Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 519
Filter
1.
Cell Mol Biol Lett ; 29(1): 65, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714951

ABSTRACT

The engineered clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) system is currently widely applied in genetic editing and transcriptional regulation. The catalytically inactivated CasRx (dCasRx) has the ability to selectively focus on the mRNA coding region without disrupting transcription and translation, opening up new avenues for research on RNA modification and protein translation control. This research utilized dCasRx to create a translation-enhancement system for mammals called dCasRx-eIF4GI, which combined eukaryotic translation initiation factor 4G (eIF4GI) to boost translation levels of the target gene by recruiting ribosomes, without affecting mRNA levels, ultimately increasing translation levels of different endogenous proteins. Due to the small size of dCasRx, the dCasRx-eIF4GI translation enhancement system was integrated into a single viral vector, thus optimizing the delivery and transfection efficiency in subsequent applications. Previous studies reported that ferroptosis, mediated by calcium oxalate (CaOx) crystals, significantly promotes stone formation. In order to further validate its developmental potential, it was applied to a kidney stone model in vitro and in vivo. The manipulation of the ferroptosis regulatory gene FTH1 through single-guide RNA (sgRNA) resulted in a notable increase in FTH1 protein levels without affecting its mRNA levels. This ultimately prevented intracellular ferroptosis and protected against cell damage and renal impairment caused by CaOx crystals. Taken together, this study preliminarily validated the effectiveness and application prospects of the dCasRx-eIF4GI translation enhancement system in mammalian cell-based disease models, providing novel insights and a universal tool platform for protein translation research and future therapeutic approaches for nephrolithiasis.


Subject(s)
CRISPR-Cas Systems , Calcium Oxalate , Kidney , Animals , Humans , Male , Mice , Calcium Oxalate/metabolism , CRISPR-Cas Systems/genetics , Eukaryotic Initiation Factor-4G/metabolism , Eukaryotic Initiation Factor-4G/genetics , Ferritins , Ferroptosis/genetics , Gene Editing/methods , HEK293 Cells , Kidney/metabolism , Kidney/pathology , Kidney Calculi/genetics , Kidney Calculi/metabolism , Oxidoreductases/metabolism , Oxidoreductases/genetics , Protein Biosynthesis/genetics , RNA, Guide, CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/metabolism
2.
PeerJ ; 12: e16920, 2024.
Article in English | MEDLINE | ID: mdl-38426133

ABSTRACT

Objectives: Type 2 diabetes mellitus (T2DM) commonly complicates kidney stone disease (KSD). Our objective is to investigate the variations in the urinary microbiota between individuals with KSD alone and those with KSD plus T2DM. This exploration could have implications for disease diagnosis and treatment strategies. Methods: During lithotripsy, a ureterscope was employed, and 1 mL of urine was collected from the renal pelvis after bladder disinfection. Sequencing targeting the V3-V4 hypervariable region was performed using the 16S rRNA and Illumina Novaseq platform. Results: The Shannon index showed a significant decrease in the KSD plus T2DM group compared to the KSD-only group (false discovery rate = 0.041). Principal Coordinate Analysis (PCoA) demonstrated a distinct bacterial community in the KSD plus T2DM group compared to the KSD-only group (false discovery rate = 0.027). The abundance of Sphingomonas, Corynebacterium, and Lactobacillus was significantly higher in the KSD plus T2DM group than in the KSD-only group (false discovery rate < 0.05). Furthermore, Enhydrobacter, Chryseobacterium, and Allobaculum were positively correlated with fasting blood glucose and HbA1c values (P < 0.05). Conclusions: The urinary microbiota in the renal pelvis exhibits differences between patients with KSD plus T2DM and those with KSD alone. Further studies employing animal models are necessary to validate these distinctions, potentially paving the way for therapeutic developments based on the urinary microbiota.


Subject(s)
Diabetes Mellitus, Type 2 , Kidney Calculi , Microbiota , Humans , Diabetes Mellitus, Type 2/complications , RNA, Ribosomal, 16S/genetics , Kidney Calculi/genetics , Bacteria
3.
Aging (Albany NY) ; 16(7): 5987-6007, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38536018

ABSTRACT

Ferroptosis is a specific type of programmed cell death characterized by iron-dependent lipid peroxidation. Understanding the involvement of ferroptosis in calcium oxalate (CaOx) stone formation may reveal potential targets for this condition. The publicly available dataset GSE73680 was used to identify 61 differentially expressed ferroptosis-related genes (DEFERGs) between normal kidney tissues and Randall's plaques (RPs) from patients with nephrolithiasis through employing weighted gene co-expression network analysis (WGCNA). The findings were validated through in vitro and in vivo experiments using CaOx nephrolithiasis rat models induced by 1% ethylene glycol administration and HK-2 cell models treated with 1 mM oxalate. Through WGCNA and the machine learning algorithm, we identified LAMP2 and MDM4 as the hub DEFERGs. Subsequently, nephrolithiasis samples were classified into cluster 1 and cluster 2 based on the expression of the hub DEFERGs. Validation experiments demonstrated decreased expression of LAMP2 and MDM4 in CaOx nephrolithiasis animal models and cells. Treatment with ferrostatin-1 (Fer-1), a ferroptosis inhibitor, partially reversed oxidative stress and lipid peroxidation in CaOx nephrolithiasis models. Moreover, Fer-1 also reversed the expression changes of LAMP2 and MDM4 in CaOx nephrolithiasis models. Our findings suggest that ferroptosis may be involved in the formation of CaOx kidney stones through the regulation of LAMP2 and MDM4.


