Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.826
Filter
1.
Kidney Int ; 105(1): 54-64, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38707675

ABSTRACT

The neonatal Fc receptor (FcRn) was initially discovered as the receptor that allowed passive immunity in newborns by transporting maternal IgG through the placenta and enterocytes. Since its initial discovery, FcRn has been found to exist throughout all stages of life and in many different cell types. Beyond passive immunity, FcRn is necessary for intrinsic albumin and IgG recycling and is important for antigen processing and presentation. Given its multiple important roles, FcRn has been utilized in many disease treatments including a new class of agents that were developed to inhibit FcRn for treatment of a variety of autoimmune diseases. Certain cell populations within the kidney also express high levels of this receptor. Specifically, podocytes, proximal tubule epithelial cells, and vascular endothelial cells have been found to utilize FcRn. In this review, we summarize what is known about FcRn and its function within the kidney. We also discuss how FcRn has been used for therapeutic benefit, including how newer FcRn inhibiting agents are being used to treat autoimmune diseases. Lastly, we will discuss what renal diseases may respond to FcRn inhibitors and how further work studying FcRn within the kidney may lead to therapies for kidney diseases.


Subject(s)
Histocompatibility Antigens Class I , Kidney Diseases , Receptors, Fc , Humans , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/genetics , Receptors, Fc/metabolism , Receptors, Fc/immunology , Receptors, Fc/genetics , Kidney Diseases/metabolism , Kidney Diseases/drug therapy , Kidney Diseases/therapy , Kidney Diseases/immunology , Animals , Kidney/metabolism , Kidney/immunology , Kidney/pathology , Podocytes/metabolism , Podocytes/immunology , Immunoglobulin G/metabolism , Immunoglobulin G/immunology , Autoimmune Diseases/drug therapy , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism
2.
J Tradit Chin Med ; 44(3): 458-467, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38767629

ABSTRACT

OBJECTIVE:To elucidate the mechanism by which Huoxue Jiedu Huayu recipe (, HJHR) regulates angiogenesis in the contralateral kidney of unilateral ureteral obstruction (UUO) rats and the mechanism by which it reduces of renal fibrosis. METHODS: Male Wistar rats were randomly divided into 4 groups: the sham group, UUO group (180 d of left ureter ligation), UUO plus eplerenone (EPL) group, and UUO plus HJHR group. After 180 d of oral drug administration, blood and contralateral kidneys were collected for analysis. Angiogenesis- and fibrosis-related indexes were detected. RESULTS: HJHR and EPL improved structural damage and renal interstitial fibrosis in the contralateral kidney and reduced the protein expression levels of α-smooth muscle actin (α-SMA), vimentin and collagen I. Moreover, these treatments could reduce the expression of vascular endothelial growth factor-A (VEGFA) by inhibiting the infiltration of macrophages. Furthermore, HJHR and EPL significantly reduced the expression of CD34 and CD105 by downregulating VEGFA production, which inhibited angiogenesis. Finally, the coexpressions of CD34, CD105 and α-SMA were decreased in the HJHR and EPL groups, indicating that endothelial-to-mesenchymal transition was inhibited. CONCLUSIONS: These findings confirm that HJHR alleviates contralateral renal fibrosis by inhibiting VEGFA-induced angiogenesis, encourage the use of HJHR against renal interstitial fibrosis and provide a theoretical basis for the clinical management of patients with CKD.


Subject(s)
Drugs, Chinese Herbal , Fibrosis , Kidney , Macrophages , Rats, Wistar , Ureteral Obstruction , Vascular Endothelial Growth Factor A , Animals , Male , Ureteral Obstruction/metabolism , Ureteral Obstruction/drug therapy , Ureteral Obstruction/genetics , Rats , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Kidney/drug effects , Kidney/metabolism , Macrophages/drug effects , Macrophages/metabolism , Drugs, Chinese Herbal/administration & dosage , Humans , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Kidney Diseases/drug therapy , Kidney Diseases/metabolism , Kidney Diseases/etiology , Kidney Diseases/genetics , Angiogenesis
3.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2042-2046, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812221

ABSTRACT

Uterine dysplasia is a common cause of infertility. Traditional Chinese medicine has unique advantages in the treatment of this disease. This paper introduces a case of infertility caused by uterine dysplasia treated by Professor MA Kun who adopted the therapy of tonifying kidney and activating blood, aiming to summarize the theoretical foundation and formula principles of Professor MA Kun in the clinical treatment of this disease. The kidney stores essence and governs reproduction. Kidney deficiency is the root cause of infertility. The deficiencies in kidney Qi, Yin, and Yang can result in blood stasis to obstruct the uterus, leading to insufficient source for essence and aggravating kidney deficiency. Kidney deficiency and blood stasis affect each other and form a vicious cycle, resulting in uterine dysplasia due to insufficient nutrition and difficult pregnancy. Therefore, Professor MA Kun believes that kidney deficiency and blood stasis is the key pathogenesis of infertility caused by uterine dysplasia and proposes the treatment principle of tonifying kidney and activating blood. Sufficient essence and Qi in the kidney can resolve stasis and generate blood, thus harmonizing Yin and Yang, which can reach thoroughfare and conception vessels to nourish the uterus and recover the normal physiological function of the uterus. In that case, normal pregnancy is possible. Professor MA Kun attaches importance to the therapeutic principle of supplementing Qi and nourishing blood. In addition, she advocates conforming to changes in the menstrual cycle to promote the development of the uterus and the implantation of fertilized eggs. She also integrates traditional Chinese medicine and western medicine to treat both symptoms and root causes. Professor MA Kun's experience has demonstrated definite clinical effect on this disease and can be taken as a reference.


