Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Microbiol ; 4(4): 614-622, 2019 04.
Article in English | MEDLINE | ID: mdl-30833730

ABSTRACT

Phylogenetic and geological evidence supports the hypothesis that life on Earth originated in thermal environments and conserved energy through methanogenesis or sulfur reduction. Here we describe two populations of the deeply rooted archaeal phylum Korarchaeota, which were retrieved from the metagenome of a circumneutral, suboxic hot spring that contains high levels of sulfate, sulfide, methane, hydrogen and carbon dioxide. One population is closely related to 'Candidatus Korarchaeum cryptofilum OPF8', while the more abundant korarchaeote, 'Candidatus Methanodesulfokores washburnensis', contains genes that are necessary for anaerobic methane and dissimilatory sulfur metabolisms. Phylogenetic and ancestral reconstruction analyses suggest that methane metabolism originated in the Korarchaeota, whereas genes for dissimilatory sulfite reduction were horizontally transferred to the Korarchaeota from the Firmicutes. Interactions among enzymes involved in both metabolisms could facilitate exergonic, sulfite-dependent, anaerobic oxidation of methane to methanol; alternatively, 'Ca. M. washburnensis' could conduct methanogenesis and sulfur reduction independently. Metabolic reconstruction suggests that 'Ca. M. washburnensis' is a mixotroph, capable of amino acid uptake, assimilation of methane-derived carbon and/or CO2 fixation by archaeal type III-b RuBisCO for scavenging ribose carbon. Our findings link anaerobic methane metabolism and dissimilatory sulfur reduction within a single deeply rooted archaeal population and have implications for the evolution of these traits throughout the Archaea.


Subject(s)
Genome, Archaeal , Korarchaeota/genetics , Korarchaeota/metabolism , Methane/metabolism , Sulfur/metabolism , Anaerobiosis , Genomics , Hydrogen/metabolism , Korarchaeota/classification , Oxidation-Reduction , Phylogeny
2.
PLoS One ; 7(5): e35964, 2012.
Article in English | MEDLINE | ID: mdl-22574130

ABSTRACT

Over 100 hot spring sediment samples were collected from 28 sites in 12 areas/regions, while recording as many coincident geochemical properties as feasible (>60 analytes). PCR was used to screen samples for Korarchaeota 16S rRNA genes. Over 500 Korarchaeota 16S rRNA genes were screened by RFLP analysis and 90 were sequenced, resulting in identification of novel Korarchaeota phylotypes and exclusive geographical variants. Korarchaeota diversity was low, as in other terrestrial geothermal systems, suggesting a marine origin for Korarchaeota with subsequent niche-invasion into terrestrial systems. Korarchaeota endemism is consistent with endemism of other terrestrial thermophiles and supports the existence of dispersal barriers. Korarchaeota were found predominantly in >55°C springs at pH 4.7-8.5 at concentrations up to 6.6×10(6) 16S rRNA gene copies g(-1) wet sediment. In Yellowstone National Park (YNP), Korarchaeota were most abundant in springs with a pH range of 5.7 to 7.0. High sulfate concentrations suggest these fluids are influenced by contributions from hydrothermal vapors that may be neutralized to some extent by mixing with water from deep geothermal sources or meteoric water. In the Great Basin (GB), Korarchaeota were most abundant at spring sources of pH<7.2 with high particulate C content and high alkalinity, which are likely to be buffered by the carbonic acid system. It is therefore likely that at least two different geological mechanisms in YNP and GB springs create the neutral to mildly acidic pH that is optimal for Korarchaeota. A classification support vector machine (C-SVM) trained on single analytes, two analyte combinations, or vectors from non-metric multidimensional scaling models was able to predict springs as Korarchaeota-optimal or sub-optimal habitats with accuracies up to 95%. To our knowledge, this is the most extensive analysis of the geochemical habitat of any high-level microbial taxon and the first application of a C-SVM to microbial ecology.


