Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.568
Filter
1.
Int J Mol Sci ; 25(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38791514

ABSTRACT

Supplementation with fish oil rich in omega-3 polyunsaturated fatty acids (n-3 PUFAs) effectively reduces acute and chronic alcohol-induced hepatic steatosis. We aimed to find molecular mechanisms underlying the effects of n-3 PUFAs in alcohol-induced hepatic steatosis. Because free fatty acid receptor 4 (FFA4, also known as GPR120) has been found as a receptor for n-3 PUFAs in an ethanol-induced liver steatosis model, we investigated whether n-3 PUFAs protect against liver steatosis via FFA4 using AH7614, an FFA4 antagonist, and Ffa4 knockout (KO) mice. N-3 PUFAs and compound A (CpdA), a selective FFA4 agonist, reduced the ethanol-induced increase in lipid accumulation in hepatocytes, triglyceride content, and serum ALT levels, which were not observed in Ffa4 KO mice. N-3 PUFAs and CpdA also reduced the ethanol-induced increase in lipogenic sterol regulatory element-binding protein-1c expression in an FFA4-dependent manner. In Kupffer cells, treatment with n-3 PUFA and CpdA reversed the ethanol-induced increase in tumor necrosis factor-α, cyclooxygenase-2, and NLR family pyrin domain-containing 3 expression levels in an FFA4-dependent manner. In summary, n-3 PUFAs protect against ethanol-induced hepatic steatosis via the anti-inflammatory actions of FFA4 on Kupffer cells. Our findings suggest FFA4 as a therapeutic target for alcoholic hepatic steatosis.


Subject(s)
Ethanol , Fatty Acids, Omega-3 , Fatty Liver, Alcoholic , Kupffer Cells , Mice, Knockout , Receptors, G-Protein-Coupled , Animals , Fatty Acids, Omega-3/pharmacology , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Mice , Kupffer Cells/metabolism , Kupffer Cells/drug effects , Fatty Liver, Alcoholic/metabolism , Fatty Liver, Alcoholic/prevention & control , Fatty Liver, Alcoholic/drug therapy , Male , Mice, Inbred C57BL , Hepatocytes/metabolism , Hepatocytes/drug effects , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Protective Agents/pharmacology , Triglycerides/metabolism
2.
Front Immunol ; 15: 1232070, 2024.
Article in English | MEDLINE | ID: mdl-38638443

ABSTRACT

Chronic liver diseases, such as non-alcoholic steatohepatitis (NASH)-induced cirrhosis, are characterized by an increasing accumulation of stressed, damaged, or dying hepatocytes. Hepatocyte damage triggers the activation of resident immune cells, such as Kupffer cells (KC), as well as the recruitment of immune cells from the circulation toward areas of inflammation. After infiltration, monocytes differentiate into monocyte-derived macrophages (MoMF) which are functionally distinct from resident KC. We herein aim to compare the in vitro signatures of polarized macrophages and activated hepatic stellate cells (HSC) with ex vivo-derived disease signatures from human NASH. Furthermore, to shed more light on HSC activation and liver fibrosis progression, we investigate the effects of the secretome from primary human monocytes, macrophages, and NK cells on HSC activation. Interleukin (IL)-4 and IL-13 treatment induced transforming growth factor beta 1 (TGF-ß1) secretion by macrophages. However, the supernatant transfer did not induce HSC activation. Interestingly, PMA-activated macrophages showed strong induction of the fibrosis response genes COL10A1 and CTGF, while the supernatant of IL-4/IL-13-treated monocytes induced the upregulation of COL3A1 in HSC. The supernatant of PMA-activated NK cells had the strongest effect on COL10A1 induction in HSC, while IL-15-stimulated NK cells reduced the expression of COL1A1 and CTGF. These data indicate that other factors, aside from the well-known cytokines and chemokines, might potentially be stronger contributors to the activation of HSCs and induction of a fibrotic response, indicating a more diverse and complex role of monocytes, macrophages, and NK cells in liver fibrosis progression.


Subject(s)
Kupffer Cells , Non-alcoholic Fatty Liver Disease , Humans , Kupffer Cells/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Interleukin-13/metabolism , Secretome , Macrophages , Liver Cirrhosis , Killer Cells, Natural/metabolism
3.
Immunol Cell Biol ; 102(5): 381-395, 2024.
Article in English | MEDLINE | ID: mdl-38629182