Subject(s)
Drugs, Chinese Herbal , Infertility, Female , Kidney , Female , Humans , Drugs, Chinese Herbal/therapeutic use , Infertility, Female/etiology , Infertility, Female/drug therapy , Uterus/abnormalities , Adult , Medicine, Chinese Traditional , Pregnancy , Kidney Diseases/etiology , Kidney Diseases/drug therapy , Urogenital Abnormalities
4.
Am J Chin Med ; 52(3): 775-797, 2024.
Article in English | MEDLINE | ID: mdl-38715182

ABSTRACT

Kidney disease is a common health problem worldwide. Acute or chronic injuries may interfere with kidney functions, eventually resulting in irreversible kidney damage. A number of recent studies have shown that the plant-derived natural products have an extensive potential for renal protection. Thymoquinone (TQ) is an essential compound derived from Nigella Sativa (NS), which is widely applied in the Middle East as a folk medicine. Previous experiments have demonstrated that TQ has a variety of potential pharmacological effects, including anti-oxidant, antibacterial, antitumor, immunomodulatory, and neuroprotective activities. In particular, the prominent renal protective efficacy of TQ has been demonstrated in both in vivo and in vitro experiments. TQ can prevent acute kidney injuries from various xenobiotics through anti-oxidation, anti-inflammatory, and anti-apoptosis effects. In addition, TQ exhibited significant pharmacological effects on renal cell carcinoma, renal fibrosis, and urinary calculi. The essential mechanisms involve scavenging ROS and increasing anti-oxidant activity, decreasing inflammatory mediators, inducing apoptosis, and inhibiting migration and invasion. The purpose of this review is to conclude the pharmacological effects and the potential mechanisms of TQ in renal protection, shedding new light on the exploration of medicinal phyto-protective agents targeting kidneys.


Subject(s)
Antioxidants , Apoptosis , Benzoquinones , Nigella sativa , Phytotherapy , Benzoquinones/pharmacology , Humans , Nigella sativa/chemistry , Antioxidants/pharmacology , Apoptosis/drug effects , Animals , Kidney Diseases/prevention & control , Kidney Diseases/drug therapy , Kidney/drug effects , Anti-Inflammatory Agents , Acute Kidney Injury/prevention & control , Acute Kidney Injury/drug therapy , Carcinoma, Renal Cell/drug therapy , Reactive Oxygen Species/metabolism , Protective Agents/pharmacology
5.
Am J Chin Med ; 52(3): 753-773, 2024.
Article in English | MEDLINE | ID: mdl-38716621

ABSTRACT

The formation of fibrotic tissue, characterized by the excessive accumulation of extracellular matrix (ECM) components such as collagen and fibronectin, is a normal and crucial stage of tissue repair in all organs. The over-synthesis, deposition, and remodeling of ECM components lead to organ dysfunction, posing a significant medical burden. Berberine, an isoquinoline alkaloid, is commonly used in the treatment of gastrointestinal diseases. With the deepening of scientific research, it has been gradually discovered that berberine also plays an important role in fibrotic diseases. In this review, we systematically introduce the effective role of berberine in fibrosis-related diseases. Specifically, this paper aims to provide a comprehensive review of the therapeutic role of berberine in treating fibrosis in organs such as the heart, liver, lungs, and kidneys. By summarizing its various pathways and mechanisms of action, including the inhibition of the transforming growth factor-[Formula: see text]/Smad signaling pathway, PI3K/Akt signaling pathway, MAPK signaling pathway, RhoA/ROCK signaling, and mTOR/p70S6K signaling pathway, as well as its activation of the Nrf2-ARE signaling pathway, AMPK signaling pathway, phosphorylated Smad 2/3 and Smad 7, and other signaling pathways, this review offers additional evidence to support the treatment of fibrotic diseases.


Subject(s)
Berberine , Fibrosis , Signal Transduction , Berberine/pharmacology , Berberine/therapeutic use , Humans , Signal Transduction/drug effects , Smad Proteins/metabolism , Phytotherapy , Animals , Kidney Diseases/drug therapy , Kidney Diseases/etiology
6.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731887

ABSTRACT

This study explores olive flounder by-product Prozyme2000P (OFBP) hydrolysate as a potential treatment for age-related kidney decline. Ferroptosis, a form of cell death linked to iron overload and oxidative stress, is increasingly implicated in aging kidneys. We investigated whether OFBP could inhibit ferroptosis and improve kidney health. Using TCMK-1 cells, we found that OFBP treatment protected cells from ferroptosis induced by sodium iodate (SI). OFBP also preserved the mitochondria health and influenced molecules involved in ferroptosis regulation. In aging mice, oral administration of OFBP significantly improved kidney health markers. Microscopic examination revealed reduced thickening and scarring in the kidney's filtering units, a hallmark of aging. These findings suggest that OFBP hydrolysate may be a promising therapeutic candidate for age-related kidney decline. By inhibiting ferroptosis, OFBP treatment appears to improve both cellular and structural markers of kidney health. Further research is needed to understand how OFBP works fully and test its effectiveness in more complex models.


