/analogs & derivatives , Ubiquinone/pharmacology , Cyclophosphamide/toxicity , Cyclophosphamide/adverse effects , Female , Catalase/metabolism , Superoxide Dismutase/metabolism , Superoxide Dismutase/drug effects , Kidney/drug effects , Kidney/pathology , Rats , Kidney Diseases/chemically induced , Kidney Diseases/prevention & control , Kidney Diseases/pathology , Antioxidants/pharmacology , Oxidative Stress/drug effects
9.
J Diabetes Res ; 2024: 1222395, 2024.
Article in English | MEDLINE | ID: mdl-38725443

ABSTRACT

This study is aimed at assessing the impact of soluble dietary fiber inulin on the treatment of diabetes-related chronic inflammation and kidney injury in mice with type 2 diabetes (T2DM). The T2DM model was created by feeding the Institute of Cancer Research (ICR) mice a high-fat diet and intraperitoneally injecting them with streptozotocin (50 mg/kg for 5 consecutive days). The thirty-six ICR mice were divided into three dietary groups: the normal control (NC) group, the T2DM (DM) group, and the DM + inulin diet (INU) group. The INU group mice were given inulin at the dose of 500 mg/kg gavage daily until the end of the 12th week. After 12 weeks, the administration of inulin resulted in decreased serum levels of fasting blood glucose (FBG), low-density lipoprotein cholesterol (LDL-C), blood urea nitrogen (BUN), and creatinine (CRE). The administration of inulin not only ameliorated renal injury but also resulted in a reduction in the mRNA expressions of inflammatory factors in the spleen and serum oxidative stress levels, when compared to the DM group. Additionally, inulin treatment in mice with a T2DM model led to a significant increase in the concentrations of three primary short-chain fatty acids (SCFAs) (acetic acid, propionic acid, and butyric acid), while the concentration of advanced glycation end products (AGEs), a prominent inflammatory factor in diabetes, exhibited a significant decrease. The results of untargeted metabolomics indicate that inulin has the potential to alleviate inflammatory response and kidney damage in diabetic mice. This beneficial effect is attributed to its impact on various metabolic pathways, including glycerophospholipid metabolism, taurine and hypotaurine metabolism, arginine biosynthesis, and tryptophan metabolism. Consequently, oral inulin emerges as a promising treatment option for diabetes and kidney injury.


Subject(s)
Blood Glucose , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Inflammation , Inulin , Kidney , Metabolomics , Mice, Inbred ICR , Oxidative Stress , Animals , Inulin/pharmacology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Mice , Male , Blood Glucose/metabolism , Blood Glucose/drug effects , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Oxidative Stress/drug effects , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/blood , Diabetic Nephropathies/pathology , Fatty Acids, Volatile/metabolism , Diet, High-Fat , Blood Urea Nitrogen
10.
Ren Fail ; 46(1): 2349139, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38712768

ABSTRACT

BACKGROUND: NOP2/Sun RNA methyltransferase 5 (NSUN5) is an RNA methyltransferase that has a broad distribution and plays critical roles in various biological processes. However, our knowledge of the biological functions of NSUN5 in mammals is very limited. Therefore, in this study, we investigate the role of NSUN5 in mice. METHODS: In the present research, we built a mouse model (Nsun5-/-) using the CRISPR/Cas9 system to investigated the specific role of NSUN5. RESULTS: We observed that Nsun5-/- mice had a reduced body weight compared to wild-type mice. Additionally, their survival rate gradually decreased to 20% after postnatal day (PD) 21. Further examination revealed the Nsun5-/- mice had multiple organ damage, with the most severe damage occurring in the kidneys. Moreover, we observed glycogen deposition and fibrosis, along with a notable shorting of the primary foot processes of glomeruli in Nsun5-/- kidneys. Furthermore, we found that the kidneys of Nsun5-/- mice showed increased expression of the apoptotic signal Caspase-3 and accumulated stronger DNA damage at PD 21. CONCLUSIONS: In our study, we found that mice lacking NSUN5 died before puberty due to kidney fatal damage caused by DNA damage and cell apoptosis. These results suggest that NSUN5 plays a vital role in preventing the accumulation of DNA damage and cell apoptosis in the kidney.


