Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33.342
Filter
1.
Zhonghua Bing Li Xue Za Zhi ; 53(6): 535-540, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38825896

ABSTRACT

The 5th edition of the World Health Organization (WHO) classification of haematolymphoid tumours used the hierarchical system to classify T-cell and NK-cell lymphoid proliferations and lymphomas (T/NK-LPD/LYM) based on research advances and clinicopathological characteristics of the diseases. In this edition of classification, tumour-like lesions were included, some tumors were added/deleted, the names or terms of certain diseases were refined, and the diagnostic criteria or subtypes of some diseases were revised. This group of diseases was reintegrated from non-clonal hyperplasia to highly aggressive lymphoma, which would further reflect the nature of T/NK-LPD/LYM and benefit to clinical application.


Subject(s)
Killer Cells, Natural , Lymphoma , T-Lymphocytes , World Health Organization , Humans , Killer Cells, Natural/pathology , Killer Cells, Natural/immunology , T-Lymphocytes/pathology , T-Lymphocytes/immunology , Lymphoma/pathology , Lymphoma/classification , Lymphoma/immunology , Lymphoma, T-Cell/pathology , Lymphoma, T-Cell/classification , Lymphoma, T-Cell/immunology , Lymphoproliferative Disorders/pathology , Lymphoproliferative Disorders/classification , Lymphoproliferative Disorders/immunology
2.
BMC Cancer ; 24(1): 672, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824541

ABSTRACT

BACKGROUND: Patients with primary multifocal hepatocellular carcinoma (HCC) have a poor prognosis and often experience a high rate of treatment failure. Multifocal HCC is mainly caused by intrahepatic metastasis (IM), and though portal vein tumor thrombosis (PVTT) is considered a hallmark of IM, the molecular mechanism by which primary HCC cells invade the portal veins remains unclear. Therefore, it is necessary to recognize the early signs of metastasis of HCC to arrange better treatment for patients. RESULTS: To determine the differential molecular features between primary HCC with and without phenotype of metastasis, we used the CIBERSORTx software to deconvolute cell types from bulk RNA-Seq based on a single-cell transcriptomic dataset. According to the relative abundance of tumorigenic and metastatic hepatoma cells, VEGFA+ macrophages, effector memory T cells, and natural killer cells, HCC samples were divided into five groups: Pro-T, Mix, Pro-Meta, NKC, and MemT, and the transcriptomic and genomic features of the first three groups were analyzed. We found that the Pro-T group appeared to retain native hepatic metabolic activity, whereas the Pro-Meta group underwent dedifferentiation. Genes highly expressed in the group Pro-Meta often signify a worse outcome. CONCLUSIONS: The HCC cohort can be well-typed and prognosis predicted according to tumor microenvironment components. Primary hepatocellular carcinoma may have obtained corresponding molecular features before metastasis occurred.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Transcriptome , Tumor Microenvironment , Humans , Liver Neoplasms/genetics , Liver Neoplasms/secondary , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/secondary , Tumor Microenvironment/genetics , Prognosis , Genomics/methods , Gene Expression Regulation, Neoplastic , Gene Expression Profiling , Male , Female , Killer Cells, Natural/metabolism , Killer Cells, Natural/immunology
4.
Front Immunol ; 15: 1368290, 2024.
Article in English | MEDLINE | ID: mdl-38690288