Subject(s)
Ferroptosis , Kidney , Animals , Ferroptosis/drug effects , Mice , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Aging/drug effects , Flounder/metabolism , Oxidative Stress/drug effects , Protein Hydrolysates/pharmacology , Protein Hydrolysates/chemistry , Mitochondria/drug effects , Mitochondria/metabolism , Male , Cell Line , Kidney Diseases/drug therapy , Kidney Diseases/metabolism , Kidney Diseases/pathology
7.
Int J Mol Sci ; 25(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38732178

ABSTRACT

Some of the most common conditions affecting people are kidney diseases. Among them, we distinguish chronic kidney disease and acute kidney injury. Both entities pose serious health risks, so new drugs are still being sought to treat and prevent them. In recent years, such a role has begun to be assigned to sodium-glucose cotransporter-2 (SGLT2) inhibitors. They increase the amount of glucose excreted in the urine. For this reason, they are currently used as a first-line drug in type 2 diabetes mellitus. Due to their demonstrated cardioprotective effect, they are also used in heart failure treatment. As for the renal effects of SGLT2 inhibitors, they reduce intraglomerular pressure and decrease albuminuria. This results in a slower decline in glomelular filtration rate (GFR) in patients with kidney disease. In addition, these drugs have anti-inflammatory and antifibrotic effects. In the following article, we review the evidence for the effectiveness of this group of drugs in kidney disease and their nephroprotective effect. Further research is still needed, but meta-analyses indicate SGLT2 inhibitors' efficacy in kidney disease, especially the one caused by diabetes. Development of new drugs and clinical trials on specific patient subgroups will further refine their nephroprotective effects.


Subject(s)
Diabetes Mellitus, Type 2 , Sodium-Glucose Transporter 2 Inhibitors , Humans , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/metabolism , Glomerular Filtration Rate/drug effects , Kidney Diseases/drug therapy , Animals
8.
BMC Nephrol ; 25(1): 171, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769490

ABSTRACT

BACKGROUND: Lipoprotein glomerulopathy (LPG) is a apolipoprotein E (ApoE)-related glomerular disease and has been associated with type III hyperlipidemia. Without appropriate treatment, chronic kidney disease (CKD) caused by LPG progresses, and approximately half of the patients develop end-stage kidney disease within 1-27 years of disease onset. However, few studies have highlighted the clinical course of cardiovascular diseases (CVDs) in patients with LPG. Herein, we report the first case of LPG in which the CVD risk was assessed using arterial stiffness. CASE PRESENTATION: A 32-year-old Japanese man was referred to our hospital due to persistent proteinuria. Kidney biopsy showed markedly dilated capillary lumens containing pale-stained thrombi, which stained positively with Oil Red O. Electron microscopy revealed the presence of thrombi in the capillary lumen with low electron density and vacuoles of various sizes in part of the thrombi. Toluidine blue and Sudan IV stains were used to stain the thin sections of Epon-embedded tissue samples for electron microscopy. Sudan IV-positive droplets were observed in the capillary lumens, vascular walls, and cytoplasm of tubular cells. Increased serum ApoE concentration was observed. Liquid chromatography-tandem mass spectrometry of laser-microdissected glomeruli from paraffin sections revealed an increase in ApoE. Direct deoxyribonucleic acid sequencing of ApoE revealed a heterozygous ApoE Sendai mutation (Arg145Pro). The patient was finally diagnosed with LPG with heterozygosity for ApoE-Sendai mutation (Arg145Pro). Notably, at the time of diagnosis, he had markedly increased arterial stiffness for his age. Arterial stiffness was measured using brachial-ankle pulse wave velocity (baPWV), which was equivalent to that of a 56-year-old man. After three months of treatment with fenofibrate and losartan, a significant reduction in proteinuria was achieved along with an improvement in baPWV. Furthermore, these effects were maintained despite the lack of decrease in serum ApoE levels. CONCLUSION: Herein, we report the case of a patient with LPG with markedly increased arterial stiffness at the time of diagnosis, in whom combination therapy with fenofibrate and losartan successfully improved proteinuria and arterial stiffness. To the best of our knowledge, this is the first case report of LPG in which CVD risk was assessed using arterial stiffness.


Subject(s)
Fenofibrate , Losartan , Vascular Stiffness , Humans , Male , Adult , Losartan/therapeutic use , Vascular Stiffness/drug effects , Fenofibrate/therapeutic use , Drug Therapy, Combination , Hypolipidemic Agents/therapeutic use , Kidney Diseases/drug therapy , Apolipoproteins E/genetics
9.
PLoS One ; 19(5): e0304365, 2024.
Article in English | MEDLINE | ID: mdl-38820434