Subject(s)
Apoptosis , Kidney , Methyltransferases , Mice, Knockout , Animals , Mice , Methyltransferases/genetics , Methyltransferases/metabolism , Methyltransferases/deficiency , Kidney/pathology , Disease Models, Animal , DNA Damage , Kidney Diseases/genetics , Kidney Diseases/pathology , Male , Mice, Inbred C57BL , CRISPR-Cas Systems , Caspase 3/metabolism
11.
Commun Biol ; 7(1): 544, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714800

ABSTRACT

Numerous myofibroblasts are arisen from endothelial cells (ECs) through endothelial to mesenchymal transition (EndMT) triggered by TGF-ß. However, the mechanism of ECs transforms to a different subtype, or whether there exists an intermediate state of ECs remains unclear. In present study, we demonstrate Midkine (MDK) mainly expressed by CD31 + ACTA2+ECs going through partial EndMT contribute greatly to myofibroblasts by spatial and single-cell transcriptomics. MDK is induced in TGF-ß treated ECs, which upregulates C/EBPß and increases EndMT genes, and these effects could be reversed by siMDK. Mechanistically, MDK promotes the binding ability of C/EBPß with ACTA2 promoter by stabilizing the C/EBPß protein. In vivo, knockout of Mdk or conditional knockout of Mdk in ECs reduces EndMT markers and significantly reverses fibrogenesis. In conclusion, our study provides a mechanistic link between the induction of EndMT by TGF-ß and MDK, which suggests that blocking MDK provides potential therapeutic strategies for renal fibrosis.


Subject(s)
CCAAT-Enhancer-Binding Protein-beta , Fibrosis , Midkine , Midkine/metabolism , Midkine/genetics , Animals , Mice , Humans , CCAAT-Enhancer-Binding Protein-beta/metabolism , CCAAT-Enhancer-Binding Protein-beta/genetics , Epithelial-Mesenchymal Transition , Endothelial Cells/metabolism , Endothelial Cells/pathology , Kidney Diseases/metabolism , Kidney Diseases/pathology , Kidney Diseases/genetics , Myofibroblasts/metabolism , Myofibroblasts/pathology , Transforming Growth Factor beta/metabolism , Mice, Inbred C57BL , Male , Kidney/metabolism , Kidney/pathology , Mice, Knockout , Endothelial-Mesenchymal Transition
12.
Cell Mol Biol Lett ; 29(1): 65, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714951

ABSTRACT

The engineered clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) system is currently widely applied in genetic editing and transcriptional regulation. The catalytically inactivated CasRx (dCasRx) has the ability to selectively focus on the mRNA coding region without disrupting transcription and translation, opening up new avenues for research on RNA modification and protein translation control. This research utilized dCasRx to create a translation-enhancement system for mammals called dCasRx-eIF4GI, which combined eukaryotic translation initiation factor 4G (eIF4GI) to boost translation levels of the target gene by recruiting ribosomes, without affecting mRNA levels, ultimately increasing translation levels of different endogenous proteins. Due to the small size of dCasRx, the dCasRx-eIF4GI translation enhancement system was integrated into a single viral vector, thus optimizing the delivery and transfection efficiency in subsequent applications. Previous studies reported that ferroptosis, mediated by calcium oxalate (CaOx) crystals, significantly promotes stone formation. In order to further validate its developmental potential, it was applied to a kidney stone model in vitro and in vivo. The manipulation of the ferroptosis regulatory gene FTH1 through single-guide RNA (sgRNA) resulted in a notable increase in FTH1 protein levels without affecting its mRNA levels. This ultimately prevented intracellular ferroptosis and protected against cell damage and renal impairment caused by CaOx crystals. Taken together, this study preliminarily validated the effectiveness and application prospects of the dCasRx-eIF4GI translation enhancement system in mammalian cell-based disease models, providing novel insights and a universal tool platform for protein translation research and future therapeutic approaches for nephrolithiasis.