Subject(s)
Biomarkers , Ferroptosis , Nephrolithiasis , Ferroptosis/drug effects , Animals , Nephrolithiasis/metabolism , Nephrolithiasis/genetics , Nephrolithiasis/pathology , Rats , Biomarkers/metabolism , Humans , Male , Calcium Oxalate/metabolism , Lipid Peroxidation/drug effects , Oxidative Stress/drug effects , Kidney Calculi/metabolism , Kidney Calculi/genetics , Kidney Calculi/pathology , Cyclohexylamines/pharmacology , Phenylenediamines/pharmacology , Disease Models, Animal , Rats, Sprague-Dawley , Cell Line
4.
Adv Sci (Weinh) ; 11(17): e2309234, 2024 May.
Article in English | MEDLINE | ID: mdl-38380498

ABSTRACT

The CRISPR-Cas system, initially for DNA-level gene editing and transcription regulation, has expanded to RNA targeting with the Cas13d family, notably the RfxCas13d. This advancement allows for mRNA targeting with high specificity, particularly after catalytic inactivation, broadening the exploration of translation regulation. This study introduces a CRISPR-dCas13d-eIF4G fusion module, combining dCas13d with the eIF4G translation regulatory element, enhancing target mRNA translation levels. This module, using specially designed sgRNAs, selectively boosts protein translation in targeted tissue cells without altering transcription, leading to notable protein expression upregulation. This system is applied to a kidney stone disease model, focusing on ferroptosis-linked GPX4 gene regulation. By targeting GPX4 with sgRNAs, its protein expression is upregulated in human renal cells and mouse kidney tissue, countering ferroptosis and resisting calcium oxalate-induced cell damage, hence mitigating stone formation. This study evidences the CRISPR-dCas13d-eIF4G system's efficacy in eukaryotic cells, presenting a novel protein translation research approach and potential kidney stone disease treatment advancements.


Subject(s)
CRISPR-Cas Systems , Calcium Oxalate , Disease Models, Animal , Eukaryotic Initiation Factor-4G , Ferroptosis , Ferroptosis/genetics , Mice , Animals , Calcium Oxalate/metabolism , CRISPR-Cas Systems/genetics , Humans , Eukaryotic Initiation Factor-4G/genetics , Eukaryotic Initiation Factor-4G/metabolism , Kidney Calculi/genetics , Kidney Calculi/metabolism , Protein Biosynthesis/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism
5.
Biomolecules ; 14(2)2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38397450

ABSTRACT

Nephrolithiasis is a major public health concern associated with high morbidity and recurrence. Despite decades of research, the pathogenesis of nephrolithiasis remains incompletely understood, and effective prevention is lacking. An increasing body of evidence suggests that non-coding RNAs, especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), play a role in stone formation and stone-related kidney injury. MiRNAs have been studied quite extensively in nephrolithiasis, and a plethora of specific miRNAs have been implicated in the pathogenesis of nephrolithiasis, involving remarkable changes in calcium metabolism, oxalate metabolism, oxidative stress, cell-crystal adhesion, cellular autophagy, apoptosis, and macrophage (Mp) polarization and metabolism. Emerging evidence suggests a potential for miRNAs as novel diagnostic biomarkers of nephrolithiasis. LncRNAs act as competing endogenous RNAs (ceRNAs) to bind miRNAs, thereby modulating mRNA expression to participate in the regulation of physiological mechanisms in kidney stones. Small interfering RNAs (siRNAs) may provide a novel approach to kidney stone prevention and treatment by treating related metabolic conditions that cause kidney stones. Further investigation into these non-coding RNAs will generate novel insights into the mechanisms of renal stone formation and stone-related renal injury and might lead to new strategies for diagnosing and treating this disease.


