Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 18.505
Filter
1.
Rehabilitación (Madr., Ed. impr.) ; 58(2): 1-9, abril-junio 2024. ilus, tab
Article in English | IBECS | ID: ibc-232114

ABSTRACT

Introduction: The anterior cruciate ligament (ACL) is the most frequently injured ligament of the knee. However, quantitative studies on evaluate the postural control influence resulted from the ACL remnant preservation or not are scarce. The aim of this study is to evaluate the postural control of patients submitted to ACL reconstruction with and without preservation of the injured remnant in pre and postoperative periods.MethodsEighteen patients underwent ACL reconstruction and separated into 2 groups according to the preservation or not of the remnant: (I) submitted to ACL reconstruction with preservation of the remnant (10 patients); (II) submitted to ACL reconstruction without preservation of the remnant (8 patients). They were assessed using the Lysholm score and force plate, which evaluated the patient's postural stability for remnant and non-remnant preservation in ACL reconstruction surgery.ResultsGroup I showed statistically significant subjective and objective improvements, both at 3 and 6 months. Additionally, improvement of the Lysholm test at 6 months in Group II was also statistically significant. Furthermore, the results of the Friedman test for the VCOP and VY variables of Group I, with support of the injured side in the force plate, showed a statistically significant difference both for pre and postoperative period at 3 months, compared to the 6-month postoperative period. The variables EAC and VX were statistically different for Group II, considering the preoperative period, 3 and 6 months postoperatively.ConclusionPreserving the ACL remnant in patients with ACL injuries has a positive impact on postural stability during recovery.(AU)


Introducción: El ligamento cruzado anterior (LCA) es el ligamento de la rodilla que se lesiona con mayor frecuencia. Sin embargo, escasean los estudios cuantitativos sobre la evaluación de la influencia del control postural derivada de la preservación, o no, del remanente del LCA. El objetivo de este estudio es evaluar el control postural de los pacientes sometidos a la reconstrucción del LCA, con y sin preservación del remanente lesionado, en los periodos previo y posterior a la cirugía.MétodosDieciocho pacientes sometidos a reconstrucción del LCA separados en 2 grupos, de acuerdo con la preservación o no preservación del remanente: I) sometidos a reconstrucción del LCA con preservación del remanente (10 pacientes), y II) sometidos a reconstrucción del LCA sin preservación del remanente (8 pacientes). Los pacientes fueron evaluados utilizando la puntuación de Lysholm y una placa de aplicación de fuerza, que evaluó la estabilidad postural del paciente para la preservación y no preservación del remanente en la cirugía de reconstrucción del LCA.ResultadosEl grupo I mostró mejoras subjetivas y objetivas estadísticamente significativas, transcurridos 3 y 6 meses. Además, la mejora de la prueba de Lysholm transcurridos 6 meses en el grupo II fue también estadísticamente significativa. Asimismo, los resultados de la prueba de Friedman para las variables VCOP y VY en el grupo I, con apoyo del lado lesionado en la placa de aplicación de fuerza, reflejaron una diferencia estadísticamente significativa en ambos períodos pre y postoperatorio transcurridos 3 meses, en comparación con el período postoperatorio transcurridos 6 meses. Las variables EAC y VX fueron estadísticamente diferentes para el grupo II, considerando el periodo preoperatorio, y los 3 y 6 meses postoperatorios.ConclusiónPreservar el remanente del LCA en los pacientes con lesiones en dicho ligamento tiene un impacto positivo en la estabilidad postural durante la recuperación.(AU)


Subject(s)
Humans , Anterior Cruciate Ligament , Wounds and Injuries , Post Disaster Reconstruction , General Surgery , Knee
2.
Semin Musculoskelet Radiol ; 28(3): 248-256, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38768590

ABSTRACT

Neoplastic and non-neoplastic soft tissue masses around the knee are often incidental findings. Most of these lesions are benign with typical imaging characteristics that allow a confident diagnosis. However, some of these incidental neoplastic masses are characterized by morbidity and potential mortality. This review highlights the typical aspects of these lesions, facilitating a correct diagnosis.