ABSTRACT

OBJECTIVE: To explore the molecular mechanism of Astragaloside IV (AS-IV) in alleviating renal fibrosis by inhibiting Urotensin II-induced pyroptosis and epithelial-mesenchymal transition of renal tubular epithelial cells. METHODS: Forty SD rats were randomly divided into control group without operation: gavage with 5ml/kg/d water for injection and UUO model group: gavage with 5ml/kg/d water for injection; UUO+ AS-IV group (gavage with AS-IV 20mg/kg/d; and UUO+ losartan potassium group (gavage with losartan potassium 10.3mg/kg/d, with 10 rats in each group. After 2 weeks, Kidney pathology, serum Urotensin II, and cAMP concentration were detected, and the expressions of NLRP3, GSDMD-N, Caspase-1, and IL-1ß were detected by immunohistochemistry. Rat renal tubular epithelial cells were cultured in vitro, and different concentrations of Urotensin II were used to intervene for 24h and 48h. Cell proliferation activity was detected using the CCK8 assay. Suitable concentrations of Urotensin II and intervention time were selected, and Urotensin II receptor antagonist (SB-611812), inhibitor of PKA(H-89), and AS-IV (15ug/ml) were simultaneously administered. After 24 hours, cells and cell supernatants from each group were collected. The cAMP concentration was detected using the ELISA kit, and the expression of PKA, α-SMA, FN, IL-1ß, NLRP3, GSDMD-N, and Caspase-1 was detected using cell immunofluorescence, Western blotting, and RT-PCR. RESULTS: Renal tissue of UUO rats showed renal interstitial infiltration, tubule dilation and atrophy, renal interstitial collagen fiber hyperplasia, and serum Urotensin II and cAMP concentrations were significantly higher than those in the sham operation group (p <0.05). AS-IV and losartan potassium intervention could alleviate renal pathological changes, and decrease serum Urotensin II, cAMP concentration levels, and the expressions of NLRP3, GSDMD-N, Caspase-1, and IL-1ß in renal tissues (p <0.05). Urotensin II at a concentration of 10-8 mol/L could lead to the decrease of cell proliferation, (p<0.05). Compared with the normal group, the cAMP level and the PKA expression were significantly increased (p<0.05). After intervention with AS-IV and Urotensin II receptor antagonist, the cAMP level and the expression of PKA were remarkably decreased (p<0.05). Compared with the normal group, the expression of IL-1ß, NLRP3, GSDMD-N, and Caspase-1 in the Urotensin II group was increased (p<0.05), which decreased in the AS-IV and H-89 groups. CONCLUSION: AS-IV can alleviate renal fibrosis by inhibiting Urotensin II-induced pyroptosis of renal tubular epithelial cells by regulating the cAMP/PKA signaling pathway.


Subject(s)
Cyclic AMP-Dependent Protein Kinases , Cyclic AMP , Epithelial Cells , Fibrosis , Kidney Tubules , Pyroptosis , Rats, Sprague-Dawley , Saponins , Signal Transduction , Triterpenes , Urotensins , Animals , Saponins/pharmacology , Cyclic AMP/metabolism , Urotensins/metabolism , Rats , Cyclic AMP-Dependent Protein Kinases/metabolism , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Epithelial Cells/pathology , Kidney Tubules/pathology , Kidney Tubules/metabolism , Kidney Tubules/drug effects , Triterpenes/pharmacology , Signal Transduction/drug effects , Pyroptosis/drug effects , Male , Epithelial-Mesenchymal Transition/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Kidney Diseases/metabolism , Kidney Diseases/drug therapy , Kidney Diseases/pathology , Kidney Diseases/etiology
10.
Biomed Pharmacother ; 175: 116695, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38713950

ABSTRACT

Kokusaginine is an active ingredient alkaloid that has been isolated and extracted from Ruta graveolens L. Some researches have indicated that alkaloids possess anti-inflammatory and antioxidant effects. Nevertheless, the potential nephroprotective effects of kokusaginine on renal fibrosis remain undetermined. This study was conducted to examine the protective effect of kokusaginine on renal fibrosis and to explore the underlying mechanisms using both in vivo and in vitro models. Renal fibrosis was induced in male C57BL/6 J mice by feeding with 0.2% adenine-containing food and UUO surgery. Kokusaginine was administered orally simultaneously after the establishment of renal fibrosis. Renal function was measured by serum levels of creatinine and urea nitrogen. Renal pathological changes were assessed by HE staining and Masson staining. Western blotting was employed to detect the expression levels of fibrosis-related proteins in mice and cells. Additionally, network pharmacology analysis and RNA-seq were utilized to predict the pathways through which kokusaginine could exert its anti-fibrotic effects. The treatment with kokusaginine enhanced renal function, alleviated renal histoarchitectural lesions, and mitigated renal fibrosis in the renal fibrosis models. The network pharmacology and RNA-seq enrichment analysis of the KEGG pathway demonstrated that kokusaginine could exert anti-renal fibrosis activity via the PI3K/AKT signaling pathway. And the results were verified in both in vitro and in vivo experiments. In conclusion, our data implied that kokusaginine inhibited the activation of the PI3K/AKT signaling pathway both in vitro and in vivo, and suppressed the formation of renal fibrosis. Thus, the kokusaginine-mediated PI3K/AKT signaling pathway may represent a novel approach for the treatment of renal fibrosis.