Subject(s)
Artificial Intelligence , Biodiversity , Ecological and Environmental Phenomena , Hot Springs , Korarchaeota/classification , Phylogeography , Ecosystem , Hot Springs/chemistry , Hydrogen-Ion Concentration , Korarchaeota/genetics , Temperature , Water/chemistry
3.
Extremophiles ; 15(1): 105-16, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21153671

ABSTRACT

The candidate archaeal division Korarchaeota is known primarily from deeply branching sequences of 16S rRNA genes PCR-amplified from hydrothermal springs. Parallels between the phylogeny of these genes and the geographic locations where they were identified suggested that Korarchaeota exhibit a high level of endemism. In this study, the influence of geographic isolation and select environmental factors on the diversification of the Korarchaeota was investigated. Fourteen hot springs from three different regions of Kamchatka, Russia were screened by PCR using Korarchaeota-specific and general Archaea 16S rRNA gene-targeting primers, cloning, and sequencing. Phylogenetic analyses of these sequences with Korarchaeota 16S rRNA sequences previously identified from around the world suggested that all Kamchatka sequences cluster together in a unique clade that subdivides by region within the peninsula. Consistent with endemism, 16S rRNA gene group-specific quantitative PCR of all Kamchatka samples detected only the single clade of Korarchaeota that was found by the non-quantitative PCR screening. In addition, their genes were measured in only low numbers; small Korarchaeota populations would present fewer chances for dispersal to and colonization of other sites. Across the entire division of Korarchaeota, common geographic locations, temperatures, or salinities of identification sites united sequence clusters at different phylogenetic levels, suggesting varied roles of these factors in the diversification of Korarchaeota.


Subject(s)
Hot Springs/microbiology , Korarchaeota/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Water Microbiology , Siberia
4.
ISME J ; 4(3): 346-56, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19956276

ABSTRACT

Korarchaeota constitute a recently proposed and little characterized kingdom of Archaea that might have diverged before the lineages of Crenarchaeota and Euryarchaeota split. To assess the diversity, distribution and abundance of Korarchaeota, we analysed 19 terrestrial hot springs in Hveragerdi and Krysuvik, Iceland, and in Kamchatka, Russia. The springs were 70-97 degrees C with pH 2.5-6.5. Out of 19 springs, 12 tested positive for Korarchaeota with specific primers. A Korarchaeota 16S rDNA library was made from each of these. From the 301 clones sequenced, 87 unique sequences were obtained from Iceland and 33 from Kamchatka. The similarity between Kamchatkan and Icelandic 16S rDNA sequences and that of Candidatus Korarchaeum cryptofilum was

Subject(s)
Biodiversity , Hot Springs/microbiology , Korarchaeota/classification , Korarchaeota/isolation & purification , Cell Count , Cluster Analysis , DNA, Archaeal/chemistry , DNA, Archaeal/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Genes, rRNA , Iceland , Korarchaeota/genetics , Molecular Sequence Data , Phylogeny , RNA, Archaeal/genetics , RNA, Ribosomal, 16S/genetics , Russia , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid
5.
Proc Natl Acad Sci U S A ; 105(23): 8102-7, 2008 Jun 10.
Article in English | MEDLINE | ID: mdl-18535141

ABSTRACT

The candidate division Korarchaeota comprises a group of uncultivated microorganisms that, by their small subunit rRNA phylogeny, may have diverged early from the major archaeal phyla Crenarchaeota and Euryarchaeota. Here, we report the initial characterization of a member of the Korarchaeota with the proposed name, "Candidatus Korarchaeum cryptofilum," which exhibits an ultrathin filamentous morphology. To investigate possible ancestral relationships between deep-branching Korarchaeota and other phyla, we used whole-genome shotgun sequencing to construct a complete composite korarchaeal genome from enriched cells. The genome was assembled into a single contig 1.59 Mb in length with a G + C content of 49%. Of the 1,617 predicted protein-coding genes, 1,382 (85%) could be assigned to a revised set of archaeal Clusters of Orthologous Groups (COGs). The predicted gene functions suggest that the organism relies on a simple mode of peptide fermentation for carbon and energy and lacks the ability to synthesize de novo purines, CoA, and several other cofactors. Phylogenetic analyses based on conserved single genes and concatenated protein sequences positioned the korarchaeote as a deep archaeal lineage with an apparent affinity to the Crenarchaeota. However, the predicted gene content revealed that several conserved cellular systems, such as cell division, DNA replication, and tRNA maturation, resemble the counterparts in the Euryarchaeota. In light of the known composition of archaeal genomes, the Korarchaeota might have retained a set of cellular features that represents the ancestral archaeal form.