Subject(s)
Kidney Calculi , MicroRNAs , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Kidney Calculi/genetics , Kidney Calculi/chemistry , Kidney/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
6.
J Genet ; 1032024.
Article in English | MEDLINE | ID: mdl-38258300

ABSTRACT

Absorptive hypercalciuria (AH) is a prevalent cause of kidney stones, and the adenylate cyclase 10 (ADCY10) gene is a rare causative gene of AH. This study aims to investigate the genotypic and phenotypic characteristics of patients with AH caused by ADCY10 gene mutations. Whole-exome sequencing and Sanger sequencing were performed on the probands and their family members, respectively. Clinical and genetic data of patients with AH caused by ADCY10 gene mutations were collected and analysed retrospectively from the present study and published literature. Two female patients (6 years old and 1 year old) with multiple bilateral kidney stones were found to have a heterozygous c.3304T>C mutation and a heterozygous c.1726C>T mutation in the ADCY10 gene. Urinary metabolite analysis revealed that urine calcium / creatinine ratios were 0.95 mmol/mmol and 1.61 mmol/mmol, respectively. Both patients underwent thiazide intake postoperatively, and upon reexamination, urine calcium decreased to within the normal range. A total of 61 patients with AH were reported from previous and present studies. The sex ratio was 7:5 for males to females, and the mean age of onset was 23.61±20.08 years. A total of 16 ADCY10 gene mutations were identified, including seven missense (43.75%), five splicing (31.25%), two frameshift (12.50%) and two nonsense mutations (12.50%). Only two cases were identified as homozygous mutations (c.1205_1206del), and the others were heterozygous mutations. In summary, we identified two novel ADCY10 gene candidate pathogenic variants in Chinese pediatric patients, which expands the mutational spectrum of the ADCY10 gene and provides a potential diagnostic and therapeutic target.


Subject(s)
Adenylyl Cyclases , Hypercalciuria , Kidney Calculi , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Male , Young Adult , Adenylyl Cyclases/genetics , Calcium , China , Hypercalciuria/genetics , Kidney Calculi/genetics , Retrospective Studies
7.
Int Urol Nephrol ; 56(6): 1835-1841, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38212471

ABSTRACT

PURPOSE: The association between tea consumption and kidney stones is inconsistent in observational studies. Thus, we performed a dose-response meta-analysis of prospective cohort studies and a two-sample Mendelian randomization (MR) analysis to identify this association. METHODS: The prospective cohort studies reporting the relationship between tea consumption and kidney stones were searched from PubMed, the Cochrane Library, EMBASE, and Web of Science from inception to December 1, 2023. For MR analysis, the summary-level data for tea consumption and kidney stones were extracted from the UK Biobank available data and the 8th release of the FinnGen consortium, respectively. The inverse-variance weighted (IVW) method was the primary analytical method. RESULTS: In our dose-response meta-analysis, four prospective cohort studies involving 1,263,008 participants were included, and tea consumption was found to have significant associations with kidney stones (RR: 0.80, 95% CI: 0.73-0.87). We also observed a substantially linear negative relationship between tea consumption and the risk of kidney stones. In MR analysis, the IVW method indicated that tea consumption was inversely associated with kidney stones (OR: 0.71, 95% CI: 0.53-0.94). CONCLUSION: Our study confirmed a causal relationship between tea consumption and kidney stones, and higher tea consumption may reduce the risk of kidney stones.


Subject(s)
Kidney Calculi , Mendelian Randomization Analysis , Tea , Kidney Calculi/epidemiology , Kidney Calculi/genetics , Kidney Calculi/etiology , Humans , Tea/adverse effects , Prospective Studies , Risk Assessment
8.
World J Urol ; 42(1): 17, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38197976

ABSTRACT

PURPOSE: Kidney stone disease (KSD) is a common urological disease, but its pathogenesis remains unclear. In this study, we screened KSD-related hub genes using bioinformatic methods and predicted the related pathways and potential drug targets. METHODS: The GSE75542 and GSE18160 datasets in the Gene Expression Omnibus (GEO) were selected to identify common differentially expressed genes (DEGs). We conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses to identify enriched pathways. Finally, we constructed a hub gene-miRNA network and drug-DEG interaction network. RESULTS: In total, 44 upregulated DEGs and 1 downregulated DEG were selected from the GEO datasets. Signaling pathways, such as leukocyte migration, chemokine activity, NF-κB, TNF, and IL-17, were identified in GO and KEGG. We identified 10 hub genes using Cytohubba. In addition, 21 miRNAs were predicted to regulate 4 or more hub genes, and 10 drugs targeted 2 or more DEGs. LCN2 expression was significantly different between the GEO datasets. Quantitative real-time polymerase chain reaction (qRT-PCR) analyses showed that seven hub gene expressions in HK-2 cells with CaOx treatment were significantly higher than those in the control group. CONCLUSION: The 10 hub genes identified, especially LCN2, may be involved in kidney stone occurrence and development, and may provide new research targets for KSD diagnosis. Furthermore, KSD-related miRNAs may be targeted for the development of novel drugs for KSD treatment.