ABSTRACT

Resident macrophages of various mammalian organs are characterized by several distinctive features in their gene expression profile and phenotype, including involvement in the regulation of organ functions, as well as reduced sensitivity to proinflammatory activation factors. The reasons for the formation of such a specific phenotype remain the subject of intensive research. Some papers emphasize the role of the origin of organ macrophages. Other studies indicate that monocytes that develop in the red bone marrow are also able to form resident macrophages with a phenotype characteristic of a particular organ, but this requires appropriate microenvironmental conditions. In this article, we studied the possibility of differentiation of monocyte-derived macrophages into cells with a Kupffer-like phenotype under the influence of the main stromal components of Kupffer cells macrophage niche: Ito cells, liver sinusoid endotheliocytes and hepatocyte growth factor (HGF). It was found that Kupffer cells are characterized by several features, including increased expression of transcription factors Spic and Id3, as well as MUP family genes, Clusterin and Ngp genes. In addition, Kupffer cells were characterized by a higher proliferative activity. The expression of marker genes of Kupffer cells (i.e. Id3, Spic, Marco and Timd4) increased in monocyte-derived macrophages during coculture with Ito cells, liver sinusoid endothelial cells, macrophage colony-stimulating factor and HGF cells only by 3 days. However, the expression level of these genes was always higher in Kupffer cells. In addition, a complete coincidence of the expressed gene profile in monocyte-derived macrophages and Kupffer cells did not occur even after 3 days of culturing.


Subject(s)
Cell Differentiation , Cellular Microenvironment , Kupffer Cells , Macrophages , Phenotype , Kupffer Cells/metabolism , Kupffer Cells/cytology , Macrophages/metabolism , Animals , Monocytes/metabolism , Monocytes/cytology , Hepatocyte Growth Factor/metabolism , Endothelial Cells/metabolism , Coculture Techniques , Humans , Cell Proliferation , Cells, Cultured , Liver/cytology , Liver/metabolism , Mice
4.
Am J Physiol Cell Physiol ; 326(5): C1556-C1562, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38618702

ABSTRACT

Healthy livers contain 80% of body resident macrophages known as Kupffer cells. In diseased livers, the number of Kupffer cells usually drops but is compensated by infiltration of monocyte-derived macrophages, some of which can differentiate into Kupffer-like cells. Early studies suggest that Kupffer cells play important roles in both promoting liver injury and liver regeneration. Yet, the distinction between the functionalities of resident and infiltrating macrophages is not always made. By using more specific macrophage markers and targeted cell depletion and single-cell RNA sequencing, recent studies revealed several subsets of monocyte-derived macrophages that play important functions in inducing liver damage and inflammation as well as in liver repair and regeneration. In this review, we discuss the different roles that hepatic macrophages play in promoting necrotic liver lesion resolution and dead cell clearance, as well as the targeting of these cells as potential tools for the development of novel therapies for acute liver failure and acute-on-chronic liver failure.


Subject(s)
Kupffer Cells , Liver Regeneration , Liver , Necrosis , Humans , Animals , Liver/pathology , Liver/metabolism , Kupffer Cells/metabolism , Kupffer Cells/pathology , Macrophages/metabolism , Macrophages/pathology , Macrophages/immunology
5.
Parasit Vectors ; 17(1): 163, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553755

ABSTRACT

BACKGROUND: Alveolar echinococcosis (AE) is an important infectious disease caused by the metacestode larvae of Echinococcus multilocularis, seriously threatening global public health security. Kupffer cells (KCs) play important roles in liver inflammatory response. However, their role in hepatic alveolar echinococcosis has not yet been fully elucidated. METHODS: In this study, qRT-PCR was used to detect the expression level of miR-374b-5p in KCs. The target gene of miR-374b-5p was identified through luciferase reporter assays and loss of function and gains. Critical genes involved in NFκB signaling pathway were analyzed by qRT-PCR and western blot. RESULTS: This study reported that miR-374b-5p was significantly upregulated in KCs during E. multilocularis infection and further showed that miR-374b-5p was able to bind to the 3'-UTR of the C/EBP ß gene and suppressed its expression. The expression levels of NF-κBp65, p-NF-κBp65 and pro-inflammatory factors including iNOS, TNFα and IL6 were attenuated after overexpression of miR-374b-5p while enhanced after suppression of miR-374b-5p. However, the Arg1 expression level was promoted after overexpression of miR-374b-5p while suppressed after downregulation of miR-374b-5p. Additionally, increased protein levels of NF-κBp65 and p-NF-κBp65 were found in the C/EBP ß-overexpressed KCs. CONCLUSIONS: These results demonstrated that miR-374b-5p probably regulated the expression of inflammatory factors via C/EBP ß/NF-κB signaling. This finding is helpful to explore the mechanism of inflammation regulation during E. multilocularis infection.


Subject(s)
Echinococcosis , MicroRNAs , NF-kappa B , Animals , NF-kappa B/genetics , NF-kappa B/metabolism , Down-Regulation , MicroRNAs/genetics , MicroRNAs/metabolism , Kupffer Cells/metabolism , Signal Transduction
6.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167130, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38537684