Subject(s)
Soft Tissue Neoplasms , Humans , Soft Tissue Neoplasms/diagnostic imaging , Diagnosis, Differential , Knee/diagnostic imaging , Magnetic Resonance Imaging/methods , Knee Joint/diagnostic imaging , Knee Joint/pathology
3.
Semin Musculoskelet Radiol ; 28(3): 225-247, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38768589

ABSTRACT

Numerous anatomical variants are described around the knee, many of which look like bony lesions, so it is important to know them to avoid unnecessary complementary tests and inadequate management. Likewise, several alterations in relation to normal development can also simulate bone lesions.However, numerous pathologic processes frequently affect the knee, including traumatic, inflammatory, infectious, and tumor pathology. Many of these entities show typical radiologic features that facilitate their diagnosis. In other cases, a correct differential diagnosis is necessary for proper clinical management.Despite the availability of increasingly advanced imaging techniques, plain radiography is still the technique of choice in the initial study of many of these pathologies. This article reviews the radiologic characteristics of tumor and nontumor lesions that may appear around the knee to make a correct diagnosis and avoid unnecessary complementary radiologic examinations and inadequate clinical management.


Subject(s)
Bone Diseases , Bone Neoplasms , Humans , Bone Neoplasms/diagnostic imaging , Diagnosis, Differential , Bone Diseases/diagnostic imaging , Knee Joint/diagnostic imaging , Knee/diagnostic imaging , Magnetic Resonance Imaging/methods
4.
PLoS One ; 19(5): e0301263, 2024.
Article in English | MEDLINE | ID: mdl-38820390

ABSTRACT

The diagnosis of human knee abnormalities using the surface electromyography (sEMG) signal obtained from lower limb muscles with machine learning is a major problem due to the noisy nature of the sEMG signal and the imbalance in data corresponding to healthy and knee abnormal subjects. To address this challenge, a combination of wavelet decomposition (WD) with ensemble empirical mode decomposition (EEMD) and the Synthetic Minority Oversampling Technique (S-WD-EEMD) is proposed. In this study, a hybrid WD-EEMD is considered for the minimization of noises produced in the sEMG signal during the collection, while the Synthetic Minority Oversampling Technique (SMOTE) is considered to balance the data by increasing the minority class samples during the training of machine learning techniques. The findings indicate that the hybrid WD-EEMD with SMOTE oversampling technique enhances the efficacy of the examined classifiers when employed on the imbalanced sEMG data. The F-Score of the Extra Tree Classifier, when utilizing WD-EEMD signal processing with SMOTE oversampling, is 98.4%, whereas, without the SMOTE oversampling technique, it is 95.1%.


Subject(s)
Electromyography , Signal Processing, Computer-Assisted , Humans , Electromyography/methods , Machine Learning , Knee Joint/physiopathology , Male , Adult , Wavelet Analysis , Female , Knee/physiopathology , Algorithms
5.
Sci Rep ; 14(1): 10448, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714802

ABSTRACT

Hip muscle weakness can be a precursor to or a result of lower limb injuries. Assessment of hip muscle strength and muscle motor fatigue in the clinic is important for diagnosing and treating hip-related impairments. Muscle motor fatigue can be assessed with surface electromyography (sEMG), however sEMG requires specialized equipment and training. Inertial measurement units (IMUs) are wearable devices used to measure human motion, yet it remains unclear if they can be used as a low-cost alternative method to measure hip muscle fatigue. The goals of this work were to (1) identify which of five pre-selected exercises most consistently and effectively elicited muscle fatigue in the gluteus maximus, gluteus medius, and rectus femoris muscles and (2) determine the relationship between muscle fatigue using sEMG sensors and knee wobble using an IMU device. This work suggests that a wall sit and single leg knee raise activity fatigue the gluteus medius, gluteus maximus, and rectus femoris muscles most reliably (p < 0.05) and that the gluteus medius and gluteus maximus muscles were fatigued to a greater extent than the rectus femoris (p = 0.031 and p = 0.0023, respectively). Additionally, while acceleration data from a single IMU placed on the knee suggested that more knee wobble may be an indicator of muscle fatigue, this single IMU is not capable of reliably assessing fatigue level. These results suggest the wall sit activity could be used as simple, static exercise to elicit hip muscle fatigue in the clinic, and that assessment of knee wobble in addition to other IMU measures could potentially be used to infer muscle fatigue under controlled conditions. Future work examining the relationship between IMU data, muscle fatigue, and multi-limb dynamics should be explored to develop an accessible, low-cost, fast and standardized method to measure fatiguability of the hip muscles in the clinic.