Subject(s)
Kidney Calculi , MicroRNAs , Humans , Kidney Calculi/drug therapy , Kidney Calculi/genetics , MicroRNAs/genetics , Biomarkers , Cell Movement , Computational Biology
9.
J Clin Lipidol ; 18(1): e116-e124, 2024.
Article in English | MEDLINE | ID: mdl-38065716

ABSTRACT

OBJECTIVE: We aimed to assess the association between habitual fish oil use and new-onset kidney stones in participants with different levels of genetic risks of kidney stones. METHODS: 477,311 participants free of kidney stones at baseline from the UK Biobank cohort were included. Fish oil use was collected by both food frequency questionnaires and 24-h dietary recalls. A genetic risk score (GRS) for kidney stones was calculated based on 20 single-nucleotide polymorphisms associated with kidney stones. The primary outcome was new-onset kidney stones. RESULTS: During a median follow-up of 12.0 years, 5,637 cases of kidney stones were documented. Participants with high genetic risks of kidney stones had a higher risk of new-onset kidney stones (vs. low or intermediate risks; adjusted HR, 1.52; 95 %CI:1.44-1.60). Compared with non-users, habitual use of fish oil was associated with a lower risk of new-onset kidney stones (adjusted HR, 0.84, 95 %CI, 0.78-0.92) in participants with low or intermediate genetic risks, but not in those with high genetic risks of kidney stones (adjusted HR, 1.02, 95 %CI, 0.93-1.12; P-interaction =0.001). Among those with low or intermediate genetic risks of kidney stones, compared with fish oil constant nonusers, the adjusted HRs (95 %CI) for kidney stones were 0.89 (0.75-1.06), 0.72 (0.58-0.90), and 0.79 (0.64-0.97), for fish oil occasional users, modestly constant users, and moderately and highly constant users (P for trend = 0.001), respectively. CONCLUSIONS: Habitual fish oil use was associated with a lower risk of new-onset kidney stones in participants with low or intermediate genetic risk of kidney stones.


Subject(s)
Fish Oils , Kidney Calculi , Humans , Dietary Supplements , Kidney Calculi/genetics , Diet , Risk Factors , Genetic Predisposition to Disease
10.
Sci Rep ; 13(1): 21821, 2023 12 09.
Article in English | MEDLINE | ID: mdl-38071316

ABSTRACT

Elevated Gamma-glutamyl transferase (GGT) levels are often suggestive of cholelithiasis, and previous studies have indicated that GGT is highly expressed in the urinary system. Therefore, we hypothesized that there may be an association between GGT levels and calculus of kidney (CK) incidence. To investigate this potential causal relationship, we employed Mendelian randomization (MR) analysis. Additionally, we analyzed the levels of other liver enzymes, including alanine transaminase (ALT) and alkaline phosphatase (ALP). The relationship between GGT levels and CK incidence was analyzed using two-sample Mendelian randomization. Summary Genome-Wide Association Studies data were utilized for this analysis. 33 single nucleotide polymorphisms known to be associated with GGT levels were employed as instrumental variables. We employed several MR methods including IVW (inverse variance weighting), MR-Egger, weighted median, weighted mode, and MR-PRESSO (Mendelian Randomization Pleiotropy RESidual Sum and Outlier). Furthermore, we conducted tests for horizontal multivariate validity, heterogeneity, and performed leave-one-out analysis to ensure the stability of the results. Overall, several MR methods yielded statistically significant results with a p-value < 0.05. The results from the IVW analysis yielded an odds ratio (OR) of 1.0062 with a 95% confidence interval (CI) of 1.0016-1.0109 (p = 0.0077). Additional MR methods provided supplementary results: MR-Egger (OR 1.0167, 95% CI 1.0070-1.0266, p = 0.0040); weighted median (OR 1.0058, 95% CI 1.0002-1.0115, p = 0.0423); and weighted mode (OR 1.0083, 95% CI 1.0020-1.0146, p- = 0.0188). Sensitivity analyses did not reveal heterogeneity or outliers. Although potential horizontal pleiotropy emerged, we speculate that this could be attributed to inadequate test efficacy. However, subsequent use of MR-PRESSO did not provide evidence of pleiotropy. Our analysis suggests a positive association between elevated GGT levels and CK incidence, indicating an increased risk of CK development. However, no causal relationship was observed between levels of ALP or ALT and CK incidence.


Subject(s)
Kidney Calculi , gamma-Glutamyltransferase , Humans , gamma-Glutamyltransferase/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Kidney Calculi/epidemiology , Kidney Calculi/genetics , Alanine Transaminase , Alkaline Phosphatase , Coloring Agents , Ubiquitin-Protein Ligases , Kidney
11.
Aging (Albany NY) ; 15(24): 14749-14763, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38154105