ABSTRACT

Hepatic ischemia-reperfusion injury(HIRI) remains to be an unsolved risk factor that contributes to organ failure after liver surgery. Our clinical retrospective study showed that lower donor liver CX3-C chemokine receptor-1(CX3CR1) mRNA expression level were correlated with upregulated pro-resolved macrophage receptor MERTK, as well as promoted restoration efficiency of allograft injury in liver transplant. To further characterize roles of CX3CR1 in regulating resolution of HIRI, we employed murine liver partial warm ischemia-reperfusion model by Wt & Cx3cr1-/- mice and the reperfusion time was prolonged from 6 h to 4-7 days. Kupffer cells(KCs) were depleted by clodronate liposome(CL) in advance to focus on infiltrating macrophages, and repopulation kinetics were determined by FACS, IF and RNA-Seq. CX3CR1 antagonist AZD8797 was injected i.p. to interrogate potential pharmacological therapeutic strategies. In vitro primary bone marrow macrophages(BMMs) culture by LXR agonist DMHCA, as well as molecular and functional studies, were undertaken to dissect roles of CX3CR1 in modulating macrophages cytobiological development and resolutive functions. We observed that deficiency or pharmacological inhibition of CX3CR1 facilitated HIRI resolution via promoted macrophages migration in CCR1/CCR5 manner, as well as enhanced MerTK-mediated efferocytosis. Our study demonstrated the critical roles of CX3CR1 in progression of HIRI and identified it as a potential therapeutic target in clinical liver transplantation.


Subject(s)
CX3C Chemokine Receptor 1 , Liver , Mice, Knockout , Reperfusion Injury , Animals , CX3C Chemokine Receptor 1/metabolism , CX3C Chemokine Receptor 1/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Reperfusion Injury/genetics , Mice , Liver/metabolism , Liver/pathology , Male , Humans , Kupffer Cells/metabolism , Kupffer Cells/pathology , c-Mer Tyrosine Kinase/genetics , c-Mer Tyrosine Kinase/metabolism , Liver Transplantation , Macrophages/metabolism , Macrophages/pathology , Mice, Inbred C57BL , Homeostasis , Disease Models, Animal
7.
Apoptosis ; 29(5-6): 635-648, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38393643

ABSTRACT

Patients with metastatic colorectal cancer often have poor outcomes, primarily due to hepatic metastasis. Colorectal cancer (CRC) cells have the ability to secrete cytokines and other molecules that can remodel the tumor microenvironment, facilitating the spread of cancer to the liver. Kupffer cells (KCs), which are macrophages in the liver, can be polarized to M2 type, thereby promoting the expression of adhesion molecules that aid in tumor metastasis. Our research has shown that huachanshu (with bufalin as the main active monomer) can effectively inhibit CRC metastasis. However, the underlying mechanism still needs to be thoroughly investigated. We have observed that highly metastatic CRC cells have a greater ability to induce M2-type polarization of Kupffer cells, leading to enhanced metastasis. Interestingly, we have found that inhibiting the expression of IL-6, which is highly expressed in the serum, can reverse this phenomenon. Notably, bufalin has been shown to attenuate the M2-type polarization of Kupffer cells induced by highly metastatic Colorectal cancer (mCRC) cells and down-regulate IL-6 expression, ultimately inhibiting tumor metastasis. In this project, our aim is to study how high mCRC cells induce M2-type polarization and how bufalin, via the SRC-3/IL-6 pathway, can inhibit CRC metastasis. This research will provide a theoretical foundation for understanding the anti-CRC effect of bufalin.


Subject(s)
Bufanolides , Colonic Neoplasms , Interleukin-6 , Kupffer Cells , Liver Neoplasms , Kupffer Cells/drug effects , Kupffer Cells/metabolism , Bufanolides/pharmacology , Bufanolides/therapeutic use , Liver Neoplasms/secondary , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Humans , Animals , Interleukin-6/metabolism , Interleukin-6/genetics , Colonic Neoplasms/pathology , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Colonic Neoplasms/genetics , Cell Line, Tumor , Mice , Antineoplastic Agents/pharmacology , Tumor Microenvironment/drug effects , Cell Polarity/drug effects , Neoplasm Metastasis
8.
J Leukoc Biol ; 115(6): 1070-1083, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38366630

ABSTRACT

FICZ (6-formylindolo[3,2-b]carbazole) is a potent aryl hydrocarbon receptor agonist that has a poorly understood function in the regulation of inflammation. In this study, we investigated the effect of aryl hydrocarbon receptor activation by FICZ in a murine model of autoimmune hepatitis induced by concanavalin A. High-throughput sequencing techniques such as single-cell RNA sequencing and assay for transposase accessible chromatin sequencing were used to explore the mechanisms through which FICZ induces its effects. FICZ treatment attenuated concanavalin A-induced hepatitis, evidenced by decreased T-cell infiltration, decreased circulating alanine transaminase levels, and suppression of proinflammatory cytokines. Concanavalin A revealed an increase in natural killer T cells, T cells, and mature B cells upon concanavalin A injection while FICZ treatment reversed the presence of these subsets. Surprisingly, concanavalin A depleted a subset of CD55+ B cells, while FICZ partially protected this subset. The immune cells showed significant dysregulation in the gene expression profiles, including diverse expression of migratory markers such as CCL4, CCL5, and CXCL2 and critical regulatory markers such as Junb. Assay for transposase accessible chromatin sequencing showed more accessible chromatin in the CD3e promoter in the concanavalin A-only group as compared to the naive and concanavalin A-exposed, FICZ-treated group. While there was overall more accessible chromatin of the Adgre1 (F4/80) promoter in the FICZ-treated group, we observed less open chromatin in the Itgam (CD11b) promoter in Kupffer cells, supporting the ability of FICZ to reduce the infiltration of proinflammatory cytokine producing CD11b+ Kupffer cells. Taken together, these data demonstrate that aryl hydrocarbon receptor activation by FICZ suppresses liver injury through the limitation of CD3+ T-cell activation and CD11b+ Kupffer cell infiltration.