ABSTRACT

Background: NK cells can be genetically engineered to express a transgenic T-cell receptor (TCR). This approach offers an alternative strategy to target heterogenous tumors, as NK:TCR cells can eradicate both tumor cells with high expression of HLA class I and antigen of interest or HLA class I negative tumors. Expansion and survival of NK cells relies on the presence of IL-15. Therefore, autonomous production of IL-15 by NK:TCR cells might improve functional persistence of NK cells. Here we present an optimized NK:TCR product harnessed with a construct encoding for soluble IL-15 (NK:TCR/IL-15), to support their proliferation, persistence and cytotoxic capabilities. Methods: Expression of tumor-specific TCRs in peripheral blood derived NK-cells was achieved following retroviral transduction. NK:TCR/IL-15 cells were compared with NK:TCR cells for autonomous cytokine production, proliferation and survival. NK:BOB1-TCR/IL-15 cells, expressing a HLA-B*07:02-restricted TCR against BOB1, a B-cell lineage specific transcription factor highly expressed in all B-cell malignancies, were compared with control NK:BOB1-TCR and NK:CMV-TCR/IL-15 cells for effector function against TCR antigen positive malignant B-cell lines in vitro and in vivo. Results: Viral incorporation of the interleukin-15 gene into engineered NK:TCR cells was feasible and high expression of the TCR was maintained, resulting in pure NK:TCR/IL-15 cell products generated from peripheral blood of multiple donors. Self-sufficient secretion of IL-15 by NK:TCR cells enables engineered NK cells to proliferate in vitro without addition of extra cytokines. NK:TCR/IL-15 demonstrated a marked enhancement of TCR-mediated cytotoxicity as well as enhanced NK-mediated cytotoxicity resulting in improved persistence and performance of NK:BOB1-TCR/IL-15 cells in an orthotopic multiple myeloma mouse model. However, in contrast to prolonged anti-tumor reactivity by NK:BOB1-TCR/IL-15, we observed in one of the experiments an accumulation of NK:BOB1-TCR/IL-15 cells in several organs of treated mice, leading to unexpected death 30 days post-NK infusion. Conclusion: This study showed that NK:TCR/IL-15 cells secrete low levels of IL-15 and can proliferate in an environment lacking cytokines. Repeated in vitro and in vivo experiments confirmed the effectiveness and target specificity of our product, in which addition of IL-15 supports TCR- and NK-mediated cytotoxicity.


Subject(s)
Interleukin-15 , Killer Cells, Natural , Receptors, Antigen, T-Cell , Interleukin-15/genetics , Interleukin-15/immunology , Interleukin-15/metabolism , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Animals , Mice , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Cytotoxicity, Immunologic , Cell Proliferation , Cell Line, Tumor , Immunotherapy, Adoptive/methods , Genetic Engineering
5.
J Med Virol ; 96(5): e29646, 2024 May.
Article in English | MEDLINE | ID: mdl-38699988

ABSTRACT

Elite controllers (ECs) are an exceptional group of people living with HIV (PLWH) that control HIV replication without therapy. Among the mechanisms involved in this ability, natural killer (NK)-cells have recently gained much attention. We performed an in-deep phenotypic analysis of NK-cells to search for surrogate markers associated with the long term spontaneous control of HIV. Forty-seven PLWH (22 long-term EC [PLWH-long-term elite controllers (LTECs)], 15 noncontrollers receiving antiretroviral treatment [ART] [PLWH-onART], and 10 noncontrollers cART-naïve [PLWH-offART]), and 20 uninfected controls were included. NK-cells homeostasis was analyzed by spectral flow cytometry using a panel of 15 different markers. Data were analyzed using FCSExpress and R software for unsupervised multidimensional analysis. Six different subsets of NK-cells were defined on the basis of CD16 and CD56 expression, and the multidimensional analysis revealed the existence of 68 different NK-cells clusters based on the expression levels of the 15 different markers. PLWH-offART presented the highest disturbance of NK-cells homeostasis and this was not completely restored by long-term ART. Interestingly, long term spontaneous control of HIV (PLWH-LTEC group) was associated with a specific profile of NK-cells homeostasis disturbance, characterized by an increase of CD16dimCD56dim subset when compared to uninfected controls (UC) group and also to offART and onART groups (p < 0.0001 for the global comparison), an increase of clusters C16 and C26 when compared to UC and onART groups (adjusted p-value < 0.05 for both comparisons), and a decrease of clusters C10 and C20 when compared to all the other groups (adjusted p-value < 0.05 for all comparisons). These findings may provide clues to elucidate markers of innate immunity with a relevant role in the long-term control of HIV.