ABSTRACT

BACKGROUND: Renal calculi are a very prevalent disease with a high incidence. Calcium oxalate (CaOx) is a primary constituent of kidney stones. Our paper probes the regulatory function and mechanism of miR-184 in CaOx-mediated renal cell damage. METHODS: CaOx was used to treat HK2 cells and human podocytes (HPCs) to simulate kidney cell damage. The qRT-PCR technique checked the profiles of miR-184 and IGF1R. The examination of cell proliferation was conducted employing CCK8. TUNEL staining was used to monitor cell apoptosis. Western blot analysis was used to determine the protein profiles of apoptosis-concerned related proteins (including Mcl1, Bcl-XL, and Caspase-3), the NF-κB, Nrf2/HO-1, and Rap1 signaling pathways. ELISA confirmed the levels of the inflammatory factors IL-6, TNF-α, MCP1, and ICAM1. The targeting relationship between miR-184 and IGF1R was validated by dual luciferase assay and RNA immunoprecipitation assay. RESULTS: Glyoxylate-induced rat kidney stones model and HK2 and HPC cells treated with CaOx demonstrated an increase in the miR-184 profile. Inhibiting miR-184 relieved CaOx-mediated renal cell inflammation, apoptosis and oxidative stress and activated the Rap1 pathway. IGF1R was targeted by miR-184. IGF1R activation by IGF1 attenuated the effects of miR-184 on renal cell damage, and Hippo pathway suppression reversed the inhibitory effect of miR-184 knockdown on renal cell impairment. CONCLUSIONS: miR-184 downregulation activates the Rap1 signaling pathway to ameliorate renal cell damage mediated by CaOx.


Subject(s)
Kidney Calculi , MicroRNAs , Animals , Humans , Rats , Calcium Oxalate/metabolism , Kidney/metabolism , Kidney Calculi/genetics , Kidney Calculi/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Signal Transduction
12.
JAMA Netw Open ; 6(11): e2343290, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37962888

ABSTRACT

Importance: Clinical trial data have called into question the efficacy of thiazide diuretics for the prevention of kidney stones. Objective: To identify whether there is an association between genetic proxies of thiazide diuretics and the risk of kidney stones. Design, Setting, and Participants: This genetic association study undertook a mendelian randomization analysis of derived exposures and outcomes from genome-wide association study summary statistics. Genetic proxies of thiazide diuretics were derived from the International Consortium for Blood Pressure. Kidney stone cases and controls were derived from the Million Veteran Program, UK Biobank, and the FinnGen study. These cross-sectional designs do not report a duration of follow-up. Data analysis was performed in May 2023. Exposure: Genetic proxies of thiazide diuretics were genetic variants in the thiazide-sensitive sodium chloride cotransporter gene associated with systolic blood pressure. Genetic proxies of ß-blockers and systolic blood pressure served as negative controls. Main Outcomes and Measures: The main outcome was the odds of kidney stones. The secondary outcomes were serum laboratory values relevant to the treatment of kidney stones. Results: The main analysis included up to 1 079 657 individuals, including 50 832 kidney stone cases and 1 028 825 controls. In a meta-analysis of all cohorts, genetic proxies of thiazide diuretics were associated with a lower odds of kidney stones (OR, 0.85; 95% CI, 0.81-0.89; P < .001). Genetic proxies of ß-blockers (OR, 1.02; 95% CI, 0.96-1.07; P = .52) and systolic blood pressure (OR, 1.00; 95% CI, 1.00-1.01; P = .49) were not associated with kidney stones. Genetic proxies of thiazide diuretics were associated with higher serum calcium (ß [SE], 0.051 [0.0092]; P < .001) and total cholesterol (ß [SE], 0.065 [0.015]; P < .001), but lower serum potassium (ß [SE], -0.073 [0.022]; P < .001). Conclusions and Relevance: In this genetic association study, genetic proxies of thiazide diuretics were associated with reduced kidney stone risk. This finding reflects a drug effect over the course of a lifetime, unconstrained by the limited follow-up period of clinical trials.


Subject(s)
Kidney Calculi , Sodium Chloride Symporter Inhibitors , Humans , Sodium Chloride Symporter Inhibitors/therapeutic use , Mendelian Randomization Analysis , Cross-Sectional Studies , Genome-Wide Association Study , Kidney Calculi/genetics , Kidney Calculi/prevention & control
13.
Nat Commun ; 14(1): 7498, 2023 Nov 18.
Article in English | MEDLINE | ID: mdl-37980427

ABSTRACT

Kidney stone disease (KSD) is a complex disorder with high heritability and prevalence. We performed a large genome-wide association study (GWAS) meta-analysis for KSD to date, including 720,199 individuals with 17,969 cases in European population. We identified 44 susceptibility loci, including 28 novel loci. Cell type-specific analysis pinpointed the proximal tubule as the most relevant cells where susceptibility variants might act through a tissue-specific fashion. By integrating kidney-specific omics data, we prioritized 223 genes which strengthened the importance of ion homeostasis, including calcium and magnesium in stone formation, and suggested potential target drugs for the treatment. The genitourinary and digestive diseases showed stronger genetic correlations with KSD. In this study, we generate an atlas of candidate genes, tissue and cell types involved in the formation of KSD. In addition, we provide potential drug targets for KSD treatment and insights into shared regulation with other diseases.