Subject(s)
CD11b Antigen , Carbazoles , Concanavalin A , Kupffer Cells , Lymphocyte Activation , Receptors, Aryl Hydrocarbon , T-Lymphocytes , Animals , Concanavalin A/pharmacology , Carbazoles/pharmacology , Kupffer Cells/metabolism , Kupffer Cells/drug effects , Kupffer Cells/pathology , Lymphocyte Activation/drug effects , Receptors, Aryl Hydrocarbon/metabolism , Mice , CD11b Antigen/metabolism , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Hepatitis, Autoimmune/pathology , Hepatitis, Autoimmune/drug therapy , Hepatitis, Autoimmune/immunology , Hepatitis, Autoimmune/metabolism , Hepatitis, Autoimmune/etiology , Mice, Inbred C57BL , Ligands , Male , Cytokines/metabolism
9.
Sci Rep ; 14(1): 4020, 2024 02 18.
Article in English | MEDLINE | ID: mdl-38369593

ABSTRACT

Over-consumption of fructose in adults and children has been linked to increased risk of non-alcoholic fatty liver disease (NAFLD). Recent studies have highlighted the effect of fructose on liver inflammation, fibrosis, and immune cell activation. However, little work summarizes the direct impact of fructose on macrophage infiltration, phenotype, and function within the liver. We demonstrate that chronic fructose diet decreased Kupffer cell populations while increasing transitioning monocytes. In addition, fructose increased fibrotic gene expression of collagen 1 alpha 1 (Col1a1) and tissue metallopeptidase inhibitor 1 (Timp1) as well as inflammatory gene expression of tumor necrosis factor alpha (Tnfa) and expression of transmembrane glycoprotein NMB (Gpnmb) in liver tissue compared to glucose and control diets. Single cell RNA sequencing (scRNAseq) revealed fructose elevated expression of matrix metallopeptidase 12 (Mmp12), interleukin 1 receptor antagonist (Il1rn), and radical S-adenosyl methionine domain (Rsad2) in liver and hepatic macrophages. In vitro studies using IMKC and J774.1 cells demonstrated decreased viability when exposed to fructose. Additionally, fructose increased Gpnmb, Tnfa, Mmp12, Il1rn, and Rsad2 in unpolarized IMKC. By mass spectrometry, C13 fructose tracing detected fructose metabolites in glycolysis and the pentose phosphate pathway (PPP). Inhibition of the PPP further increased fructose induced Il6, Gpnmb, Mmp12, Il1rn, and Rsad2 in nonpolarized IMKC. Taken together, fructose decreases cell viability while upregulating resolution and anti-inflammatory associated genes in Kupffer cells.


Subject(s)
Kupffer Cells , Non-alcoholic Fatty Liver Disease , Child , Humans , Kupffer Cells/metabolism , Fructose/metabolism , Pentose Phosphate Pathway , Matrix Metalloproteinase 12/metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Fibrosis , Phenotype
10.
Nature ; 626(8000): 864-873, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38326607

ABSTRACT

Macrophage activation is controlled by a balance between activating and inhibitory receptors1-7, which protect normal tissues from excessive damage during infection8,9 but promote tumour growth and metastasis in cancer7,10. Here we report that the Kupffer cell lineage-determining factor ID3 controls this balance and selectively endows Kupffer cells with the ability to phagocytose live tumour cells and orchestrate the recruitment, proliferation and activation of natural killer and CD8 T lymphoid effector cells in the liver to restrict the growth of a variety of tumours. ID3 shifts the macrophage inhibitory/activating receptor balance to promote the phagocytic and lymphoid response, at least in part by buffering the binding of the transcription factors ELK1 and E2A at the SIRPA locus. Furthermore, loss- and gain-of-function experiments demonstrate that ID3 is sufficient to confer this potent anti-tumour activity to mouse bone-marrow-derived macrophages and human induced pluripotent stem-cell-derived macrophages. Expression of ID3 is therefore necessary and sufficient to endow macrophages with the ability to form an efficient anti-tumour niche, which could be harnessed for cell therapy in cancer.