Subject(s)
HIV Infections , Killer Cells, Natural , Humans , Killer Cells, Natural/immunology , HIV Infections/immunology , HIV Infections/drug therapy , HIV Infections/virology , Male , Adult , Female , Middle Aged , Flow Cytometry , HIV Long-Term Survivors , CD56 Antigen/analysis , Biomarkers , Immunophenotyping , Receptors, IgG , Phenotype , HIV-1/immunology , GPI-Linked Proteins
6.
Front Immunol ; 15: 1401294, 2024.
Article in English | MEDLINE | ID: mdl-38720899

ABSTRACT

Inhibitory natural killer (NK) cell receptors recognize MHC class I (MHC-I) in trans on target cells and suppress cytotoxicity. Some NK cell receptors recognize MHC-I in cis, but the role of this interaction is uncertain. Ly49Q, an atypical Ly49 receptor expressed in non-NK cells, binds MHC-I in cis and mediates chemotaxis of neutrophils and type I interferon production by plasmacytoid dendritic cells. We identified a lipid-binding motif in the juxtamembrane region of Ly49Q and found that Ly49Q organized functional membrane domains comprising sphingolipids via sulfatide binding. Ly49Q recruited actin-remodeling molecules to an immunoreceptor tyrosine-based inhibitory motif, which enabled the sphingolipid-enriched membrane domain to mediate complicated actin remodeling at the lamellipodia and phagosome membranes during phagocytosis. Thus, Ly49Q facilitates integrative regulation of proteins and lipid species to construct a cell type-specific membrane platform. Other Ly49 members possess lipid binding motifs; therefore, membrane platform organization may be a primary role of some NK cell receptors.


Subject(s)
Sphingolipids , Animals , Humans , Sphingolipids/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Phagocytosis , Phagocytes/immunology , Phagocytes/metabolism , NK Cell Lectin-Like Receptor Subfamily A/metabolism , Cell Membrane/metabolism , Protein Binding
7.
Front Immunol ; 15: 1376421, 2024.
Article in English | MEDLINE | ID: mdl-38715619

ABSTRACT

Introduction: Blood pressure is closely linked with immune function. This study examined the association between natural killer (NK) cell activity (NKA) and blood pressure and the development of hypertension according to NKA levels. Methods: This study enrolled 1543 adults who underwent NKA measurement and serial health check-ups at a medical center in Korea. NKA was estimated as the concentration of IFN-γ in the incubated whole blood containing a patented stimulatory cytokine. The participants were categorized into quartiles according to their NKA levels. Participants without hypertension were followed up, and the development of hypertension was compared according to the quartiles. Results: The prevalence of hypertension was not different among the NKA quartiles, whereas blood pressures significantly decreased, followed by an increment of quartiles (systolic blood pressure of 119.0 in Q1 and 117.0 in Q4, P-trend = 0.018). Over a mean follow-up period of 2.13 years, hypertension developed in 156 of 1170 individuals without baseline hypertension. The hazard ratio of Q4 compared with Q1 was 0.625 (95% CI: 0.397-0.983; p = 0.042). Conclusion: In conclusion, our findings indicate a correlation between lower NKA and higher blood pressure and the development of incident hypertension. This may suggest a potential protective role of NK cells against endothelial dysfunction. Further research is necessary to elucidate the specific relationship between immune functions and endothelial function.


Subject(s)
Hypertension , Killer Cells, Natural , Humans , Killer Cells, Natural/immunology , Male , Female , Hypertension/immunology , Hypertension/epidemiology , Middle Aged , Incidence , Adult , Republic of Korea/epidemiology , Blood Pressure , Interferon-gamma/metabolism , Interferon-gamma/blood , Aged
8.
Nat Commun ; 15(1): 3810, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714671

ABSTRACT

Previous studies have revealed heterogeneity in the progression to clinical type 1 diabetes in children who develop islet-specific antibodies either to insulin (IAA) or glutamic acid decarboxylase (GADA) as the first autoantibodies. Here, we test the hypothesis that children who later develop clinical disease have different early immune responses, depending on the type of the first autoantibody to appear (GADA-first or IAA-first). We use mass cytometry for deep immune profiling of peripheral blood mononuclear cell samples longitudinally collected from children who later progressed to clinical disease (IAA-first, GADA-first, ≥2 autoantibodies first groups) and matched for age, sex, and HLA controls who did not, as part of the Type 1 Diabetes Prediction and Prevention study. We identify differences in immune cell composition of children who later develop disease depending on the type of autoantibodies that appear first. Notably, we observe an increase in CD161 expression in natural killer cells of children with ≥2 autoantibodies and validate this in an independent cohort. The results highlight the importance of endotype-specific analyses and are likely to contribute to our understanding of pathogenic mechanisms underlying type 1 diabetes development.