Subject(s)
Electromyography , Exercise , Hip , Muscle Fatigue , Humans , Electromyography/methods , Muscle Fatigue/physiology , Male , Exercise/physiology , Adult , Hip/physiology , Female , Muscle, Skeletal/physiology , Young Adult , Knee/physiology
6.
BMC Med Educ ; 24(1): 500, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711070

ABSTRACT

BACKGROUND: According to the German Physiotherapy Education and Qualification Regulations, teaching of anatomical structures is one of the fundamental subjects of physiotherapy education. Besides exhibits and models, anatomy atlases are usually used as teaching and learning tools. These are available in both analog form such as printed books or in digital form as a mobile application. Furthermore, the use of digital teaching and learning tools is steadily increasing within the education of health professionals. AIM: To assess the efficacy of a digital educational tool in contrast to an analog anatomical atlas in acquiring knowledge about anatomical structures. MATERIAL AND METHOD: The data collection took place in the context of an anatomy tutorial for students of the bachelor's degree program in physiotherapy. In a cross-over design, the students completed two learning assignments, each, with different learning materials provided, either with an anatomy app on a tablet or with an anatomy atlas as a book. The tests to assess the newly acquired knowledge immediately after the task, consisted of questions about the anatomical structures of the knee as well as the shoulder. In addition, the students' satisfaction with the learning materials provided was surveyed using a questionnaire. The survey assessed their satisfaction, their assessment of learning success, and their affinity to digital learning materials. This was done using a 5-point Likert scale and a free-text field. The data was analyzed descriptively, and group differences were calculated using a t-tests. RESULTS: Thirty students participated. The group comparison showed a significantly better outcome for the group that prepared with the analog anatomy atlas for the questions on the knee than the comparison group that used the anatomy app (t(28) = 2.6; p = 0.007). For the questions concerning the shoulder, there was no significant difference between the digital and analog groups (t(28) = 1.14; p = 0.26). The questionnaire revealed that satisfaction with the analog anatomy atlas was significantly higher than with the anatomy app. A total of 93.34% rated their experience with the analog learning tool at least "somewhat satisfied". In contrast, 72.67% of students partially or fully agreed that they "enjoyed learning with digital learning tools". DISCUSSION: Learning anatomical structures with the Human Anatomy Atlas 2023 + app did not show a clear advantage when compared to an anatomy book in these two cohorts of physiotherapy students. The results of the questionnaire also showed greater satisfaction with the analog anatomy atlas than with the anatomy app, whereas most students stated that they frequently use digital learning tools, including some for anatomical structures. Satisfaction with the learning tool seems to play a central role in their effectiveness. In addition, sufficient time must be provided for users to familiarize themselves with the user interface of digital applications to use them effectively. REGISTRATION: Diese klinische Studie wurde nicht in einem Studienregister registriert.


Subject(s)
Anatomy , Cross-Over Studies , Humans , Anatomy/education , Male , Computer-Assisted Instruction/methods , Educational Measurement , Physical Therapy Specialty/education , Germany , Female , Atlases as Topic , Adult , Surveys and Questionnaires , Young Adult , Learning , Shoulder/anatomy & histology , Knee/anatomy & histology
7.
Anesthesiol Clin ; 42(2): 247-261, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705674

ABSTRACT

Anesthesia for patients undergoing knee procedures encompasses a large patient population with significant variation in patient age, comorbidities, and type of surgery. In addition, these procedures are performed in vastly different surgical environments, including large academic hospitals, private hospitals, and out-patient surgical centers. These variabilities require a thoughtful and individualized anesthetic approach tailored toward the medical and surgical needs of each patient. This article discusses anesthetic approaches to patients with acute, subacute, and chronic knee-related pathology requiring surgery. We will also review pertinent knee anatomy and innervation and discuss regional nerve blocks and their applications to knee-related surgical procedures.