Subject(s)
Inhibitor of Differentiation Proteins , Kupffer Cells , Neoplasms , Animals , Humans , Mice , Bone Marrow Cells/cytology , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , Cell Lineage , Induced Pluripotent Stem Cells/cytology , Inhibitor of Differentiation Proteins/deficiency , Inhibitor of Differentiation Proteins/genetics , Inhibitor of Differentiation Proteins/metabolism , Killer Cells, Natural/cytology , Killer Cells, Natural/immunology , Kupffer Cells/cytology , Kupffer Cells/immunology , Kupffer Cells/metabolism , Liver/immunology , Liver/pathology , Macrophage Activation , Neoplasm Proteins , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/therapy , Phagocytosis
11.
Int Immunopharmacol ; 128: 111497, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38241842

ABSTRACT

Sepsis is recognized as a potentially fatal condition characterized by acute organ dysfunction resulting from an imbalanced immune response to infection. Acute liver injury (ALI) arises as an inflammatory outcome of immune response dysregulation associated with sepsis. Kupffer cells, which are liver-specific macrophages, are known to have a significant impact on ALI, although the precise regulatory mechanism remains unclear. Numerous studies have showcased the regulatory impact of long non-coding RNAs (lncRNAs) on the progression of diverse ailments, yet their precise regulatory mechanisms remain predominantly unexplored. In this study, a novel long non-coding RNA (lncRNA), referred to as lncRNA 220, was discovered using high-throughput sequencing. The expression of lncRNA 220 was found to be significantly elevated in the livers of mice with lipopolysaccharide (LPS)-induced endotoxemia, specifically during the 8-hour time period. Furthermore, in Kupffer cells treated with LPS, lncRNA 220 was observed to inhibit apoptosis and autophagy by activating the PI3K-AKT-mTORC1 pathway. This effect was achieved through the reduction of X-box protein 1 unspliced (Xbp1u) mRNA stability and suppression of its translation in the context of endoplasmic reticulum stress (ERS). Ultimately, this intervention mitigated the progression of LPS-induced ALI. To summarize, our study establishes lncRNA 220 as a newly identified regulator that suppresses apoptosis and autophagy in Kupffer cells subjected to LPS treatment, indicating its potential as a molecular target for ALI in endotoxemic mice.


Subject(s)
Endotoxemia , RNA, Long Noncoding , Mice , Animals , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , RNA, Long Noncoding/genetics , Lipopolysaccharides , Phosphatidylinositol 3-Kinases/metabolism , Kupffer Cells/metabolism , Autophagy , Apoptosis
12.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167020, 2024 03.
Article in English | MEDLINE | ID: mdl-38244390

ABSTRACT

Liver sinusoidal endothelial cells (LSECs) play a crucial role in maintaining liver microcirculation and exchange of nutrients in the liver and are thought to be involved in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD). The activation of hepatic stellate cells (HSCs) and Kupffer cells (KCs) has been considered to be responsible for the onset of liver fibrosis and the aggravation of liver injury. However, the paracrine regulatory effects of LSECs in the development of MASLD, in particular the role of LSEC-derived extracellular vesicles (EVs) remains unclear. Therefore, the aim of the present study was to investigate the influence of LSEC-derived EVs on HSCs and KCs. Primary rat LSECs, HSCs and KCs were isolated from male Wistar rats. LSEC-derived EVs were isolated from conditioned medium by ultracentrifugation and analyzed by nanoparticle tracking analysis, and expression of specific markers. LSEC-derived EVs reduced the expression of activation markers in activated HSCs but did not affect quiescent HSCs. Also, LSEC-derived EVs suppressed proliferation of activated HSCs activation, as assessed by Xcelligence and BrdU assay. LSEC-derived EVs also increased the expression of inflammatory genes in HSCs that normally are lowly expression during their activation. In contrast, EVs decreased the expression of inflammatory genes in activated KCs. In summary, our results suggest that LSEC-derived EVs may attenuate the fibrogenic phenotype of activated HSCs and the inflammatory phenotype of KCs. Our results show promise for LSEC-derived EVs as therapeutic moieties to treat MASLD. In addition, these EVs might prove of diagnostic value.


Subject(s)
Extracellular Vesicles , Kupffer Cells , Rats , Animals , Male , Kupffer Cells/metabolism , Hepatic Stellate Cells/metabolism , Endothelial Cells/metabolism , Rats, Wistar , Liver/metabolism
13.
Nat Commun ; 15(1): 807, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38280848

ABSTRACT

Kupffer cells are liver resident macrophages and play critical role in fatty liver disease, yet the underlying mechanisms remain unclear. Here, we show that activation of G-protein coupled receptor 3 (GPR3) in Kupffer cells stimulates glycolysis and protects mice from obesity and fatty liver disease. GPR3 activation induces a rapid increase in glycolysis via formation of complexes between ß-arrestin2 and key glycolytic enzymes as well as sustained increase in glycolysis through transcription of glycolytic genes. In mice, GPR3 activation in Kupffer cells results in enhanced glycolysis, reduced inflammation and inhibition of high-fat diet induced obesity and liver pathogenesis. In human fatty liver biopsies, GPR3 activation increases expression of glycolytic genes and reduces expression of inflammatory genes in a population of disease-associated macrophages. These findings identify GPR3 activation as a pivotal mechanism for metabolic reprogramming of Kupffer cells and as a potential approach for treating fatty liver disease.