Subject(s)
CRISPR-Cas Systems , Calcium Oxalate , Kidney , Animals , Humans , Male , Mice , Calcium Oxalate/metabolism , CRISPR-Cas Systems/genetics , Eukaryotic Initiation Factor-4G/metabolism , Eukaryotic Initiation Factor-4G/genetics , Ferritins , Ferroptosis/genetics , Gene Editing/methods , HEK293 Cells , Kidney/metabolism , Kidney/pathology , Kidney Calculi/genetics , Kidney Calculi/metabolism , Oxidoreductases/metabolism , Oxidoreductases/genetics , Protein Biosynthesis/genetics , RNA, Guide, CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/metabolism
15.
Mol Biol Rep ; 51(1): 677, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796641

ABSTRACT

BACKGROUND: One of the main causes of diabetic nephropathy is oxidative stress induced by hyperglycemia. Apelin inhibits insulin secretion. Besides, renal expression of TGF-ß is increased in diabetes mellitus (DM). The preventive effect of quercetin (Q) against renal functional disorders and tissue damage developed by DM in rats was assessed. METHODS: Forty male Wistar rats were grouped into normal control (NC), normal + quercetin (NQ: quercetin, 50 mg/kg/day by gavage), diabetic control (DC: streptozotocin, 65 mg/kg, i.p.), diabetic + quercetin pretreatment (D + Qpre), and diabetic + quercetin post-treatment (D + Qpost). All samples (24-hour urine, plasma, pancreatic, and renal tissues) were obtained at the terminal of the experiment. RESULTS: Compared to NC and NQ groups, DM ended in elevated plasma and glucose levels, decreased plasma insulin level, kidney dysfunction, augmented levels of malondialdehyde, decreased level of reduced glutathione, reduced enzymatic activities of superoxide dismutase and catalase, elevated gene expression levels of apelin and TGF-ß, also renal and pancreatic histological damages. Quercetin administration diminished entire the changes. However, the measure of improvement in the D + Qpre group was higher than that of the D + Qpost group. CONCLUSION: Quercetin prevents renal dysfunction induced by DM, which might be related to the diminution of lipid peroxidation, strengthening of antioxidant systems, and prevention of the apelin/ TGF-ß signaling pathway.


Subject(s)
Apelin , Diabetes Mellitus, Experimental , Diabetic Nephropathies , Kidney , Oxidative Stress , Quercetin , Rats, Wistar , Transforming Growth Factor beta , Animals , Quercetin/pharmacology , Rats , Male , Transforming Growth Factor beta/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/drug therapy , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/prevention & control , Diabetic Nephropathies/drug therapy , Apelin/metabolism , Oxidative Stress/drug effects , Blood Glucose/metabolism , Blood Glucose/drug effects , Antioxidants/pharmacology , Antioxidants/metabolism , Insulin/metabolism , Insulin/blood , Diabetes Mellitus, Type 1/metabolism , Gene Expression Regulation/drug effects
16.
Mol Biol Rep ; 51(1): 679, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796668

ABSTRACT

BACKGROUND: Renal ischemia-reperfusion injury (IRI) is one of the causes of acute kidney injury. Annexin A5 (AnxA5), a calcium-dependent cell membrane-binding protein, shows protective effects in various organ IRI models. This study explored the therapeutic effect of exogenous AnxA5 monomer protein on renal IRI and its potential mechanism of action. METHODS AND RESULTS: Different doses of AnxA5 were injected intravenously to treat bilateral renal IRI in SD rats. This model confirmed the protective effects of AnxA5 on kidney structure and function. In vitro, HK-2 cells were subjected to hypoxia for 12 h, followed by restoration of normal oxygen supply to simulate IRI. In vitro experiments demonstrated the mechanism of action of AnxA5 by measuring cellular activity and permeability. A comparison of the mutant AnxA5 protein M23 and the application of a calcium-free culture medium further validated the protective effect of AnxA5 by forming a network structure. CONCLUSIONS: Exogenous AnxA5 monomers prevented renal IRI by binding to the damaged renal tubular epithelial cell membrane, forming a two-dimensional network structure to maintain cell membrane integrity, and ultimately prevent cell death.