Subject(s)
Genome-Wide Association Study , Kidney Calculi , Humans , Genetic Predisposition to Disease , Kidney Calculi/genetics , Genetic Loci , Polymorphism, Single Nucleotide
14.
Front Endocrinol (Lausanne) ; 14: 1240171, 2023.
Article in English | MEDLINE | ID: mdl-37810889

ABSTRACT

Background and objective: The early identification of modifiable risk factors is important for preventing kidney stones but determining causal associations can be difficult with epidemiological data. We aimed to genetically assess the causality between modifiable factors (lifestyle factors, serum parameters, and metabolic comorbidities) and the risk of kidney stones. Additionally, we aimed to explore the causal impact of education on kidney stones and its potential mediating pathways. Methods: We conducted a two-sample Mendelian randomization (MR) study to explore the causal association between 44 modifiable risk factors and kidney stones. The FinnGen dataset initially explored the causal relationship of risk factors with kidney stones and the UK Biobank dataset was used as the validation set. Then, a meta-analysis was conducted by combining discovery and validation datasets. We used two-step MR to assess potential mediators and their mediation proportions between education and kidney stones. Results: The combined results indicated that previous exposures may increase the risk of kidney stones, including sedentary behavior, urinary sodium, the urinary sodium/potassium ratio, the urinary sodium/creatinine ratio, serum calcium, 25-hydroxyvitamin D (25OHD), the estimated creatinine-based glomerular filtration rate (eGFRcrea), GFR estimated by serum cystatin C (eGFRcys), body mass index (BMI), waist circumference, type 2 diabetes mellitus (T2DM), fasting insulin, glycated hemoglobin, and hypertension. Coffee intake, plasma caffeine levels, educational attainment, and the urinary potassium/creatinine ratio may decrease the risk of kidney stones. Ranked by mediation proportion, the effect of education on the risk of kidney stones was mediated by five modifiable risk factors, including sedentary behavior (mediation proportion, 25.7%), smoking initiation (10.2%), BMI (8.2%), T2DM (5.8%), and waist circumference (3.2%). Conclusion: This study provides MR evidence supporting causal associations of many modifiable risk factors with kidney stones. Sedentary lifestyles, obesity, smoking, and T2DM are mediating factors in the causal relationship between educational attainment and kidney stones. Our results suggest more attention should be paid to these modifiable factors to prevent kidney stones.


Subject(s)
Diabetes Mellitus, Type 2 , Kidney Calculi , Humans , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/etiology , Creatinine , Mendelian Randomization Analysis , Kidney Calculi/etiology , Kidney Calculi/genetics , Potassium , Sodium
15.
BMC Urol ; 23(1): 162, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37828486

ABSTRACT

BACKGROUND: Existing epidemiological observational studies have suggested interesting but inconsistent clinical correlations between inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), and kidney stone disease (KSD). Herein, we implemented a two-sample bidirectional Mendelian randomization (MR) to investigate the causal relationship between IBD and KSD. METHODS: Data on IBD and KSD were obtained from Genome-Wide Association Studies (GWAS) summary statistics and the FinnGen consortium, respectively. Strict selection steps were used to screen for eligible instrumental SNPs. We applied inverse variance weighting (IVW) with the fix-effects model as the major method. Several sensitivity analyses were used to evaluate pleiotropy and heterogeneity. Causal relationships between IBD and KSD were explored in two opposite directions. Furthermore, we carried out multivariable MR (MVMR) to obtain the direct causal effects of IBD on KSD. RESULTS: Our results demonstrated that CD could increase the risk of KSD (IVW: OR = 1.06, 95% CI = 1.03-1.10, p < 0.001). Similar results were found in the validation group (IVW: OR = 1.05, 95% CI = 1.01-1.08, p = 0.013) and in the MVMR analysis. Meanwhile, no evidence of a causal association between UC and KSD was identified. The reverse MR analysis detected no causal association. CONCLUSIONS: This MR study verified that CD plays a critical role in developing kidney stones and that the effect of UC on KSD needs to be further explored.


Subject(s)
Colitis, Ulcerative , Crohn Disease , Inflammatory Bowel Diseases , Kidney Calculi , Humans , Genome-Wide Association Study , Mendelian Randomization Analysis , Kidney Calculi/epidemiology , Kidney Calculi/genetics , Colitis, Ulcerative/complications , Colitis, Ulcerative/genetics , Crohn Disease/genetics
16.
Cell Mol Life Sci ; 80(10): 301, 2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37740796