Subject(s)
Kupffer Cells , Non-alcoholic Fatty Liver Disease , Humans , Animals , Mice , Kupffer Cells/metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Glycolysis , Obesity/metabolism , Mice, Inbred C57BL , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism
14.
Aging (Albany NY) ; 16(2): 1374-1389, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38295303

ABSTRACT

A growing body of clinical data has shown that patients with Alzheimer's disease (AD) have symptoms such as liver dysfunction and microbial-gut-brain axis dysfunction in addition to brain pathology, presenting a systemic multisystemic pathogenesis. Considering the systemic benefits of exercise, here, we first observed the effects of long-term treadmill exercise on liver injuries in APP/PS1 transgenic AD mice and explored the potential mechanisms of the gut-liver-brain axis's role in mediating exercise's ability to reduce bacterial lipopolysaccharide (LPS) pathology in the brain. The results showed that the livers of the AD mice were in states of oxidative stress, while the mice after long-term treadmill exercise showed alleviation of their oxidative stress, their intestinal barriers were protected, and the ability of their Kupffer cells to hydrolyze LPS was improved, in addition to the accumulation of LPS in their brains being reduced. Notably, the livers of the AD mice were in immunosuppressed states, with lower pro-oxidative and antioxidative levels than the livers of the wild-type mice, while exercise increased both their oxidative and antioxidative levels. These results suggest that long-term exercise modulates hepatic redox homeostasis in AD mice, attenuates oxidative damage, and reduces the accumulation of LPS in the brain through the combined action of the intestine-liver-Kupffer cells.


Subject(s)
Alzheimer Disease , Physical Conditioning, Animal , Animals , Mice , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Brain/metabolism , Disease Models, Animal , Kupffer Cells/metabolism , Lipopolysaccharides , Liver/metabolism , Mice, Transgenic , Oxidation-Reduction , Physical Conditioning, Animal/physiology
15.
Free Radic Biol Med ; 210: 367-377, 2024 01.
Article in English | MEDLINE | ID: mdl-38052276

ABSTRACT

The pathogenesis of Autoimmune Hepatitis (AIH) is closely associated with perturbations in iron ion metabolism, during which Stimulator of Interferon Genes (STING) plays an important role. However, the precise regulatory mechanism remains elusive. In this study, we investigated the relationship between iron dysregulation and STING activation in Concanavalin A (ConA)-induced AIH liver injury. STING knockout (STING-/-) mice and AAV (Adeno-Associated virus)-Sting1-RNAi-treated mice were involved and subjected in AIH. We observed that increased iron dysregulation was linked with STING activation, but this effect was effectively reversed by the administration of iron chelating agent Desferoxamine (DFO) and the antioxidant Ferrostatin-1 (Fer-1). Notably, the iron transport protein Transferrin (TF) and Transferrin Receptor (TfR) exhibited significant accumulation in AIH along with upregulated expression of ferritin protein. Additionally, the deficiency of STING reduced hepatic iron accumulation, mitigated oxidative stress, and attenuated macrophage activation during ConA treatment. Furthermore, liver-specific knockdown of STING using AAV-Sting1-RNAi significantly ameliorated liver iron dysregulation and oxidative stress response induced by Kupffer cells (KCs). KC-derived STING exacerbates liver damage severity in AIH through promoting disturbances in hepatic iron ion metabolism as well as oxidative stress response. These findings provide valuable insights into the pathogenesis of AIH and may pave the way for potential therapeutic strategies targeting STING and iron metabolism in the future.


Subject(s)
Hepatitis, Autoimmune , Liver , Animals , Mice , Concanavalin A/toxicity , Concanavalin A/metabolism , Hepatitis, Autoimmune/drug therapy , Hepatitis, Autoimmune/pathology , Inflammation/metabolism , Kupffer Cells/metabolism , Liver/pathology
16.
Hepatology ; 79(5): 986-1004, 2024 May 01.
Article in English | MEDLINE | ID: mdl-37976384