Subject(s)
Annexin A5 , Kidney , Rats, Sprague-Dawley , Reperfusion Injury , Animals , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Rats , Annexin A5/metabolism , Annexin A5/pharmacology , Humans , Kidney/metabolism , Kidney/drug effects , Kidney/pathology , Male , Cell Membrane/metabolism , Cell Membrane/drug effects , Cell Line , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Disease Models, Animal
17.
Organogenesis ; 20(1): 2356339, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38796830

ABSTRACT

This study is to investigate the therapeutical effect and mechanisms of human-derived adipose mesenchymal stem cells (ADSC) in relieving adriamycin (ADR)-induced nephropathy (AN). SD rats were separated into normal group, ADR group, ADR+Losartan group (20 mg/kg), and ADR + ADSC group. AN rats were induced by intravenous injection with adriamycin (8 mg/kg), and 4 d later, ADSC (2 × 105 cells/mouse) were administrated twice with 2 weeks interval time (i.v.). The rats were euthanized after the 6 weeks' treatment. Biochemical indicators reflecting renal injury, such as blood urea nitrogen (BUN), neutrophil gelatinase alpha (NGAL), serum creatinine (Scr), inflammation, oxidative stress, and pro-fibrosis molecules, were evaluated. Results demonstrated that we obtained high qualified ADSCs for treatment determined by flow cytometry, and ADSCs treatment significantly ameliorated renal injuries in DN rats by decreasing BUN, Scr and NGAL in peripheral blood, as well as renal histopathological injuries, especially protecting the integrity of podocytes by immunofluorescence. Furthermore, ADSCs treatment also remarkably reduced the renal inflammation, oxidative stress, and fibrosis in DN rats. Preliminary mechanism study suggested that the ADSCs treatment significantly increased renal neovascularization via enhancing proangiogenic VEGF production. Pharmacodynamics study using in vivo imaging confirmed that ADSCs via intravenous injection could accumulate into the kidneys and be alive at least 2 weeks. In a conclusion, ADSC can significantly alleviate ADR-induced nephropathy, and mainly through reducing oxidative stress, inflammation and fibrosis, as well as enhancing VEGF production.


Subject(s)
Adipose Tissue , Doxorubicin , Kidney Diseases , Rats, Sprague-Dawley , Animals , Humans , Adipose Tissue/cytology , Male , Kidney Diseases/chemically induced , Kidney Diseases/therapy , Rats , Mesenchymal Stem Cells/cytology , Neovascularization, Physiologic , Mesenchymal Stem Cell Transplantation , Oxidative Stress/drug effects , Kidney/pathology , Fibrosis , Vascular Endothelial Growth Factor A/metabolism , Stromal Cells , Angiogenesis
18.
Zhonghua Fu Chan Ke Za Zhi ; 59(5): 391-400, 2024 May 25.
Article in Chinese | MEDLINE | ID: mdl-38797569