Subject(s)
Anesthesia , Humans , Anesthesia/methods , Knee Joint/surgery , Arthroplasty, Replacement, Knee/methods , Nerve Block/methods , Knee/surgery
8.
BMC Med Imaging ; 24(1): 113, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760778

ABSTRACT

BACKGROUND: Recent Convolutional Neural Networks (CNNs) perform low-error reconstruction in fast Magnetic Resonance Imaging (MRI). Most of them convolve the image with kernels and successfully explore the local information. Nonetheless, the non-local image information, which is embedded among image patches relatively far from each other, may be lost due to the limitation of the receptive field of the convolution kernel. We aim to incorporate a graph to represent non-local information and improve the reconstructed images by using the Graph Convolutional Enhanced Self-Similarity (GCESS) network. METHODS: First, the image is reconstructed into the graph to extract the non-local self-similarity in the image. Second, GCESS uses spatial convolution and graph convolution to process the information in the image, so that local and non-local information can be effectively utilized. The network strengthens the non-local similarity between similar image patches while reconstructing images, making the reconstruction of structure more reliable. RESULTS: Experimental results on in vivo knee and brain data demonstrate that the proposed method achieves better artifact suppression and detail preservation than state-of-the-art methods, both visually and quantitatively. Under 1D Cartesian sampling with 4 × acceleration (AF = 4), the PSNR of knee data reached 34.19 dB, 1.05 dB higher than that of the compared methods; the SSIM achieved 0.8994, 2% higher than the compared methods. Similar results were obtained for the reconstructed images under other sampling templates as demonstrated in our experiment. CONCLUSIONS: The proposed method successfully constructs a hybrid graph convolution and spatial convolution network to reconstruct images. This method, through its training process, amplifies the non-local self-similarities, significantly benefiting the structural integrity of the reconstructed images. Experiments demonstrate that the proposed method outperforms the state-of-the-art reconstruction method in suppressing artifacts, as well as in preserving image details.


Subject(s)
Brain , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Neural Networks, Computer , Magnetic Resonance Imaging/methods , Humans , Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods , Knee/diagnostic imaging , Algorithms , Artifacts
9.
J Bodyw Mov Ther ; 38: 554-561, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38763608

ABSTRACT

INTRODUCTION: The effects of stretching exercises on muscle strength have been widely researched in the literature, however, there are no studies investigating the effects of Pilates stretching. OBJECTIVE: To compare the effects of static stretching and Pilates stretching on the concentric muscle strength of the knee extensors and flexors. METHOD: 102 trained young adults were randomized into three groups: static stretching (n = 33); Pilates stretching (n = 34); control (n = 35). Isokinetic evaluation of the knee extensor and flexor muscles was performed at 60°/s and 180°/s, pre and post acute intervention with stretching. Interventions in the static stretching and Pilates stretching groups occurred in 3 sets x 30 s for each body region considered (a-knee extensor muscles; b-knee flexor muscles). The control group did not perform any intervention. RESULTS: No difference (p > 0.05) was observed between the groups after the intervention. There was only a significant intragroup improvement for the control group on the isokinetic muscle strength of the knee flexors at 180°/s, with a moderate effect size, considering the entire sample (p = 0.040; d = 0.42) and when considering only male gender (p = 0.010; d = 0.60). CONCLUSION: Static stretching or Pilates stretching performed as a warm-up did not impair or enhance the concentric muscle strength performance of the knee extensors and flexors. In this way, both forms of stretching can be considered as preparatory exercises before muscle strength training.


Subject(s)
Exercise Movement Techniques , Muscle Strength , Muscle Stretching Exercises , Muscle, Skeletal , Humans , Muscle Stretching Exercises/physiology , Male , Female , Muscle Strength/physiology , Young Adult , Exercise Movement Techniques/methods , Muscle, Skeletal/physiology , Adult , Knee/physiology , Knee Joint/physiology , Range of Motion, Articular/physiology
10.
PLoS One ; 19(5): e0301872, 2024.
Article in English | MEDLINE | ID: mdl-38776288