Subject(s)
Autoantibodies , Diabetes Mellitus, Type 1 , Glutamate Decarboxylase , Immunity, Cellular , Humans , Diabetes Mellitus, Type 1/immunology , Autoantibodies/immunology , Autoantibodies/blood , Child , Female , Male , Glutamate Decarboxylase/immunology , Child, Preschool , Adolescent , Killer Cells, Natural/immunology , Leukocytes, Mononuclear/immunology , Insulin/immunology , Islets of Langerhans/immunology , Disease Progression
9.
Front Immunol ; 15: 1383281, 2024.
Article in English | MEDLINE | ID: mdl-38711506

ABSTRACT

NK cell therapeutics have gained significant attention as a potential cancer treatment. Towards therapeutic use, NK cells need to be activated and expanded to attain high potency and large quantities for an effective dosage. This is typically done by ex vivo stimulation with cytokines to enhance functionality or expansion for 10-14 days to increase both their activity and quantity. Attaining a robust methodology to produce large doses of potent NK cells for an off-the-shelf product is highly desirable. Notably, past reports have shown that stimulating NK cells with IL-12, IL-15, and IL-18 endows them with memory-like properties, better anti-tumor activity, and persistence. While this approach produces NK cells with clinically favorable characteristics supported by encouraging early results for the treatment of hematological malignancies, its limited scalability, variability in initial doses, and the necessity for patient-specific production hinder its broader application. In this study, stimulation of NK cells with PM21-particles derived from K562-41BBL-mbIL21 cells was combined with memory-like induction using cytokines IL-12, IL-15, and IL-18 to produce NK cells with enhanced anti-tumor function. The use of cytokines combined with PM21-particles (cytokine and particle, CAP) significantly enhanced NK cell expansion, achieving a remarkable 8,200-fold in 14 days. Mechanistically, this significant improvement over expansion with PM21-particles alone was due to the upregulation of receptors for key stimulating ligands (4-1BBL and IL-2), resulting in a synergy that drives substantial NK cell growth, showcasing the potential for more effective therapeutic applications. The therapeutic potential of CAP-NK cells was demonstrated by the enhanced metabolic fitness, persistence, and anti-tumor function both in vitro and in vivo. Finally, CAP-NK cells were amenable to current technologies used in developing therapeutic NK cell products, including CRISPR/Cas9-based techniques to generate a triple-gene knockout or a gene knock-in. Taken together, these data demonstrate that the addition of cytokines enhanced the already effective method of ex vivo generation of therapeutic NK cells with PM21-particles, yielding a superior NK cell product for manufacturing efficiency and potential therapeutic applications.


Subject(s)
Cytokines , Immunologic Memory , Killer Cells, Natural , Killer Cells, Natural/immunology , Killer Cells, Natural/drug effects , Humans , Cytokines/metabolism , Animals , Mice , K562 Cells , Cell Survival/drug effects , Cell Proliferation/drug effects , Lymphocyte Activation
10.
Virus Res ; 345: 199382, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38697295

ABSTRACT

Natural killer cells (NK cells) are the front line of immune cells to combat pathogens and able to influence the subsequent adaptive immune responses. One of the factors contributing to pathogenesis in dengue hemorrhagic fever (DHF) disease is aberrant immune activation during early phase of infection. This study explored the profile of NK cells in dengue infected pediatric patients with different degrees of disease severity. DHF patients contained higher frequency of activated NK cells but lower ratio of CD56dim:CD56bright NK subsets. Activated NK cells exhibited alterations in several NK receptors. Interestingly, the frequencies of NKp30 expressing activated NK cells were more pronounced in dengue fever (DF) than in DHF pediatric patients. In vitro functional analysis indicated that degranulation of NK cells in responding to dengue infected dendritic cells (DCs) required cell-cell contact and type I IFNs. Meanwhile, Interferon gamma (IFN-γ) production initially required cell-cell contact and type I IFNs followed by Interleukin-12 (IL-12), Interleukin-15 (IL-15) and Interleukin-18 (IL-18) resulting in the amplification of IFN-γ producing NK cells over time. This study highlighted the complexity and the factors influencing NK cells responses to dengue virus. Degree of activation, phenotypes of activated cells and the crosstalk between NK cells and other immune cells, could modulate the outcome of NK cells function in the dengue disease.