ABSTRACT

Objective: To investigate the effect of rare ginsenosides (RGS) on reproductive injury induced by cyclophosphamide (CP) in female rats. Methods: Twenty-four female rats were divided into four groups [normal control (NC), RGS, CP, and CP+RGS group] with 6 rats in each group. CP group (the model group) and CP+RGS group (the treatment group) were intraperitoneally injected with CP 30 mg/kg for 5 days for modeling, and CP+RGS group was given RGS intragastric intervention. General growth status of rats in each group was observed, the organ index was calculated, and the pathological changes of ovary, uterus, liver and kidney were observed by hematoxylin-eosin staining. Serum levels of estradiol, follicle stimulating hormone (FSH), luteinizing hormone (LH), pro-inflammatory factors interleukin (IL) 6, IL-1ß, tumor necrosis factor-α were detected. The urine samples were collected after RGS treatment for metabonomics analysis. Metabolomic profiling based on ultra performance liquid chromatography (UPLC) coupled with mass spectrometry (MS) was used to analyze and determine the urine metabolites of rats in each group. Results: Compared with NC group, the ovary index of CP group [(0.054±0.015) %] was significantly decreased (P<0.05), the uterus index [(0.293±0.036) %] and estradiol level [(62.9±6.4) pmol/L] were significantly decreased (all P<0.01), serum levels of FSH, LH, IL-6 and IL-1ß [(20.4±1.0) U/L, (29.0±3.0) U/L, (185.4±28.6) ng/L, (72.9±2.0) ng/L, respectively] were significantly increased (all P<0.01). Compared with CP group, the ovary index in CP+RGS group [(0.075±0.010) %] was significantly increased (P<0.05), serum estradiol level [(122.1±16.2) pmol/L] was significantly increased (P<0.01), serum FSH, IL-1ß and IL-6 levels [(16.7±1.0) U/L, (111.8±17.4) ng/L, (60.1±2.2) ng/L, respectively] were significantly decreased (all P<0.01). Metabonomics analysis results showed that, a total of 352 metabolites were detected in urine, of which 12 were found to be potential markers associated with reproductive injury according to the screening standard. After treatment with RGS, differential metabolites were improved in the direction of NC group. Pathway enrichment suggests that the therapeutic effect of RGS was related to multiple metabolic pathways, including purine metabolism and taurine and hypotaurine metabolism. Conclusion: RGS might reduce inflammation and thus ameliorate the damage caused by CP to the reproductive system of female rats by affecting purine metabolism and other pathways.


Subject(s)
Cyclophosphamide , Estradiol , Follicle Stimulating Hormone , Ginsenosides , Metabolomics , Ovary , Rats, Sprague-Dawley , Uterus , Animals , Female , Rats , Cyclophosphamide/adverse effects , Cyclophosphamide/toxicity , Ginsenosides/pharmacology , Follicle Stimulating Hormone/blood , Estradiol/blood , Ovary/drug effects , Ovary/pathology , Ovary/metabolism , Uterus/drug effects , Uterus/pathology , Uterus/metabolism , Luteinizing Hormone/blood , Chromatography, High Pressure Liquid , Interleukin-6/metabolism , Interleukin-6/blood , Disease Models, Animal , Interleukin-1beta/metabolism , Interleukin-1beta/blood , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/blood , Liver/metabolism , Liver/drug effects , Liver/pathology , Mass Spectrometry , Kidney/drug effects , Kidney/pathology , Kidney/metabolism
19.
Biol Pharm Bull ; 47(5): 1008-1020, 2024.
Article in English | MEDLINE | ID: mdl-38797693

ABSTRACT

The dipeptidyl peptidase-4 (DPP-4) inhibitors, a novel anti-diabetic medication family, are renoprotective in diabetes, but a comparable benefit in chronic non-diabetic kidney diseases is still under investigation. This study aimed to elucidate the molecular mechanisms of linagliptin's (Lina) protective role in a rat model of chronic kidney injury caused by tacrolimus (TAC) independent of blood glucose levels. Thirty-two adult male Sprague Dawley rats were equally randomized into four groups and treated daily for 28 d as follows: The control group; received olive oil (1 mL/kg/d, subcutaneously), group 2; received Lina (5 mg/kg/d, orally), group 3; received TAC (1.5 mg/kg/d, subcutaneously), group 4; received TAC plus Lina concomitantly in doses as the same previous groups. Blood and urine samples were collected to investigate renal function indices and tubular injury markers. Additionally, signaling molecules, epithelial-mesenchymal transition (EMT), and fibrotic-related proteins in kidney tissue were assessed by enzyme-linked immunosorbent assay (ELISA) and Western blot analysis, immunohistochemical and histological examinations. Tacrolimus markedly induced renal injury and fibrosis as indicated by renal dysfunction, histological damage, and deposition of extracellular matrix (ECM) proteins. It also increased transforming growth factor ß1 (TGF-ß1), Smad4, p-extracellular signal-regulated kinase (ERK)1/2/ERK1/2, and p-P38/P38 mitogen-activated protein kinase (MAPK) protein levels. These alterations were markedly attenuated by the Lina administration. Moreover, Lina significantly inhibited EMT, evidenced by inhibiting Vimentin and α-smooth muscle actin (α-SMA) and elevating E-cadherin. Furthermore, Lina diminished hypoxia-related protein levels with a subsequent reduction in Snail and Twist expressions. We concluded that Lina may protect against TAC-induced interstitial fibrosis by modulating TGF-ß1 mediated EMT via Smad-dependent and independent signaling pathways.