ABSTRACT

BACKGROUND AND AIMS: Parenteral nutrition-associated cholestasis (PNAC) is an important complication in patients with intestinal failure with reduced LRH-1 expression. Here, we hypothesized that LRH-1 activation by its agonist, dilauroylphosphatidylcholine (DLPC), would trigger signal transducer and activator of transcription 6 (STAT6) signaling and hepatic macrophage polarization that would mediate hepatic protection in PNAC. APPROACH AND RESULTS: PNAC mouse model (oral DSSx4d followed by PNx14d; DSS-PN) was treated with LRH-1 agonist DLPC (30 mg/kg/day) intravenously. DLPC treatment prevented liver injury and cholestasis while inducing hepatic mRNA expression of Nr5a2 (nuclear receptor subfamily 5 group A member 2), Abcb11 (ATP binding cassette subfamily B member 11), Abcg5 (ATP-binding cassette [ABC] transporters subfamily G member 5), Abcg8 (ATP-binding cassette [ABC] transporters subfamily G member 8), nuclear receptor subfamily 0, and ATP-binding cassette subfamily C member 2 ( Abcc2) mRNA, all of which were reduced in PNAC mice. To determine the mechanism of the DLPC effect, we performed RNA-sequencing analysis of the liver from Chow, DSS-PN, and DSS-PN/DLPC mice, which revealed DLPC upregulation of the anti-inflammatory STAT6 pathway. In intrahepatic mononuclear cells or bone-marrow derived macrophages (BMDM) from PNAC mice, DLPC treatment prevented upregulation of pro-inflammatory (M1) genes, suppressed activation of NFκB and induced phosphorylation of STAT6 and its target genes, indicating M2 macrophage polarization. In vitro, incubation of DLPC with cultured macrophages showed that the increased Il-1b and Tnf induced by exposure to lipopolysaccharides or phytosterols was reduced significantly, which was associated with increased STAT6 binding to promoters of its target genes. Suppression of STAT6 expression by siRNA in THP-1 cells exposed to lipopolysaccharides, phytosterols, or both resulted in enhanced elevation of IL-1B mRNA expression. Furthermore, the protective effect of DLPC in THP-1 cells was abrogated by STAT6 siRNA. CONCLUSIONS: These results indicate that activation of LRH-1 by DLPC may protect from PNAC liver injury through STAT6-mediated macrophage polarization.


Subject(s)
Cholestasis , Phosphatidylcholines , Phytosterols , Humans , Mice , Animals , Lipoproteins/metabolism , STAT6 Transcription Factor/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Cholestasis/etiology , ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 8/metabolism , Kupffer Cells/metabolism , RNA, Small Interfering , RNA, Messenger/metabolism , Parenteral Nutrition/adverse effects , Adenosine Triphosphate
17.
Int J Radiat Oncol Biol Phys ; 119(1): 219-233, 2024 May 01.
Article in English | MEDLINE | ID: mdl-37914138

ABSTRACT

PURPOSE: Radiation therapy is a vital adjuvant treatment for liver cancer, although the challenge of radiation-induced liver diseases (RILDs) limits its implementation. Kupffer cells (KCs) are a crucial cell population of the hepatic immune system, and their biologic function can be modulated by multiple epigenetic RNA modifications, including N6-methyladenosine (m6A) methylation. However, the mechanism for m6A methylation in KC-induced inflammatory responses in RILD remains unclear. The present study investigated the function of m6A modification in KCs contributing to RILD. METHODS AND MATERIALS: Methylated RNA-immunoprecipitation sequencing and RNA transcriptome sequencing were used to explore the m6A methylation profile of primary KCs isolated from mice after irradiation with 3 × 8 Gy. Western blotting and quantitative real-time PCR were used to evaluate gene expression. DNA pulldown and chromatin immunoprecipitation assays were performed to verify target gene binding and identify binding sites. RESULTS: Methylated RNA-immunoprecipitation sequencing revealed significantly increased m6A modification levels in human KCs after irradiation, suggesting the potential role of upregulated m6A in RILD. In addition, the study results corroborated that methyltransferase-like 3 (METTL3) acts as a main modulator to promote the methylation and gene expression of TEAD1, leading to STING-NLRP3 signaling activation. Importantly, it was shown that IGF2BP2 functions as an m6A "reader" to recognize methylated TEAD1 mRNA and promote its stability. METTL3/TEAD1 knockdown abolished the activation of STING-NLRP3 signaling, protected against RILD, and suppressed inflammatory cytokines and hepatocyte apoptosis. Moreover, clinical human normal liver tissue samples collected after irradiation showed increased expression of STING and interleukin-1ß in KCs compared with nonirradiated samples. Notably, STING pharmacologic inhibition alleviated irradiation-induced liver injury in mice, indicating its potential therapeutic role in RILD. CONCLUSIONS: The results of our study reveal that TEAD1-STING-NLRP3 signaling activation contributes to RILD via METTL3-dependent m6A modification.


Subject(s)
Kupffer Cells , Liver Neoplasms , Humans , Mice , Animals , Kupffer Cells/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Up-Regulation , Pyroptosis , Liver Neoplasms/metabolism , RNA, Messenger/genetics , Methyltransferases/genetics , RNA-Binding Proteins/physiology
18.
Am J Pathol ; 194(3): 353-368, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38158078

ABSTRACT

Nonalcoholic steatohepatitis (NASH) is an inflammatory and fibrotic liver disease that has reached epidemic proportions and has no approved pharmacologic therapies. Research and drug development efforts are hampered by inadequate preclinical models. This research describes a three-dimensional bioprinted liver tissue model of NASH built using primary human hepatocytes and nonparenchymal liver cells (hepatic stellate cells, liver sinusoidal endothelial cells, and Kupffer cells) from either healthy or NASH donors. Three-dimensional tissues bioprinted with cells sourced from diseased patients showed a NASH phenotype, including fibrosis. More importantly, this NASH phenotype occurred without the addition of disease-inducing agents. Bioprinted tissues composed entirely of healthy cells exhibited significantly less evidence of disease. The role of individual cell types in driving the NASH phenotype was examined by producing chimeric bioprinted tissues composed of healthy cells together with the addition of one or more diseased nonparenchymal cell types. These experiments reveal a role for both hepatic stellate and liver sinusoidal endothelial cells in the disease process. This model represents a fully human system with potential to detect clinically active targets and eventually therapies.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/metabolism , Endothelial Cells/metabolism , Liver/metabolism , Hepatocytes/metabolism , Kupffer Cells/metabolism , Hepatic Stellate Cells/metabolism , Liver Cirrhosis/pathology
19.
Sci Transl Med ; 15(727): eade0054, 2023 12 20.
Article in English | MEDLINE | ID: mdl-38117903