Subject(s)
Dendritic Cells , Dengue Virus , Interferon-gamma , Interleukin-12 , Killer Cells, Natural , Phenotype , Killer Cells, Natural/immunology , Humans , Child , Interleukin-12/immunology , Male , Female , Dendritic Cells/immunology , Dengue Virus/immunology , Interferon-gamma/immunology , Interleukin-15/immunology , Lymphocyte Activation , Interleukin-18/immunology , Natural Cytotoxicity Triggering Receptor 3/immunology , Child, Preschool , Dengue/immunology , Dengue/virology , Severe Dengue/immunology , Severe Dengue/virology , Adolescent , CD56 Antigen/immunology , Interferon Type I/immunology
11.
Viruses ; 16(5)2024 05 14.
Article in English | MEDLINE | ID: mdl-38793661

ABSTRACT

Human cytomegalovirus (CMV) is a common herpesvirus causing lifelong latent infection in most people and is a primary cause of congenital infection worldwide. Given the role of NK cells in the materno-fetal barrier, we investigated peripheral blood NK cell behavior in the context of CMV infection acquired during pregnancy. We analyzed the NK phenotype and CD107a surface mobilization on PBMCs from CMV-transmitting and non-transmitting mothers and newborns with or without congenital infection. NK cells from non-transmitting mothers showed the typical phenotype of CMV-adaptive NK cells, characterized by higher levels of NKG2C, CD57, and KIRs, with reduced NKG2A, compared to transmitting ones. A significantly higher percentage of DNAM-1+, PD-1+, and KIR+NKG2A-CD57+PD-1+ CD56dim cells was found in the non-transmitting group. Accordingly, NK cells from congenital-CMV (cCMV)-infected newborns expressed higher levels of NKG2C and CD57, with reduced NKG2A, compared to non-congenital ones. Furthermore, they showed a significant expansion of CD56dim cells co-expressing NKG2C and CD57 or with a memory-like (KIR+NKG2A-CD57+NKG2C+) phenotype, as well as a significant reduction of the CD57-NKG2C- population. Degranulation assays showed a slightly higher CD107a geomean ratio in NK cells of mothers who were non-transmitting compared to those transmitting the virus. Our findings demonstrate that both CMV-transmitting mothers and cCMV newborns show a specific NK profile. These data can guide studies on predicting virus transmission from mothers and congenital infection in infants.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Infectious Disease Transmission, Vertical , Killer Cells, Natural , Pregnancy Complications, Infectious , Humans , Killer Cells, Natural/immunology , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/virology , Cytomegalovirus Infections/transmission , Female , Pregnancy , Infant, Newborn , Pregnancy Complications, Infectious/virology , Pregnancy Complications, Infectious/immunology , Cytomegalovirus/immunology , Adult , Cohort Studies , NK Cell Lectin-Like Receptor Subfamily C/metabolism , Young Adult
13.
Front Immunol ; 15: 1389358, 2024.
Article in English | MEDLINE | ID: mdl-38736873