ABSTRACT

BACKGROUND: The current clinical gold standard for assessing isometric quadriceps muscle strength is an isokinetic dynamometer (IKD). However, in clinics without an IKD, clinicians default to using handheld dynamometers (HHD), which are less reliable and accurate than the IKD, particularly for large muscle groups. A novel device (ND) was developed that locks the weight stack of weight machines, and measures forces applied to the machine, turning this equipment into an isometric dynamometer. The objectives of this study were to characterize the test-retest reliability of the ND, determine the within-day and between-days inter-rater reliability and concurrent validity compared with that of the HHD, in healthy volunteers (HV) and individuals with knee osteoarthritis (OA) for measuring knee extensors isometric muscle force. MATERIALS AND METHODS: 29 healthy (age = 28.4 ± 7.4 years) and 15 knee OA (age = 37.6 ± 13.4 years) participants completed three maximum force isometric strength testing trials on dominant side knee extensor muscles on three devices (ND, HHD, and IKD) in two separate sessions by two raters. The maximum force (Fmax) produced, and the force-time series were recorded. Reliability and validity were assessed using Intraclass Correlation Coefficient (ICC), Bland-Altman Plots, Pearson's r, and cross-correlations. RESULTS: The ND demonstrated excellent test-retest reliability (ICC2,3 = 0.97). The within-day (ICC2,3 = 0.88) and between-day inter-rater reliability (ICC2,3 = 0.87) was good for HHD. The ND showed excellent within-day (ICC2,3 = 0.93) and good between-day (ICC2,3 = 0.89) inter-rater reliability. The Bland-Altman analysis revealed HHD systematic bias and underestimation of force particularly with quadriceps force values exceeding 450 N. Mean differences were found in maximum force between HHD vs. IKD (MDabs = 58 N, p < .001) but not the HHD vs. ND (MDabs = 24 N, p = .267) or ND vs. IKD (MDabs = 34 N, p = .051). The concurrent validity of Fmax (r = 0.81) and force-time curve correlation (0.96 ± 0.05) were the highest between the ND and IKD. CONCLUSIONS: The ND's test-retest reliability and concurrent validity make it a potential strength assessment tool with utility in physical therapy and fitness settings for large muscle groups such as the knee extensors.


Subject(s)
Isometric Contraction , Muscle Strength Dynamometer , Muscle Strength , Humans , Adult , Male , Female , Reproducibility of Results , Muscle Strength/physiology , Middle Aged , Isometric Contraction/physiology , Osteoarthritis, Knee/physiopathology , Quadriceps Muscle/physiology , Young Adult , Knee Joint/physiology , Knee Joint/physiopathology , Knee/physiology , Knee/physiopathology
11.
Commun Biol ; 7(1): 513, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769351

ABSTRACT

Sarcopenia is a common skeletal muscle disease in older people. Lower limb muscle strength is a good predictive value for sarcopenia; however, little is known about its genetic components. Here, we conducted a genome-wide association study (GWAS) for knee extension strength in a total of 3452 Japanese aged 60 years or older from two independent cohorts. We identified a significant locus, rs10749438 which is an intronic variant in TACC2 (transforming acidic coiled-coil-containing 2) (P = 4.2 × 10-8). TACC2, encoding a cytoskeleton-related protein, is highly expressed in skeletal muscle, and is reported as a target of myotonic dystrophy 1-associated splicing alterations. These suggest that changes in TACC2 expression are associated with variations in muscle strength in older people. The association was consistently observed in young and middle-aged subjects. Our findings would shed light on genetic components of lower limb muscle strength and indicate TACC2 as a potential therapeutic target for sarcopenia.


Subject(s)
Genome-Wide Association Study , Muscle Strength , Humans , Aged , Male , Female , Muscle Strength/genetics , Middle Aged , Japan , Sarcopenia/genetics , Sarcopenia/physiopathology , Polymorphism, Single Nucleotide , Muscle, Skeletal/metabolism , Knee , Asian People/genetics , East Asian People
12.
J Sports Sci ; 42(7): 599-610, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38734986

ABSTRACT

Unanticipated trunk perturbation is commonly observed when anterior cruciate ligament (ACL) injuries occur during direction-changing manoeuvres. This study aimed to quantify the effect of mid-flight medial-lateral external trunk perturbation directions/locations on ACL loading variables during sidestep cuttings. Thirty-two recreational athletes performed sidestep cuttings under combinations of three perturbation directions (no-perturbation, ipsilateral-perturbation, and contralateral-perturbation relative to the cutting leg) and two perturbation locations (upper-trunk versus lower-trunk). The pushing perturbation was created by customised devices releasing a slam ball to contact participants near maximum jump height prior to cutting. Perturbation generally resulted in greater peak vertical ground reaction force and slower cutting velocity. Upper-trunk contralateral perturbation showed the greatest lateral trunk bending away from the travel direction, greatest peak knee flexion and abduction angles, and greatest peak internal knee adduction moments compared to other conditions. Such increased ACL loading variables were likely due to the increased lateral trunk bending and whole-body horizontal velocity away from the cutting direction caused by the contralateral perturbation act at the upper trunk. The findings may help understand the mechanisms of indirect contact ACL injuries and develop effective cutting techniques for ACL injury prevention.