Subject(s)
Epithelial-Mesenchymal Transition , Fibrosis , Linagliptin , Rats, Sprague-Dawley , Tacrolimus , Transforming Growth Factor beta1 , Animals , Linagliptin/pharmacology , Linagliptin/therapeutic use , Epithelial-Mesenchymal Transition/drug effects , Male , Tacrolimus/pharmacology , Transforming Growth Factor beta1/metabolism , Signal Transduction/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Rats , Smad Proteins/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Signaling System/drug effects , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Immunosuppressive Agents/pharmacology
20.
Discov Med ; 36(184): 1020-1029, 2024 May.
Article in English | MEDLINE | ID: mdl-38798261

ABSTRACT

BACKGROUND: Long-term exposure to cadmium can induce renal toxicity in rats, leading to endoplasmic reticulum (ER) stress and iron death. Notably, in cadmium-exposed rats, there is an increased expression of UNC93B1 (unc-93 homolog B1). Consequently, our investigation aims to determine the impact of UNC93B1 on ER stress and iron death in cadmium-exposed rats by modulating the cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) pathway. METHODS: A cadmium-exposed rat model was established by intrabacally injecting chromium chloride (5 mg/kg, once a day for 4 weeks), and the levels of UCd (urine cadmium), UNAG (urine N-acetyl-ß-D-glucosaminidase), and UCr (urine creatinine) in urine were assessed. A silent UNC93B1 lentivirus was constructed, and STING agonists were procured and administered to the rats. Subsequently, kidney tissues were extracted post-mortem, and pathological changes in renal tissue were observed through hematoxylin and eosin (HE) staining. The expression and mRNA levels of UNC93B1, cGAS, and STING were examined using western blot (WB) and polymerase chain reaction (PCR). Autophagy proteins (light chain 3 (LC3), Beclin-1, p62) were also assessed by WB. Additionally, iron concentration was determined using a kit, while oxidative stress markers (cytochrome oxidase subunit 2 (COX2), glutathione peroxidase 4 (GPX4), superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH)) were measured through enzyme-linked immunosorbent assay (ELISA). Furthermore, endoplasmic reticulum stress proteins (protein kinase RNA-like ER kinase (PERK), CCAAT enhance-binding protein homologous protein (CHOP), activating transcription factor-4 (ATF4)) were analyzed by WB. RESULTS: Wstaining, WB, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), ELISA, and HE staining collectively revealed a heightened expression of UNC93B1, cGAS, and STING, accompanied by increased levels of autophagy, oxidative stress, and ER stress in cadmium-exposed rats (p < 0.05). Nephrotoxicity exhibited a reduction following the inhibition of UNC93B1, leading to decreased levels of oxidative stress, autophagy, and ER stress (p < 0.05). Notably, this observed phenomenon was reversed upon the addition of STING agonists, suggesting that UNC93B1 might exert a nephroprotective effect in cadmium-exposed rats through modulation of the cGAS-STING pathway. CONCLUSIONS: The inhibition of UNC93B1 mitigates nephrotoxicity in cadmium-exposed rats, and this protective effect is mechanistically linked to the cGAS-STING pathway.


Subject(s)
Cadmium , Endoplasmic Reticulum Stress , Membrane Proteins , Animals , Rats , Endoplasmic Reticulum Stress/drug effects , Cadmium/toxicity , Membrane Proteins/metabolism , Membrane Proteins/genetics , Male , Kidney/pathology , Kidney/metabolism , Kidney/drug effects , Iron/metabolism , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Kidney Diseases/chemically induced , Kidney Diseases/pathology , Kidney Diseases/metabolism , Rats, Sprague-Dawley , Oxidative Stress/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...