ABSTRACT

Vaccination has substantially reduced the morbidity and mortality of bacterial diseases, but mechanisms of vaccine-elicited pathogen clearance remain largely undefined. We report that vaccine-elicited immunity against invasive bacteria mainly operates in the liver. In contrast to the current paradigm that migrating phagocytes execute vaccine-elicited immunity against blood-borne pathogens, we found that invasive bacteria are captured and killed in the liver of vaccinated host via various immune mechanisms that depend on the protective potency of the vaccine. Vaccines with relatively lower degrees of protection only activated liver-resident macrophage Kupffer cells (KCs) by inducing pathogen-binding immunoglobulin M (IgM) or low amounts of IgG. IgG-coated pathogens were directly captured by KCs via multiple IgG receptors FcγRs, whereas IgM-opsonized bacteria were indirectly bound to KCs via complement receptors of immunoglobulin superfamily (CRIg) and complement receptor 3 (CR3) after complement C3 activation at the bacterial surface. Conversely, the more potent vaccines engaged both KCs and liver sinusoidal endothelial cells by inducing higher titers of functional IgG antibodies. Endothelial cells (ECs) captured densely IgG-opsonized pathogens by the low-affinity IgG receptor FcγRIIB in a "zipper-like" manner and achieved bacterial killing predominantly in the extracellular milieu via an undefined mechanism. KC- and endothelial cell-based capture of antibody-opsonized bacteria also occurred in FcγR-humanized mice. These vaccine protection mechanisms in the liver not only provide a comprehensive explanation for vaccine-/antibody-boosted immunity against invasive bacteria but also may serve as in vivo functional readouts of vaccine efficacy.


Subject(s)
Kupffer Cells , Vaccines , Animals , Mice , Kupffer Cells/metabolism , Endothelial Cells , Macrophages/metabolism , Immunoglobulin G/metabolism , Liver , Antibodies, Viral/metabolism , Immunoglobulin M/metabolism , Receptors, IgG/metabolism , Bacteria
20.
Cell Death Dis ; 14(11): 743, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37968261

ABSTRACT

BRISC (BRCC3 isopeptidase complex) is a deubiquitinating enzyme that has been linked with inflammatory processes, but its role in liver diseases and the underlying mechanism are unknown. Here, we investigated the pathophysiological role of BRISC in acute liver failure using a mice model induced by D-galactosamine (D-GalN) plus lipopolysaccharide (LPS). We found that the expression of BRISC components was dramatically increased in kupffer cells (KCs) upon LPS treatment in vitro or by the injection of LPS in D-GalN-sensitized mice. D-GalN plus LPS-induced liver damage and mortality in global BRISC-null mice were markedly attenuated, which was accompanied by impaired hepatocyte death and hepatic inflammation response. Constantly, treatment with thiolutin, a potent BRISC inhibitor, remarkably alleviated D-GalN/LPS-induced liver injury in mice. By using bone marrow-reconstituted chimeric mice and cell-specific BRISC-deficient mice, we demonstrated that KCs are the key effector cells responsible for protection against D-GalN/LPS-induced liver injury in BRISC-deficient mice. Mechanistically, we found that hepatic and circulating levels of TNF-α, IL-6, MCP-1, and IL-1ß, as well as TNF-α- and MCP-1-producing KCs, in BRISC-deleted mice were dramatically decreased as early as 1 h after D-GalN/LPS challenge, which occurred prior to the elevation of the liver injury markers. Moreover, LPS-induced proinflammatory cytokines production in KCs was significantly diminished by BRISC deficiency in vitro, which was accompanied by potently attenuated NF-κB activation. Restoration of NF-κB activation by two small molecular activators of NF-κB p65 effectively reversed the suppression of cytokines production in ABRO1-deficient KCs by LPS. In conclusion, BRISC is required for optimal activation of NF-κB-mediated proinflammatory cytokines production in LPS-treated KCs and contributes to acute liver injury. This study opens the possibility to develop new strategies for the inhibition of KCs-driven inflammation in liver diseases.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Chemical and Drug Induced Liver Injury , Animals , Mice , NF-kappa B/metabolism , Lipopolysaccharides/pharmacology , Kupffer Cells/metabolism , Tumor Necrosis Factor-alpha/metabolism , Liver/metabolism , Inflammation/metabolism , Galactosamine , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...