Subject(s)
Anterior Cruciate Ligament Injuries , Torso , Humans , Torso/physiology , Biomechanical Phenomena , Anterior Cruciate Ligament Injuries/physiopathology , Anterior Cruciate Ligament Injuries/prevention & control , Male , Young Adult , Female , Anterior Cruciate Ligament/physiology , Movement/physiology , Knee/physiology , Adult
13.
Pediatr Infect Dis J ; 43(5): 483-486, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38635914
14.
J Biomech ; 166: 112066, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38574563

ABSTRACT

Precise measurement of joint-level motion from stereo-radiography facilitates understanding of human movement. Conventional procedures for kinematic tracking require significant manual effort and are time intensive. The current work introduces a method for fully automatic tracking of native knee kinematics from stereo-radiography sequences. The framework consists of three computational steps. First, biplanar radiograph frames are annotated with segmentation maps and key points using a convolutional neural network. Next, initial bone pose estimates are acquired by solving a polynomial optimization problem constructed from annotated key points and anatomic landmarks from digitized models. A semidefinite relaxation is formulated to realize the global minimum of the non-convex problem. Pose estimates are then refined by registering computed tomography-based digitally reconstructed radiographs to masked radiographs. A novel rendering method is also introduced which enables generating digitally reconstructed radiographs from computed tomography scans with inconsistent slice widths. The automatic tracking framework was evaluated with stereo-radiography trials manually tracked with model-image registration, and with frames which capture a synthetic leg phantom. The tracking method produced pose estimates which were consistently similar to manually tracked values; and demonstrated pose errors below 1.0 degree or millimeter for all femur and tibia degrees of freedom in phantom trials. Results indicate the described framework may benefit orthopaedics and biomechanics applications through acceleration of kinematic tracking.


Subject(s)
Knee Joint , Knee , Humans , Biomechanical Phenomena , Radiography , Knee Joint/diagnostic imaging , Knee/diagnostic imaging , Tomography, X-Ray Computed/methods , Imaging, Three-Dimensional/methods
15.
J Neuroeng Rehabil ; 21(1): 50, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594696

ABSTRACT

BACKGROUND: The pendulum test is a quantitative method used to assess knee extensor spasticity in humans with spinal cord injury (SCI). Yet, the clinical implementation of this method remains limited. The goal of our study was to develop an objective and portable system to assess knee extensor spasticity during the pendulum test using inertial measurement units (IMU). METHODS: Spasticity was quantified by measuring the first swing angle (FSA) using a 3-dimensional optical tracking system (with external markers over the iliotibial band, lateral knee epicondyle, and lateral malleolus) and two wireless IMUs (positioned over the iliotibial band and mid-part of the lower leg) as well as a clinical exam (Modified Ashworth Scale, MAS). RESULTS: Measurements were taken on separate days to assess test-retest reliability and device agreement in humans with and without SCI. We found no differences between FSA values obtained with the optical tracking system and the IMU-based system in control subjects and individuals with SCI. FSA values from the IMU-based system showed excellent agreement with the optical tracking system in individuals with SCI (ICC > 0.98) and good agreement in controls (ICC > 0.82), excellent test-retest reliability across days in SCI (ICC = 0.93) and good in controls (ICC = 0.87). Notably, FSA values measured by both systems showed a strong association with MAS scores ( ρ  ~ -0.8) being decreased in individuals with SCI with higher MAS scores, reflecting the presence of spasticity. CONCLUSIONS: These findings suggest that our new portable IMU-based system provides a robust and flexible alternative to a camera-based optical tracking system to quantify knee extensor spasticity following SCI.


Subject(s)
Lower Extremity , Spinal Cord Injuries , Humans , Reproducibility of Results , Muscle Spasticity/etiology , Muscle Spasticity/complications , Knee , Spinal Cord Injuries/complications
16.
PLoS One ; 19(4): e0300447, 2024.
Article in English | MEDLINE | ID: mdl-38564508