Subject(s)
Fibrosis , Kidney Diseases , Kidney , Mice, Inbred C57BL , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Male , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Mice , Phosphatidylinositol 3-Kinases/metabolism , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Kidney Diseases/drug therapy , Kidney Diseases/pathology , Kidney Diseases/prevention & control , Kidney Diseases/metabolism , Disease Models, Animal , Network Pharmacology , Humans
11.
Int Immunopharmacol ; 135: 112308, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38788447

ABSTRACT

Although colistin has a crucial antibacterial activity in treating multidrug-resistant gram-negative bacteria strains; it exhibited renal and neuronal toxicities rendering its use a challenge. Previous studies investigated the incretin hormones either glucose-dependent insulinotropic polypeptide (GIP) or glucagonlike peptide-1 (GLP-1) for their neuroprotective and nephroprotective effectiveness. The present study focused on investigating Tirzepatide (Tirze), a dual GLP-1/GIP agonist, as an adjuvant therapy in the colistin treatment protocol for attenuating its renal and neuronal complications. Rats were divided into; The normal control group, the colistin-treated group received colistin (300,000 IU/kg/day for 7 days; i.p.). The Tirze-treated group received Tirze (1.35 mg/kg on the 1,4,7thdays; s.c.) and daily colistin. Tirze effectively enhanced histopathological alterations, renal function parameters, and locomotor activity in rats. Tirze mechanistically acted via modulating various signaling axes evolved under the insult of phosphatidylinositol 3-kinases (PI3K)/phosphorylated protein kinase-B (p-Akt)/ glycogen synthase kinase (GSK)3-ß hub causing mitigation of nuclear factor (NF)-κB (NF-κB) / tumor necrosis factor-α (TNF-α), increment of nuclear factor erythroid 2-related factor 2 (Nrf2)/ glutathione (GSH), downregulation of ER stress-related biomarkers (activation transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP)), antiapoptotic effects coupling with reduction of glial fibrillary acidic protein (GFAP) immunoreactivity and enhancement of phosphorylated c-AMP response element-binding (p-CREB) / brain-derived neurotrophic factor (BDNF)/tyrosine kinase B (TrkB) neuroprotective pathway. Briefly, Tirze exerts a promising role as adjuvant therapy in the colistin treatment protocol for protection against colistin's nephro- and neurotoxicity according to its anti-inflammatory, antioxidant, and antiapoptotic impacts besides its ability to suppress ER stress-related biomarkers.


Subject(s)
Brain-Derived Neurotrophic Factor , Colistin , Cyclic AMP Response Element-Binding Protein , Endoplasmic Reticulum Stress , Glycogen Synthase Kinase 3 beta , Kidney , Oxidative Stress , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Oxidative Stress/drug effects , Endoplasmic Reticulum Stress/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Rats , Brain-Derived Neurotrophic Factor/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Male , Signal Transduction/drug effects , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Receptor, trkB/metabolism , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/pharmacology , Rats, Wistar , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/adverse effects , Neurotoxicity Syndromes/drug therapy , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/prevention & control , Neurotoxicity Syndromes/metabolism , Kidney Diseases/chemically induced , Kidney Diseases/drug therapy , Kidney Diseases/prevention & control , Kidney Diseases/metabolism
12.
Int Immunopharmacol ; 135: 112314, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38788450

ABSTRACT

We previously reported that rosmarinic acid (RA) ameliorated renal fibrosis in a unilateral ureteral obstruction (UUO) murine model of chronic kidney disease. This study aimed to determine whether RA attenuates indoxyl sulfate (IS)-induced renal fibrosis by regulating the activation of the NLRP3 inflammasome/IL-1ß/Smad circuit. We discovered the NLRP3 inflammasome was activated in the IS treatment group and downregulated in the RA-treated group in a dose-dependent manner. Additionally, the downstream effectors of the NLRP3 inflammasome, cleaved-caspase-1 and cleaved-IL-1ß showed similar trends in different groups. Moreover, RA administration significantly decreased the ROS levels of reactive oxygen species in IS-treated cells. Our data showed that RA treatment significantly inhibited Smad-2/3 phosphorylation. Notably, the effects of RA on NLRP3 inflammasome/IL-1ß/Smad and fibrosis signaling were reversed by the siRNA-mediated knockdown of NLRP3 or caspase-1 in NRK-52E cells. In vivo, we demonstrated that expression levels of NLRP3, c-caspase-1, c-IL-1ß, collagen I, fibronectin and α-SMA, and TGF- ß 1 were downregulated after treatment of UUO mice with RA or RA + MCC950. Our findings suggested RA and MCC950 synergistically inhibited UUO-induced NLRP3 signaling activation, revealing their renoprotective properties and the potential for combinatory treatment of renal fibrosis and chronic kidney inflammation.


Subject(s)
Cinnamates , Depsides , Fibrosis , Indican , Inflammasomes , Kidney , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Rosmarinic Acid , Signal Transduction , Animals , Depsides/pharmacology , Depsides/therapeutic use , Cinnamates/pharmacology , Cinnamates/therapeutic use , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Signal Transduction/drug effects , Male , Kidney/pathology , Kidney/drug effects , Kidney/metabolism , Cell Line , Mice , Interleukin-1beta/metabolism , Ureteral Obstruction/drug therapy , Ureteral Obstruction/pathology , Reactive Oxygen Species/metabolism , Disease Models, Animal , Smad2 Protein/metabolism , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/metabolism , Smad3 Protein/metabolism , Caspase 1/metabolism , Kidney Diseases/drug therapy , Kidney Diseases/chemically induced , Kidney Diseases/pathology
14.
Eur J Pharmacol ; 975: 176640, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38750716