ABSTRACT

Introduction: Polymorphisms in the KIR and HLA genes contribute to the diversity of the NK cell repertoire. Extrinsic factors also play a role in modifying this repertoire. The best example is cytomegalovirus, which promotes the expansion of memory-like NK cells. However, the mechanisms governing this phenotypic structure are poorly understood. Furthermore, the influence of age and sex has been understudied. Methods: In this study, we examined these parameters in a cohort of 200 healthy volunteer blood donors, focusing on the major inhibitory KIR receptors and CD94/NKG2A, as well as the differentiation marker CD57 and the memory-like population marker NKG2C. Flow cytometry and two joint analyses, unsupervised and semi-supervised, helped define the impact of various intrinsic and extrinsic markers on the phenotypic structure of the NK cell repertoire. Results: In the KIR NK cell compartment, the KIR3DL1 gene is crucial, as unexpressed alleles lead to a repertoire dominated by KIR2D interacting only with HLA-C ligands, whereas an expressed KIR3DL1 gene allows for a greater diversity of NK cell subpopulations interacting with all HLA class I ligands. KIR2DL2 subsequently favors the KIR2D NK cell repertoire specific to C1/C2 ligands, whereas its absence promotes the expression of KIR2DL1 specific to the C2 ligand. The C2C2Bw4+ environment, marked by strong -21T motifs, favors the expansion of the NK cell population expressing only CD57, whereas the absence of HLA-A3/A11 ligands favors the population expressing only NKG2A, a population highly represented within the repertoire. The AA KIR genotype favors NK cell populations without KIR and NKG2A receptors, whereas the KIR B+ genotypes favor populations expressing KIR and NKG2A. Interestingly, we showed that women have a repertoire enriched in CD57- NK cell populations, while men have more CD57+ NK cell subpopulations. Discussion: Overall, our data demonstrate that the phenotypic structure of the NK cell repertoire follows well-defined genetic rules and that immunological history, sex, and age contribute to shaping this NK cell diversity. These elements can contribute to the better selection of hematopoietic stem cell donors and the definition of allogeneic NK cells for cell engineering in NK cell-based immunotherapy approaches.cters are displayed correctly.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Genotype , Killer Cells, Natural , Receptors, KIR , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Female , Male , Adult , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/genetics , Cytomegalovirus/immunology , Receptors, KIR/genetics , Middle Aged , Sex Factors , Age Factors , CD57 Antigens , Histocompatibility Testing , Young Adult , NK Cell Lectin-Like Receptor Subfamily C/genetics , HLA Antigens/genetics , HLA Antigens/immunology , Aged , Receptors, KIR3DL1/genetics
14.
Front Immunol ; 15: 1382931, 2024.
Article in English | MEDLINE | ID: mdl-38736882

ABSTRACT

Background: Neuroblastoma (NB) is characterized by both adrenergic (ADRN) and undifferentiated mesenchymal (MES) subsets. The ganglioside sialic acid-containing glycosphingolipid (GD2) is widely overexpressed on tumors of neuroectodermal origin promoting malignant phenotypes. MES cells are greatly enriched in post-therapy and relapsing tumors and are characterized by decreased expression of GD2. This event may cause failure of GD2-based immunotherapy. NK cells represent a key innate cell subset able to efficiently kill tumors. However, the tumor microenvironment (TME) that includes tumor cells and tumor-associated (TA) cells could inhibit their effector function. Methods: We studied eight NB primary cultures that, in comparison with commercial cell lines, more faithfully reflect the tumor cell characteristics. We studied four primary NB-MES cell cultures and two pairs of MES/ADRN (691 and 717) primary cultures, derived from the same patient. In particular, in the six human NB primary cultures, we assessed their phenotype, the expression of GD2, and the enzymes that control its expression, as well as their interactions with NK cells, using flow cytometry, RT-qPCR, and cytotoxicity assays. Results: We identified mature (CD105+/CD133-) and undifferentiated (CD133+/CD105-) NB subsets that express high levels of the MES transcripts WWTR1 and SIX4. In addition, undifferentiated MES cells display a strong resistance to NK-mediated killing. On the contrary, mature NB-MES cells display an intermediate resistance to NK-mediated killing and exhibit some immunomodulatory capacities on NK cells but do not inhibit their cytolytic activity. Notably, independent from their undifferentiated or mature phenotype, NB-MES cells express GD2 that can be further upregulated in undifferentiated NB-MES cells upon co-culture with NK cells, leading to the generation of mature mesenchymal GD2bright neuroblasts. Concerning 691 and 717, they show high levels of GD2 and resistance to NK cell-mediated killing that can be overcome by the administration of dinutuximab beta, the anti-GD2 monoclonal antibody applied in the clinic. Conclusions: NB is a heterogeneous tumor representing a further hurdle in NB immunotherapy. However, different from what was reported with NB commercial cells and independent of their MES/ADRN phenotype, the expression of GD2 and its displayed sensitivity to anti-GD2 mAb ADCC indicated the possible effectiveness of anti-GD2 immunotherapy.