ABSTRACT

Quantitative gait analysis is important for understanding the non-typical walking patterns associated with mobility impairments. Conventional linear statistical methods and machine learning (ML) models are commonly used to assess gait performance and related changes in the gait parameters. Nonetheless, explainable machine learning provides an alternative technique for distinguishing the significant and influential gait changes stemming from a given intervention. The goal of this work was to demonstrate the use of explainable ML models in gait analysis for prosthetic rehabilitation in both population- and sample-based interpretability analyses. Models were developed to classify amputee gait with two types of prosthetic knee joints. Sagittal plane gait patterns of 21 individuals with unilateral transfemoral amputations were video-recorded and 19 spatiotemporal and kinematic gait parameters were extracted and included in the models. Four ML models-logistic regression, support vector machine, random forest, and LightGBM-were assessed and tested for accuracy and precision. The Shapley Additive exPlanations (SHAP) framework was applied to examine global and local interpretability. Random Forest yielded the highest classification accuracy (98.3%). The SHAP framework quantified the level of influence of each gait parameter in the models where knee flexion-related parameters were found the most influential factors in yielding the outcomes of the models. The sample-based explainable ML provided additional insights over the population-based analyses, including an understanding of the effect of the knee type on the walking style of a specific sample, and whether or not it agreed with global interpretations. It was concluded that explainable ML models can be powerful tools for the assessment of gait-related clinical interventions, revealing important parameters that may be overlooked using conventional statistical methods.


Subject(s)
Artificial Limbs , Gait Analysis , Humans , Gait , Walking , Knee
17.
Sensors (Basel) ; 24(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38676056

ABSTRACT

This paper introduces a method for measuring 3D tibiofemoral kinematics using a multi-channel A-mode ultrasound system under dynamic conditions. The proposed system consists of a multi-channel A-mode ultrasound system integrated with a conventional motion capture system (i.e., optical tracking system). This approach allows for the non-invasive and non-radiative quantification of the tibiofemoral joint's six degrees of freedom (DOF). We demonstrated the feasibility and accuracy of this method in the cadaveric experiment. The knee joint's motions were mimicked by manually manipulating the leg through multiple motion cycles from flexion to extension. To measure it, six custom ultrasound holders, equipped with a total of 30 A-mode ultrasound transducers and 18 optical markers, were mounted on various anatomical regions of the lower extremity of the specimen. During experiments, 3D-tracked intra-cortical bone pins were inserted into the femur and tibia to measure the ground truth of tibiofemoral kinematics. The results were compared with the tibiofemoral kinematics derived from the proposed ultrasound system. The results showed an average rotational error of 1.51 ± 1.13° and a translational error of 3.14 ± 1.72 mm for the ultrasound-derived kinematics, compared to the ground truth. In conclusion, this multi-channel A-mode ultrasound system demonstrated a great potential of effectively measuring tibiofemoral kinematics during dynamic motions. Its improved accuracy, nature of non-invasiveness, and lack of radiation exposure make this method a promising alternative to incorporate into gait analysis and prosthetic kinematic measurements later.


Subject(s)
Imaging, Three-Dimensional , Knee Joint , Ultrasonography , Humans , Biomechanical Phenomena , Knee Joint/physiology , Knee Joint/diagnostic imaging , Ultrasonography/methods , Imaging, Three-Dimensional/methods , Tibia/diagnostic imaging , Tibia/physiology , Range of Motion, Articular/physiology , Femur/physiology , Femur/diagnostic imaging , Knee/physiology , Knee/diagnostic imaging
18.
Sensors (Basel) ; 24(8)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38676262

ABSTRACT

Knee rehabilitation therapy after trauma or neuromotor diseases is fundamental to restore the joint functions as best as possible, exoskeleton robots being an important resource in this context, since they optimize therapy by applying tailored forces to assist or resist movements, contributing to improved patient outcomes and treatment efficiency. One of the points that must be taken into account when using robots in rehabilitation is their interaction with the patient, which must be safe for both and guarantee the effectiveness of the treatment. Therefore, the objective of this study was to assess the interaction between humans and an exoskeleton during the execution of knee flexion-extension movements under various configurations of robot assistance and resistance. The evaluation encompassed considerations of myoelectric activity, muscle recruitment, robot torque, and performed movement. To achieve this, an experimental protocol was implemented, involving an individual wearing the exoskeleton and executing knee flexion-extension motions while seated, with the robot configured in five distinct modes: passive (P), assistance on flexion (FA), assistance on extension (EA), assistance on flexion and extension (CA), and resistance on flexion and extension (CR). Results revealed distinctive patterns of movement and muscle recruitment for each mode, highlighting the complex interplay between human and robot; for example, the largest RMS tracking errors were for the EA mode (13.72 degrees) while the smallest for the CR mode (4.47 degrees), a non-obvious result; in addition, myoelectric activity was demonstrated to be greater for the completely assisted mode than without the robot (the maximum activation levels for the vastus medialis and vastus lateralis muscles were more than double those when the user had assistance from the robot). Tracking errors, muscle activations, and torque values varied across modes, emphasizing the need for careful consideration in configuring exoskeleton assistance and resistance to ensure effective and safe rehabilitation. Understanding these human-robot interactions is essential for developing precise rehabilitation programs, optimizing treatment effectiveness, and enhancing patient safety.