ABSTRACT

Anti-partial epithelial-mesenchymal transition (pEMT) treatment of renal tubular epithelial cells (TECs) represents a promising therapeutic approach. Hyperuricemia nephropathy (HN) arises as a consequence of hyperuricemia (HUA)-induced tubulointerstitial fibrosis (TIF). Studies have suggested that the Ras homolog member A (RhoA)/Rho-associated kinase (ROCK) pathway is a crucial signaling transduction system in renal fibrosis. Fasudil, a RhoA/ROCK inhibitor, has exhibited the potential to prevent fibrosis progress. However, its impact on the pEMT of TECs in HN remains unclear. Here, an HN rat model and an uric acid (UA)-stimulated human kidney 2 (HK2) cell model were established and treated with Fasudil to explore its effects. Furthermore, the underlying mechanism of action involved in the attenuation of pEMT in TECs by Fasudil during HN was probed by using multiple molecular approaches. The HN rat model exhibited significant renal dysfunction and histopathological damage, whereas in vitro and in vivo experiments further confirmed the pEMT status accompanied by RhoA/ROCK pathway activation and oxidative stress in tubular cells exposed to UA. Notably, Fasudil ameliorated these pathological changes, and this was consistent with the trend of ROCK silencing in vitro. Mechanistically, we identified the Neh2 domain of nuclear factor erythroid 2-related factor 2 (Nrf2) as a target of Fasudil for the first time. Fasudil targets Nrf2 activation and antagonizes oxidative stress to attenuate the pEMT of TECs in HN. Our findings suggest that Fasudil attenuates oxidative stress-induced pEMT of TECs in HN by targeting Nrf2 activation. Thus, Fasudil is a potential therapeutic agent for the treatment of HN.


Subject(s)
1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine , Epithelial Cells , Epithelial-Mesenchymal Transition , Hyperuricemia , Kidney Diseases , Kidney Tubules , NF-E2-Related Factor 2 , Oxidative Stress , NF-E2-Related Factor 2/metabolism , Animals , Epithelial-Mesenchymal Transition/drug effects , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/therapeutic use , Oxidative Stress/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Hyperuricemia/drug therapy , Hyperuricemia/metabolism , Humans , Rats , Male , Kidney Tubules/drug effects , Kidney Tubules/pathology , Kidney Tubules/metabolism , Cell Line , Kidney Diseases/drug therapy , Kidney Diseases/pathology , Kidney Diseases/metabolism , rho-Associated Kinases/metabolism , rho-Associated Kinases/antagonists & inhibitors , Rats, Sprague-Dawley , Disease Models, Animal , Signal Transduction/drug effects
15.
Kidney Int ; 105(5): 923-924, 2024 May.
Article in English | MEDLINE | ID: mdl-38642989

ABSTRACT

Collapsing glomerulopathy (CG) is an aggressive variant of focal and segmental glomerulosclerosis. Understanding the diverse mechanisms that can drive CG promises to uncover new therapeutic strategies. In this issue, Duret et al. identify WIP1 phosphatase as a therapeutic target for CG. Using genetic ablation and pharmacologic inhibition, they show that blockade of WIP1 activity is protective in 2 different mouse models of CG. This study highlights the complex interplay of glomerular signaling pathways in CG and offers hope for targeted therapies.


Subject(s)
Glomerulosclerosis, Focal Segmental , Kidney Diseases , Mice , Animals , Glomerulosclerosis, Focal Segmental/drug therapy , Kidney Glomerulus , Kidney Diseases/drug therapy
16.
Eur Rev Med Pharmacol Sci ; 28(6): 2538-2549, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38567613

ABSTRACT

OBJECTIVE: In the present study, the protective effects of adenosine triphosphate (ATP), Benidipine, and Lacidipine on potential kidney damage induced by 5-fluorouracil (5-FU) were investigated in rats. MATERIALS AND METHODS: Totally 48 rats were divided into 8 groups: healthy (HG), 5-FU (FUG), ATP+5-FU (AFU), Benidipine+5-FU (BFU), Lacidipine+5-FU (LFU), ATP+Benidipine+5-FU (ABFU), ATP+Lacidipine+5-FU (ALFU) and Benidipine+Lacidipine+5-FU (BLFU). In a 10-day period, ATP (4 mg/kg) was administered intraperitoneally, and Benidipine (4 mg/kg) and Lacidipine (4 mg/kg) were administered orally once a day. On days 1, 3, and 5, 5-FU (100 mg/kg) was administered intraperitoneally one hour after the drug was administered. Afterward, the rats were euthanized, and kidney tissues were removed. An analysis of malondialdehyde, total glutathione, superoxide dismutase, and catalase was performed on tissues, as well as a histopathological examination. A creatinine and blood urea nitrogen analysis were performed on blood samples. RESULTS: It was revealed that 5-FU decreased the amount of total glutathione, superoxide dismutase, and catalase activities in rat kidney tissues and increased malondialdehyde. Further, increased serum creatinine and blood urea nitrogen levels, as well as histopathological examination of kidney tissues, were found in the 5-FU group. ATP+Benidipine and ATP treatments were the most effective in preventing both biochemical and histopathological changes induced by 5-FU. A treatment with Benidipine improved biochemical and histopathologic data, but not to the same extent as a treatment with ATP+Benidipine and ATP. As a result of Lacidipine+ATP combination, 5-FU-induced biochemical changes in kidney tissue were partially inhibited, but the degree of histopathologic damage remained unchanged. Neither Benidipine+Lacidipine nor Lacidipine showed a protective effect on both biochemical changes and histopathologic damage. CONCLUSIONS: It may be possible to prevent nephrotoxicity by adding ATP + Benidipine or ATP to 5-FU treatment.