Subject(s)
Gangliosides , Killer Cells, Natural , Neuroblastoma , Tumor Escape , Tumor Microenvironment , Humans , Neuroblastoma/immunology , Neuroblastoma/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Gangliosides/immunology , Gangliosides/metabolism , Tumor Microenvironment/immunology , Cell Line, Tumor , Cytotoxicity, Immunologic , Tumor Cells, Cultured , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/metabolism
15.
Oncoimmunology ; 13(1): 2348254, 2024.
Article in English | MEDLINE | ID: mdl-38737793

ABSTRACT

Metastatic (m) colorectal cancer (CRC) is an incurable disease with a poor prognosis and thus remains an unmet clinical need. Immune checkpoint blockade (ICB)-based immunotherapy is effective for mismatch repair-deficient (dMMR)/microsatellite instability-high (MSI-H) mCRC patients, but it does not benefit the majority of mCRC patients. NK cells are innate lymphoid cells with potent effector responses against a variety of tumor cells but are frequently dysfunctional in cancer patients. Memory-like (ML) NK cells differentiated after IL-12/IL-15/IL-18 activation overcome many challenges to effective NK cell anti-tumor responses, exhibiting enhanced recognition, function, and in vivo persistence. We hypothesized that ML differentiation enhances the NK cell responses to CRC. Compared to conventional (c) NK cells, ML NK cells displayed increased IFN-γ production against both CRC cell lines and primary patient-derived CRC spheroids. ML NK cells also exhibited improved killing of CRC target cells in vitro in short-term and sustained cytotoxicity assays, as well as in vivo in NSG mice. Mechanistically, enhanced ML NK cell responses were dependent on the activating receptor NKG2D as its blockade significantly decreased ML NK cell functions. Compared to cNK cells, ML NK cells exhibited greater antibody-dependent cytotoxicity when targeted against CRC by cetuximab. ML NK cells from healthy donors and mCRC patients exhibited increased anti-CRC responses. Collectively, our findings demonstrate that ML NK cells exhibit enhanced responses against CRC targets, warranting further investigation in clinical trials for mCRC patients, including those who have failed ICB.


Subject(s)
Cell Differentiation , Colorectal Neoplasms , Immunologic Memory , Killer Cells, Natural , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Killer Cells, Natural/immunology , Killer Cells, Natural/drug effects , Humans , Animals , Mice , Cell Differentiation/drug effects , Cell Line, Tumor , Interferon-gamma/metabolism , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Mice, Inbred NOD , Female
16.
Sci Transl Med ; 16(747): eadi2952, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748775

ABSTRACT

Apart from their killer identity, natural killer (NK) cells have integral roles in shaping the tumor microenvironment. Through immune gene deconvolution, the present study revealed an interplay between NK cells and myeloid-derived suppressor cells (MDSCs) in nonresponders of immune checkpoint therapy. Given that the mechanisms governing the outcome of NK cell-to-myeloid cell interactions remain largely unknown, we sought to investigate the cross-talk between NK cells and suppressive myeloid cells. Upon contact with tumor-experienced NK cells, monocytes and neutrophils displayed increased expression of MDSC-related suppressive factors along with increased capacities to suppress T cells. These changes were accompanied by impaired antigen presentation by monocytes and increased ER stress response by neutrophils. In a cohort of patients with sarcoma and breast cancer, the production of interleukin-6 (IL-6) by tumor-infiltrating NK cells correlated with S100A8/9 and arginase-1 expression by MDSCs. At the same time, NK cell-derived IL-6 was associated with tumors with higher major histocompatibility complex class I expression, which we further validated with b2m-knockout (KO) tumor mice models. Similarly in syngeneic wild-type and IL-6 KO mouse models, we then demonstrated that the accumulation of MDSCs was influenced by the presence of such regulatory NK cells. Inhibition of the IL-6/signal transducer and activator of transcription 3 (STAT3) axis alleviated suppression of T cell responses, resulting in reduced tumor growth and metastatic dissemination. Together, these results characterize a critical NK cell-mediated mechanism that drives the development of MDSCs during tumor immune escape.