Subject(s)
Exoskeleton Device , Knee Joint , Robotics , Humans , Robotics/methods , Knee Joint/physiology , Male , Range of Motion, Articular/physiology , Biomechanical Phenomena , Electromyography/methods , Adult , Torque , Muscle, Skeletal/physiology , Knee/physiology , Movement/physiology
19.
Exp Physiol ; 109(6): 915-925, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38595307

ABSTRACT

Post-activation potentiation (PAP) is defined as an enhanced contractile response of a muscle following its own contractile activity and is influenced by the intensity and duration of the conditioning contraction. The aim of this study was to determine if the combination of intensity and duration, that is, torque-time integral (TTI) is a determinant of PAP amplitude. We compared PAP amplitude following low-to-maximal voluntary conditioning contraction intensities with and without similar TTI in the knee extensors. Twelve healthy males completed two experimental sessions. Femoral nerve stimulation was applied to evoke single twitches on the relaxed quadriceps before and after isometric conditioning contractions of knee extensors. In one session, participants performed conditioning contractions without similar TTI (6 s at 100, 80, 60, 40 and 20% maximal voluntary contraction (MVC)), while they performed conditioning contractions with similar TTI in the other session (6 s at 100%, 7.5 s at 80%, 10 s at 60%, 15 s at 40%, and 30 s at 20% MVC). In both sessions, PAP amplitude was related to conditioning contraction intensity. The higher the conditioning contraction intensity with or without similar TTI, the higher PAP. Significant correlations were found (i) between PAP and conditioning contraction intensity with (r2 = 0.70; P < 0.001) or without similar TTI (r2 = 0.64; P < 0.001), and (ii) between PAP with and without similar TTI (r2 = 0.82; P < 0.001). The results provide evidence that TTI has a minor influence on PAP in the knee extensors. This suggests that to optimize the effect of PAP, it is more relevant to control the intensity of the contraction rather than the TTI.


Subject(s)
Isometric Contraction , Torque , Humans , Male , Isometric Contraction/physiology , Adult , Young Adult , Quadriceps Muscle/physiology , Electric Stimulation/methods , Knee/physiology , Muscle, Skeletal/physiology , Electromyography/methods , Muscle Contraction/physiology , Femoral Nerve/physiology
20.
Percept Mot Skills ; 131(3): 805-817, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38613514

ABSTRACT

Single-leg knee crutches are a relatively new, hands-free mobility assistive device with benefits over standard axillary crutches. Our main goal in this study was to evaluate balance ability in a healthy population upon first exposure to the knee crutch device. We had 20 healthy individuals (M age = 21.1; SD = 1.5 years) complete baseline static and dynamic balance tests on a force plate, followed by knee crutch fitting, a self-selected duration of ambulation practice, and another round of balance testing while wearing the knee crutch. We used the BTrackS Balance Test (BBT) to measure static balance, and the BTrackS Limits of Stability (BLOS) test to measure dynamic balance, and we created a custom lateral bias score from the BLOS results. On average, participants self-selected 3.1 minutes of ambulation practice. Wearing the knee crutch caused a near doubling of static balance path length and a large reduction in percentile ranking on the BBT. Dynamic balance area was more than halved (p < .001), with lateral bias scores during the BLOS, indicating that participants heavily favored their non-crutched leg (p < .001). Our results indicate that static and dynamic balance were significantly altered when wearing the knee crutch, and participants seemed to switch to a single leg stance strategy. Despite these balance changes, participants were quickly ready and willing to complete independent ambulation and balance testing procedures using the single-leg knee crutch.


Subject(s)
Crutches , Postural Balance , Humans , Postural Balance/physiology , Male , Female , Young Adult , Adult , Knee/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...