ABSTRACT

Surgical crushing of stones alone has not addressed the increasing prevalence of kidney stones. A promising strategy is to tackle the kidney damage and crystal aggregation inherent in kidney stones with the appropriate therapeutic target. FKBP prolyl isomerase 5 (FKBP5) is a potential predictor of kidney injury, but its status in calcium oxalate (CaOx) kidney stones is not clear. This study attempted to elucidate the role and mechanism of FKBP5 in CaOx kidney stones. Lentivirus and adeno-associated virus were used to control FKBP5 expression in a CaOx kidney stone model. Transcriptomic sequencing and immunological assays were used to analyze the mechanism of FKBP5 deficiency in CaOx kidney stones. The results showed that FKBP5 deficiency reduced renal tubular epithelial cells (RTEC) apoptosis and promoted cell proliferation by downregulating BOK expression. It also attenuated cell-crystal adhesion by downregulating the expression of CDH4. In addition, it inhibited M1 polarization and chemotaxis of macrophages by suppressing CXCL10 expression in RTEC. Moreover, the above therapeutic effects were exerted by inhibiting the activation of NF-κB signaling. Finally, in vivo experiments showed that FKBP5 deficiency attenuated stone aggregation and kidney injury in mice. In conclusion, this study reveals that FKBP5 deficiency attenuates cell-crystal adhesion, reduces apoptosis, promotes cell proliferation, and inhibits macrophage M1 polarization and chemotaxis by inhibiting NF-κB signaling. This provides a potential therapeutic target for CaOx kidney stones.


Subject(s)
Kidney Calculi , NF-kappa B , Animals , Mice , Calcium Oxalate , Signal Transduction , Kidney Calculi/genetics , Apoptosis
17.
Cir Cir ; 91(4): 474-478, 2023.
Article in English | MEDLINE | ID: mdl-37677956

ABSTRACT

OBJECTIVE: This study aimed to investigate whether homeodomain interacting protein kinase 2 (HIPK2) polymorphism is associated with renal stone formation in a Turkish population. MATERIALS AND METHODS: A total of 129 patients with calcium nephrolithiasis and 67 sex- and age-matched healthy controls were enrolled in the study. Blood samples were collected into EDTA tubes. The DNA of patients was extracted using a QIAsymphony® automated DNA isolation system. The Chi-square test was applied in the comparisons between the patient and control groups in respect of the differences in the genotype and allele frequencies. RESULTS: No statistically significant difference was found between the groups in terms of single nucleotide polymorphism (SNP) incidence in single allele and double alleles in the rs2058265 and rs6464214 regions (p = 0.13 and 0.37, respectively). The SNP incidence in double alleles in nephrolithiasis patients at rs7456421 was statistically significantly lower than in the control group (p = 0.001). CONCLUSION: Distributions of the genotype and allele of the three polymorphisms (rs2058265, rs6464214, and rs745642 in HIPK2) were not associated with an increased risk of kidney stone in this Turkish population.


OBJETIVO: Investigar si el polimorfismo de la proteína cinasa 2 que interactúa con el homeodominio (HIPK2) está asociado con la formación de cálculos renales en una población turca. MÉTODO: Se inscribieron en el estudio 129 pacientes con nefrolitiasis cálcica y 67 sujetos control sanos, emparejados por sexo y edad. Las muestras de sangre se recogieron en tubos con EDTA. El ADN de los pacientes se extrajo mediante un sistema de aislamiento de ADN automatizado QIAsymphony®. Se aplicó la prueba χ2 en las comparaciones entre los grupos de pacientes y control con respecto a las diferencias de las frecuencias genotípicas y alélicas. RESULTADOS: No se encontraron diferencias estadísticamente significativas entre los grupos en términos de incidencia de polimorfismo de nucleótido simple (PNS) en alelo simple y alelo doble en las regiones rs2058265 y rs6464214 (p = 0.13 y 0.37, respectivamente). La incidencia de PNS en alelos dobles en pacientes con nefrolitiasis en rs7456421 fue menor que en el grupo control, con una diferencia estadísticamente significativa (p = 0.001). CONCLUSIONES: Las distribuciones de genotipo y alelo de los tres polimorfismos (rs2058265, rs6464214 y rs745642 en HIPK2) no se asociaron con un mayor riesgo de cálculos renales en esta población turca.


Subject(s)
Kidney Calculi , Humans , Kidney Calculi/genetics , Alleles , Genotype , Polymorphism, Single Nucleotide , Carrier Proteins , Protein Serine-Threonine Kinases/genetics
18.
Urolithiasis ; 51(1): 103, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37581757