Subject(s)
Immune Tolerance , Interleukin-6 , Killer Cells, Natural , Myeloid-Derived Suppressor Cells , STAT3 Transcription Factor , STAT3 Transcription Factor/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Interleukin-6/metabolism , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/immunology , Animals , Humans , Signal Transduction , Tumor Microenvironment/immunology , Mice, Knockout , Cell Line, Tumor , Female , Mice , Mice, Inbred C57BL , Neoplasms/immunology , Neoplasms/pathology
17.
J Immunother Cancer ; 12(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38754915

ABSTRACT

BACKGROUND: Allogeneic hematopoietic stem cell transplantation (HSCT) remains the standard of care for chemotherapy-refractory leukemia patients, but cure rates are still dismal. To prevent leukemia relapse following HSCT, we aim to improve the early graft-versus-leukemia effect mediated by natural killer (NK) cells. Our approach is based on the adoptive transfer of Therapeutic Inducers of Natural Killer cell Killing (ThINKK). ThINKK are expanded and differentiated from HSC, and exhibit blood plasmacytoid dendritic cell (pDC) features. We previously demonstrated that ThINKK stimulate NK cells and control acute lymphoblastic leukemia (ALL) development in a preclinical mouse model of HSCT for ALL. Here, we assessed the cellular identity of ThINKK and investigated their potential to activate allogeneic T cells. We finally evaluated the effect of immunosuppressive drugs on ThINKK-NK cell interaction. METHODS: ThINKK cellular identity was explored using single-cell RNA sequencing and flow cytometry. Their T-cell activating potential was investigated by coculture of allogeneic T cells and antigen-presenting cells in the presence or the absence of ThINKK. A preclinical human-to-mouse xenograft model was used to evaluate the impact of ThINKK injections on graft-versus-host disease (GvHD). Finally, the effect of immunosuppressive drugs on ThINKK-induced NK cell cytotoxicity against ALL cells was tested. RESULTS: The large majority of ThINKK shared the key characteristics of canonical blood pDC, including potent type-I interferon (IFN) production following Toll-like receptor stimulation. A minor subset expressed some, although not all, markers of other dendritic cell populations. Importantly, while ThINKK were not killed by allogeneic T or NK cells, they did not increase T cell proliferation induced by antigen-presenting cells nor worsened GvHD in vivo. Finally, tacrolimus, sirolimus or mycophenolate did not decrease ThINKK-induced NK cell activation and cytotoxicity. CONCLUSION: Our results indicate that ThINKK are type I IFN producing cells with low T cell activation capacity. Therefore, ThINKK adoptive immunotherapy is not expected to increase the risk of GvHD after allogeneic HSCT. Furthermore, our data predict that the use of tacrolimus, sirolimus or mycophenolate as anti-GvHD prophylaxis regimen will not decrease ThINKK therapeutic efficacy. Collectively, these preclinical data support the testing of ThINKK immunotherapy in a phase I clinical trial.


Subject(s)
Hematopoietic Stem Cell Transplantation , Killer Cells, Natural , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Killer Cells, Natural/drug effects , Humans , Hematopoietic Stem Cell Transplantation/methods , Animals , Mice , Transplantation, Homologous , Dendritic Cells/immunology , Dendritic Cells/metabolism , Female , Graft vs Host Disease/prevention & control
20.
Cells ; 13(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38727264

ABSTRACT

Natural killer (NK) cells can migrate quickly to the tumor site to exert cytotoxic effects on tumors, and some chemokines, including CXCL8, CXCL10 or and CXCL12, can regulate the migration of NK cells. Activin A, a member of the transforming growth factor ß (TGF-ß) superfamily, is highly expressed in tumor tissues and involved in tumor development and immune cell activation. In this study, we focus on the effects of activin A on NK cell migration. In vitro, activin A induced NK cell migration and invasion, promoted cell polarization and inhibited cell adhesion. Moreover, activin A increased Ca2+, p-SMAD3 and p-AKT levels in NK cells. An AKT inhibitor and Ca2+ chelator partially blocked activin A-induced NK cell migration. In vivo, exogenous activin A increased tumor-infiltrating NK cells in NS-1 cell solid tumors and inhibited tumor growth, and blocking endogenous activin A with anti-activin A antibody reduced tumor-infiltrating NK cells in 4T-1 cell solid tumors. These results suggest that activin A induces NK cell migration through AKT signaling and calcium signaling and may enhance the antitumor effect of NK cells by increasing tumor-infiltrating NK cells.


Subject(s)
Activins , Calcium Signaling , Cell Movement , Killer Cells, Natural , Proto-Oncogene Proteins c-akt , Activins/metabolism , Killer Cells, Natural/metabolism , Killer Cells, Natural/immunology , Animals , Cell Movement/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Mice , Calcium Signaling/drug effects , Cell Line, Tumor , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...