Subject(s)
Dihydropyridines , Fluorouracil , Kidney Diseases , Rats , Animals , Fluorouracil/adverse effects , Kidney/pathology , Catalase , Adenosine Triphosphate , Kidney Diseases/chemically induced , Kidney Diseases/drug therapy , Kidney Diseases/prevention & control , Glutathione , Superoxide Dismutase , Malondialdehyde
17.
Ann Palliat Med ; 13(2): 428-432, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38584476

ABSTRACT

BACKGROUND: Many of the drugs used for the treatment and alleviation of symptoms in cancer patients are known to inhibit or induce cytochrome P450 (CYP). Therefore, it is important to pay attention to the drug interactions of opioid analgesics that are metabolized by CYPs, because for example when using oxycodone metabolized by CYP3A4, it is possible that the effect will be attenuated or enhanced by the concomitant use of drugs that induce or inhibit CYP3A4. Aprepitant, an antiemetic drug used in many patients receiving anticancer drugs, is known as a moderate competitive inhibitor of CYP3A4. We experienced a case of respiratory depression caused by opioids, which was suspected to be caused by a drug interaction with antiemetics especially aprepitant. CASE DESCRIPTION: The patient was a 72-year-old man. He had been treated with continuous oxycodone infusion for perianal pain associated with the rectal invasion of prostate cancer. No comorbidities other than renal dysfunction were observed. Oxycodone treatment was started at 48 mg/day, and was increased to 108 mg/day, and then the pain decreased. Once the pain was controlled, chemotherapy was planned. Antiemetics (dexamethasone, palonosetron, and aprepitant) were administered before anticancer drug administration. Approximately 3 hours after antiemetics administration and before the administration of the anticancer drugs, a ward nurse noticed that oversedation and respiratory depression had occurred. When the patient was called, he immediately woke up and was able to talk normally, so the anticancer drugs were administered as scheduled. About 2 hours after the nurse noticed oversedation, the attending physician reduced the dose of oxycodone infusion to 48 mg/day. After that, his drowsiness persisted, but his respiratory condition improved. Despite reducing the dose of oxycodone to less than half, the pain remained stable at numeric rating scale (NRS) 0-1, without the use of a rescue dose. The patient was discharged from the hospital 36 days after the administration of anticancer drugs, without any problems. CONCLUSIONS: The cause of respiratory depression in this case was thought to be a combination of factors, including drug interactions between oxycodone and antiemetics, and oxycodone accumulation due to renal dysfunction.


Subject(s)
Antiemetics , Antineoplastic Agents , Kidney Diseases , Prostatic Neoplasms , Respiratory Insufficiency , Male , Humans , Aged , Antiemetics/therapeutic use , Aprepitant/therapeutic use , Analgesics, Opioid/adverse effects , Oxycodone/adverse effects , Cytochrome P-450 CYP3A/therapeutic use , Morpholines/pharmacology , Morpholines/therapeutic use , Antineoplastic Agents/adverse effects , Drug Interactions , Prostatic Neoplasms/drug therapy , Pain/drug therapy , Respiratory Insufficiency/chemically induced , Kidney Diseases/chemically induced , Kidney Diseases/drug therapy
18.
Ren Fail ; 46(1): 2327498, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38666363

ABSTRACT

Iguratimod is a novel synthetic, small-molecule immunosuppressive agent used to treat rheumatoid arthritis. Through ongoing exploration of its role and mechanisms of action, iguratimod has been observed to have antifibrotic effects in the lung and skin; however, its effect on renal fibrosis remains unknown. This study aimed to investigate whether iguratimod could affect renal fibrosis progression. Three different concentrations of iguratimod (30 mg/kg/day, 10 mg/kg/day, and 3 mg/kg/day) were used to intervene in unilateral ureteral obstruction (UUO) model mice. Iguratimod at 10 mg/kg/day was observed to be effective in slowing UUO-mediated renal fibrosis. In addition, stimulating bone marrow-derived macrophages with IL-4 and/or iguratimod, or with TGF-ß and iguratimod or SRC inhibitors in vitro, suggested that iguratimod mitigates the progression of renal fibrosis in UUO mice, at least in part, by inhibiting the IL-4/STAT6 signaling pathway to attenuate renal M2 macrophage infiltration, as well as by impeding SRC activation to reduce macrophage-myofibroblast transition. These findings reveal the potential of iguratimod as a treatment for renal disease.