Subject(s)
Biological Evolution , Genome, Archaeal/genetics , Korarchaeota/genetics , Cell Cycle , DNA Replication , Energy Metabolism , Evolution, Molecular , Korarchaeota/cytology , Korarchaeota/ultrastructure , Phylogeny , Protein Biosynthesis , Sequence Analysis, DNA , Transcription, Genetic
7.
Biol Direct ; 2: 38, 2007 Dec 14.
Article in English | MEDLINE | ID: mdl-18081935

ABSTRACT

Although most of the key components of the transcription apparatus, and in particular, RNA polymerase (RNAP) subunits, are conserved between archaea and eukaryotes, no archaeal homologs of the small RPB8 subunit of eukaryotic RNAP have been detected. We report that orthologs of RPB8 are encoded in all sequenced genomes of hyperthermophilic Crenarchaeota and a recently sequenced "korarchaeal" genome, but not in Euryarchaeota or the mesophilic crenarchaeon Cenarchaeum symbiosum. These findings suggest that all 12 core subunits of eukaryotic RNAPs were already present in the last common ancestor of the extant archaea.


Subject(s)
Crenarchaeota/genetics , DNA-Directed RNA Polymerases/genetics , Evolution, Molecular , Genome, Archaeal , Korarchaeota/genetics , Amino Acid Sequence , Archaeal Proteins/genetics , Eukaryotic Cells , Molecular Sequence Data , Phylogeny , Protein Structure, Secondary , RNA, Archaeal/genetics , Sequence Homology, Amino Acid
8.
Appl Environ Microbiol ; 72(7): 5077-82, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16820509

ABSTRACT

The environmental distribution and phylogeny of "Korarchaeota," a proposed ancient archaeal division, was investigated by using the 16S rRNA gene framework. Korarchaeota-specific primers were designed based on previously published sequences and used to screen a variety of environments. Korarchaeota 16S rRNA genes were amplified exclusively from high temperature Yellowstone National Park hot springs and a 9 degrees N East Pacific Rise deep-sea hydrothermal vent. Phylogenetic analyses of these and all available sequences suggest that Korarchaeota exhibit a high level of endemicity.


Subject(s)
Hot Springs/microbiology , Korarchaeota/classification , Phylogeny , RNA, Ribosomal, 16S/genetics , Seawater/microbiology , DNA, Archaeal/analysis , Genes, rRNA , Korarchaeota/genetics , Molecular Sequence Data , Sequence Analysis, DNA
9.
Extremophiles ; 4(1): 61-7, 2000 Feb.
Article in English | MEDLINE | ID: mdl-10741838

ABSTRACT

The use of molecular phylogenetic approaches in microbial ecology has revolutionized our view of microbial diversity at high temperatures and led to the proposal of a new kingdom within the Archaea, namely, the "Korarchaeota." We report here the occurrence of another member of this archaeal group and a deeply rooted bacterial sequence from a thermal spring in Yellowstone National Park (USA). The DNA of a mixed community growing at 83 degrees C, pH 7.6, was extracted and the small subunit ribosomal RNA gene (16S rDNA) sequences were obtained using the polymerase chain reaction. The products were cloned and five different phylogenetic types ("phylotypes") were identified: four archaeal phylotypes, designated pBA1, pBA2, pBA3, and pBA5, and only one bacterial phylotype, designated pBB. pBA5 is very closely related to the korarchaeotal phylotype, pJP27, from Obsidian Pool in Yellowstone National Park. The pBB phylotype is a lineage within the Aquificales and, based on 16S rRNA sequence, is different enough from the members of the Aquificales to constitute a different genus. In situ hybridization with bacterial-specific and Aquificales-specific fluorescent oligonucleotide probes indicated the bacterial population dominated the community and most likely contributed significantly to biogeochemical cycling within the community.


Subject(s)
Archaea/classification , Korarchaeota/classification , Archaea/genetics , Biological Evolution , DNA, Archaeal/genetics , DNA, Bacterial/genetics , In Situ Hybridization , Korarchaeota/genetics , Microscopy, Fluorescence , Mutation , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Temperature , Wyoming
SELECTION OF CITATIONS
SEARCH DETAIL
...