Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Theranostics ; 10(25): 11562-11579, 2020.
Article in English | MEDLINE | ID: mdl-33052233

ABSTRACT

Background: The ischemia/reperfusion (I/R) process in patients with ST-segment elevation myocardial infarction (STEMI) triggers an immune response, resulting in myocyte death. Krüppel-Like Factor 2 (KLF2), which is highly expressed in endothelial cells (ECs) under laminar flow, exerts anti-inflammatory effects. In this study, we explored the role of small extracellular vesicles (EVs) from KLF2-overexpressing ECs (KLF2-EVs) in the immunomodulation and its implications in myocardial I/R injury. Methods and Results: The small EVs were isolated from KLF2-overexpressing ECs' supernatant using gradient centrifugation. Mice were subjected to 45 min of ischemia followed by reperfusion, and KLF2-EVs were administrated through intravenous injection. KLF2-EVs ameliorated I/R injury and alleviated inflammation level in the serum and heart. We employed the macrophage depletion model and splenectomy and showed that Ly6Chigh monocyte recruitment from bone marrow was the main target of KLF2-EVs. miRNA-sequencing of KLF2-EVs and bioinformatics analysis implicated miRNA-24-3p (miR-24-3p) as a potent candidate mediator of monocyte recruitment and CCR2 as a downstream target. miR-24-3p mimic inhibited the migration of Ly6Chigh monocytes, and miR-24-3p antagomir reversed the effect of KLF2-EVs in myocardial I/R. Conclusion: Our data demonstrated that KLF2-EVs attenuated myocardial I/R injury in mice via shuttling miR-24-3p that restrained the Ly6Chigh monocyte recruitment. Thus, KLF2-EVs could be a potential therapeutic agent for myocardial I/R injury.


Subject(s)
Kruppel-Like Transcription Factors/metabolism , MicroRNAs/metabolism , Myocardial Reperfusion Injury/immunology , Receptors, CCR2/genetics , ST Elevation Myocardial Infarction/immunology , Animals , Antigens, Ly/metabolism , Cell Movement/drug effects , Cell Movement/genetics , Cell Movement/immunology , Computational Biology , Coronary Vessels/cytology , Coronary Vessels/immunology , Coronary Vessels/pathology , Disease Models, Animal , Extracellular Vesicles/metabolism , Extracellular Vesicles/transplantation , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Kruppel-Like Transcription Factors/administration & dosage , Macrophages/immunology , Mice , MicroRNAs/agonists , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/prevention & control , Receptors, CCR2/immunology , ST Elevation Myocardial Infarction/complications , ST Elevation Myocardial Infarction/drug therapy , ST Elevation Myocardial Infarction/pathology
2.
Neurobiol Dis ; 99: 24-35, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27988344

ABSTRACT

Axon regeneration in the central nervous system is limited both by inhibitory extracellular cues and by an intrinsically low capacity for axon growth in some CNS populations. Chondroitin sulfate proteoglycans (CSPGs) are well-studied inhibitors of axon growth in the CNS, and degradation of CSPGs by chondroitinase has been shown to improve the extension of injured axons. Alternatively, axon growth can be improved by targeting the neuron-intrinsic growth capacity through forced expression of regeneration-associated transcription factors. For example, a transcriptionally active chimera of Krüppel-like Factor 7 (KLF7) and a VP16 domain improves axon growth when expressed in corticospinal tract neurons. Here we tested the hypothesis that combined expression of chondroitinase and VP16-KLF7 would lead to further improvements in axon growth after spinal injury. Chondroitinase was expressed by viral transduction of cells in the spinal cord, while VP16-KLF7 was virally expressed in sensory neurons of the dorsal root ganglia or corticospinal tract (CST) neurons. After transection of the dorsal columns, both chondroitinase and VP16-KLF7 increased the proximity of severed sensory axons to the injury site. Similarly, after complete crush injuries, VP16-KLF7 expression increased the approach of CST axons to the injury site. In neither paradigm however, did single or combined treatment with chondroitinase or VP16-KLF7 enable regenerative growth distal to the injury. These results substantiate a role for CSPG inhibition and low KLF7 activity in determining the net retraction of axons from sites of spinal injury, while suggesting that additional factors act to limit a full regenerative response.


Subject(s)
Axons/metabolism , Chondroitin ABC Lyase/administration & dosage , Kruppel-Like Transcription Factors/administration & dosage , Neurons, Afferent/metabolism , Pyramidal Tracts/metabolism , Spinal Cord Injuries/therapy , Animals , Axons/pathology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Chondroitin ABC Lyase/genetics , Chondroitin ABC Lyase/metabolism , Disease Models, Animal , Female , Ganglia, Spinal/metabolism , Ganglia, Spinal/pathology , Genetic Therapy , Genetic Vectors , HEK293 Cells , Humans , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Mice, Inbred C57BL , Mutant Chimeric Proteins/genetics , Mutant Chimeric Proteins/metabolism , Neuronal Outgrowth/physiology , Neurons, Afferent/pathology , Proteus vulgaris , Pyramidal Tracts/pathology , Sciatic Nerve/injuries , Sciatic Nerve/metabolism , Sciatic Nerve/pathology , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...