Subject(s)
Disease Models, Animal , Fibrosis , Interleukin-4 , Macrophages , STAT6 Transcription Factor , Sulfonamides , Ureteral Obstruction , Animals , Ureteral Obstruction/complications , Mice , Macrophages/drug effects , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Interleukin-4/metabolism , STAT6 Transcription Factor/metabolism , Male , Myofibroblasts/drug effects , Chromones/pharmacology , Chromones/therapeutic use , Kidney/pathology , Signal Transduction/drug effects , Transforming Growth Factor beta/metabolism , Kidney Diseases/etiology , Kidney Diseases/prevention & control , Kidney Diseases/pathology , Kidney Diseases/drug therapy , Mice, Inbred C57BL , Immunosuppressive Agents/pharmacology
19.
Eur J Pharmacol ; 973: 176605, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38653362

ABSTRACT

The main objective of this study was to determine if the telmisartan-ameliorative effects of metabolic syndrome (MetS)-evoked nephropathy are attributed to the Hippo pathway. A secondary objective was to investigate the potential of vitamin D3 to enhance telmisartan-favourable effects. A diet composed of 24% fat and 3% salt, along with drinking water containing 10% fructose, was administered for 12 weeks to induce MetS. MetS-rats were given telmisartan (5 mg/kg/day), vitamin D3 (10 µg/kg/day) or both by gavage, starting in the sixth week of experimental diet administration. Assessments performed at closure included renal function, histological examination, catalase, malondialdehyde (MDA), nuclear factor kappa-B (NF-κB), interleukin-6 (IL-6), peroxisome proliferator-activated receptor-γ (PPAR-γ), phosphatase and tensin homolog (PTEN), and transforming growth factor-ß (TGF-ß). Matrix metalloproteinase-9 (MMP-9) immunostaining was conducted. The expression of the Hippo pathway components, as well as that of angiotensin II type 1 and type 2 (AT1 and AT2), receptors was evaluated. Telmisartan attenuated MetS-evoked nephropathy, as demonstrated by improvement of renal function and histological features, enhancement of catalase, reduction of MDA, inflammation (NF-κB, IL-6), and renal fibrosis (increased PPAR-γ and PTEN and reduced MMP-9 and TGF-ß). Telmisartan downregulated AT1-receptor, upregulated AT2-receptor and restored the Hippo pathway. Vitamin D3 replicated most of the telmisartan-elicited effects and enhanced the antifibrotic actions of telmisartan. The alleviative effects of telmisartan on MetS-evoked nephropathy may be related to the restoration of the Hippo pathway. The combination of vitamin D3 and telmisartan exerted more favourable effects on metabolic and nephropathic biomarkers compared with either one administered alone.


Subject(s)
Hippo Signaling Pathway , Kidney Diseases , Kidney , Metabolic Syndrome , Telmisartan , Animals , Telmisartan/pharmacology , Telmisartan/therapeutic use , Metabolic Syndrome/drug therapy , Metabolic Syndrome/metabolism , Metabolic Syndrome/complications , Metabolic Syndrome/pathology , Male , Rats , Kidney Diseases/drug therapy , Kidney Diseases/metabolism , Kidney Diseases/pathology , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Signal Transduction/drug effects , Protein Serine-Threonine Kinases/metabolism , NF-kappa B/metabolism , Cholecalciferol/pharmacology , Cholecalciferol/therapeutic use , Rats, Wistar , Matrix Metalloproteinase 9/metabolism , PTEN Phosphohydrolase/metabolism , PPAR gamma/metabolism , Oxidative Stress/drug effects , Receptor, Angiotensin, Type 1/metabolism , Receptor, Angiotensin, Type 2/metabolism , Malondialdehyde/metabolism , Interleukin-6/metabolism , Benzimidazoles/pharmacology , Benzimidazoles/therapeutic use
20.
Nefrología (Madrid) ; 44(2): 150-158, Mar-Abr. 2024. tab, ilus
Article in Spanish | IBECS | ID: ibc-231564

ABSTRACT

La COVID-19 ha demostrado ser especialmente agresiva con los pacientes con enfermedad renal crónica (ERC). La menor tasa de respuesta inmunológica y la mayor facilidad para la progresión a formas graves de enfermedad ha propiciado este hecho, que se ha mantenido en la era posvacunal de la pandemia. Paradójicamente, la ERC ha sido excluida de la mayoría de los ensayos clínicos de las principales herramientas terapéuticas desarrolladas frente a SARS-CoV-2. Sin embargo, se ha ido reuniendo experiencia de uso de estos fármacos en distintos estadios de la ERC que avala su uso con garantías de eficacia y seguridad. El objetivo de esta revisión es reunir todas las indicaciones de tratamiento frente a la COVID-19 en los distintos estadios de la enfermedad adaptadas a la ERC en sus distintas fases, incluyendo el tratamiento sustitutivo renal.(AU)


COVID-19 has proven to be particularly aggressive in patients with chronic kidney disease (CKD). The lower immune response rate and the greater susceptibility to progress to severe forms of the disease have contributed to this phenomenon, which has persisted in the post-vaccination era of the pandemic. Paradoxically, CKD has been excluded from most clinical trials of the main therapeutic tools developed against SARS-CoV-2. However, experience in the use of these drugs has been accumulating in different stages of CKD, supporting their use with guarantees of efficacy and safety. The objective of this review is to gather all treatment indications for COVID-19 in the different phases of the disease, tailored to CKD in its various stages, including renal replacement therapy.(AU)


Subject(s)
Male , Female , /prevention & control , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/prevention & control , /drug therapy , /epidemiology , Nephrology , Kidney Diseases/drug therapy , Antibiotic Prophylaxis
SELECTION OF CITATIONS
SEARCH DETAIL
...