ABSTRACT

The causal relationship between alcohol and urolithiasis remains uncertain, despite previous observational studies reporting an association between the two. To determine the causality, we conducted a two-sample Mendelian randomization (MR) analysis. In this study, we aimed to investigate the causal relationship between alcohol and kidney stones using a two-sample MR approach. Two sets of genetic instruments were utilized in the analysis, both of which were derived from publicly available genetic summary data. The first set consisted of 73 single-nucleotide polymorphisms (SNPs) robustly linked to alcohol intake frequency (AIF) and the second set was comprised of 69 SNPs associated with alcohol consumption (AC). Our MR analysis was performed using several methods including the inverse-variance weighted (IVW) method, weighted median method, MR-Egger regression, MR Pleiotropy RESidual Sum and Outlier test. Our results from the MR analysis revealed a borderline significant association between AIF and the risk of urolithiasis. This was established through the use of the IVW method (OR (95% CI) = 1.29 (1.02, 1.65), p = 0.036) and the weighted median approach (OR (95% CI) = 1.44 (1.10, 1.89), p = 0.008). The MR-Egger model also yielded similar risk estimates (OR (95% CI) = 1.39 (0.66, 2.93), p = 0.386), although the relationship was not statistically significant. Sixty-eight SNPs were identified as having a substantial and independent link with AC. However, the IVW approach revealed no significant effect of AC on the risk of urolithiasis (OR (95% CI) = 0.74 (0.48, 1.14), p = 0.173). The MR analysis suggested a potential causal association between alcohol intake frequency and the risk of urolithiasis, but not alcohol consumption.


Subject(s)
Kidney Calculi , Urolithiasis , Humans , Mendelian Randomization Analysis , Ethanol , Urolithiasis/etiology , Urolithiasis/genetics , Kidney Calculi/etiology , Kidney Calculi/genetics , Polymorphism, Single Nucleotide
19.
J Transl Med ; 21(1): 491, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37480086

ABSTRACT

BACKGROUND: The pathogenic mechanisms shared between kidney stones and diabetes at the transcriptional level remain elusive, and the molecular mechanisms by which resveratrol exerts its protective effects against these conditions require further investigation. METHODS: To address these gaps in knowledge, we conducted a comprehensive analysis of microarray and RNA-seq datasets to elucidate shared biomarkers and biological pathways involved in the pathogenesis of kidney stones and diabetes. An assortment of bioinformatic approaches was employed to illuminate the common molecular markers and associated pathways, thereby contributing to the identification of innovative therapeutic targets. Further investigation into the molecular mechanisms of resveratrol in preventing these conditions was conducted using molecular docking simulation and first-principles calculations. RESULTS: The study identified 11 potential target genes associated with kidney stones and diabetes through the intersection of genes from weighted gene co-expression network analysis (WGCNA) and differentially expressed genes (DEGs) screening. Among these, Interleukin 11 (IL11) emerged as a pivotal hub gene and a potential diagnostic biomarker for both conditions, particularly in males. Expression analysis of IL11 demonstrated elevated levels in kidney stones and diabetes groups compared to controls. Additionally, IL11 exhibited correlations with specific cell types and differential expression in normal and pathological conditions. Gene set enrichment analysis (GSEA) highlighted significant disparities in biological processes, pathways, and immune signatures associated with IL11. Moreover, molecular docking simulation of resveratrol towards IL11 and a first-principles investigation of Ca adsorption on the resveratrol surface provided structural evidence for the development of resveratrol-based drugs for these conditions. CONCLUSIONS: Overall, this investigation illuminates the discovery of common molecular mechanisms underlying kidney stones and diabetes, unveils potential diagnostic biomarkers, and elucidates the significance of IL11 in these conditions. It also provides insights into IL11 as a promising therapeutic target and highlights the role of resveratrol. Nonetheless, further research is warranted to enhance our understanding of IL11 targeting mechanisms and address any limitations in the study.


Subject(s)
Diabetes Mellitus , Kidney Calculi , Male , Humans , Interleukin-11 , Resveratrol/pharmacology , Resveratrol/therapeutic use , Molecular Docking Simulation , Kidney Calculi/drug therapy , Kidney Calculi/genetics , Biomarkers
20.
Nutrients ; 15(9)2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37432176

ABSTRACT

Apart from increased fluid intake, patients with kidney stone disease (KSD) due to renal phosphate wasting require specific metaphylaxis. NaPi2a, NaPi2c, and NHERF1 regulate plasma phosphate concentration by reabsorbing phosphate in proximal kidney tubules and have been found altered in monogenic hypophosphatemia with a risk of KSD. In this study, we aimed at assessing the combined genetic alterations impacting NaPi2a, NaPi2c, and NHERF1. Therefore, we screened our hereditary KSD registry for cases of oligo- and digenicity, conducted reverse phenotyping, and undertook functional studies. As a result, we identified three patients from two families with digenic alterations in NaPi2a, NaPi2c, and NHERF1. In family 1, the index patient, who presented with severe renal calcifications and a bone mineralization disorder, carried digenic alterations affecting both NaPi transporter 2a and 2c. Functional analysis confirmed an additive genetic effect. In family 2, the index patient presented with kidney function decline, distinct musculature-related symptoms, and intracellular ATP depletion. Genetically, this individual was found to harbor variants in both NaPi2c and NHERF1 pointing towards genetic interaction. In summary, digenicity and gene dosage are likely to impact the severity of renal phosphate wasting and should be taken into account in terms of metaphylaxis through phosphate substitution.


Subject(s)
Bone Diseases , Calcinosis , Kidney Calculi , Humans , Kidney Calculi/genetics , Calcification, Physiologic , Gene Dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...