Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 615
Filter
1.
Cell Biochem Funct ; 42(4): e4065, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38807444

ABSTRACT

Cancer is the second leading cause of mortality worldwide. The development of anticancer therapy plays a crucial role in mitigating tumour progression and metastasis. Epithelioid hemangioendothelioma is a very rare cancer, however, with a high systemic involvement. Kynurenine metabolites which include l-kynurenine, 3-hydroxykynurenine, 3-hydroxyanthranilic acid and quinolinic acid have been shown to inhibit T-cell proliferation resulting in a decrease in cell growth of natural killer cells and T cells. Furthermore, metabolites such as  l-kynurenine have been shown to inhibit proliferation of melanoma cells in vitro. Considering these metabolite properties, the present study aimed to explore the in vitro effects of  l-kynurenine, quinolinic acid and kynurenic acid on endothelioma sEnd-2 cells and on endothelial (EA. hy926 cells) (control cell line). The in vitro effect at 24, 48, and 72 h exposure to a range of 1-4 mM of the respective kynurenine metabolites on the two cell lines in terms of cell morphology, cell cycle progression and induction of apoptosis was assessed. The half inhibitory concentration (IC50), as determined using nonlinear regression, for  l-kynurenine, quinolinic acid and kynurenic acid was 9.17, 15.56, and 535.40 mM, respectively. Optical transmitted light differential interference contrast and hematoxylin and eosin staining revealed cells blocked in metaphase, formation of apoptotic bodies and compromised cell density in  l-kynurenine-treated cells. A statistically significant increase in the number of cells present in the sub-G1 phase was observed in  l-kynurenine-treated sample. To our knowledge, this was the first in vitro study conducted to investigate the mechanism of action of kynurenine metabolites on endothelioma sEnd-2 cells. It can be concluded that  l-kynurenine exerts an antiproliferative effect on the endothelioma sEnd-2 cell line by decreasing cell growth and proliferation as well as a metaphase block. These hallmarks suggest cell death via apoptosis. Further research will be conducted on  l-kynurenine to assess the effect on cell adhesion in vitro and in vivo as cell-cell adhesion has been shown to increase metastasis to distant organs therefore, the inhibition of adhesion may lead to a decrease in metastasis.


Subject(s)
Apoptosis , Cell Proliferation , Kynurenine , Quinolinic Acid , Kynurenine/metabolism , Kynurenine/pharmacology , Kynurenine/analogs & derivatives , Humans , Apoptosis/drug effects , Cell Proliferation/drug effects , Quinolinic Acid/pharmacology , Quinolinic Acid/metabolism , Kynurenic Acid/pharmacology , Kynurenic Acid/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Dose-Response Relationship, Drug
2.
Int J Mol Sci ; 25(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38673879

ABSTRACT

Reactive astrocytes are key players in HIV-associated neurocognitive disorders (HAND), and different types of reactive astrocytes play opposing roles in the neuropathologic progression of HAND. A recent study by our group found that gp120 mediates A1 astrocytes (neurotoxicity), which secrete proinflammatory factors and promote HAND disease progression. Here, by comparing the expression of A2 astrocyte (neuroprotective) markers in the brains of gp120 tgm mice and gp120+/α7nAChR-/- mice, we found that inhibition of alpha 7 nicotinic acetylcholine receptor (α7nAChR) promotes A2 astrocyte generation. Notably, kynurenine acid (KYNA) is an antagonist of α7nAChR, and is able to promote the formation of A2 astrocytes, the secretion of neurotrophic factors, and the enhancement of glutamate uptake through blocking the activation of α7nAChR/NF-κB signaling. In addition, learning, memory and mood disorders were significantly improved in gp120 tgm mice by intraperitoneal injection of kynurenine (KYN) and probenecid (PROB). Meanwhile, the number of A2 astrocytes in the mouse brain was significantly increased and glutamate toxicity was reduced. Taken together, KYNA was able to promote A2 astrocyte production and neurotrophic factor secretion, reduce glutamate toxicity, and ameliorate gp120-induced neuropathological deficits. These findings contribute to our understanding of the role that reactive astrocytes play in the development of HAND pathology and provide new evidence for the treatment of HAND via the tryptophan pathway.


Subject(s)
Astrocytes , Glutamic Acid , Kynurenine , Animals , Astrocytes/metabolism , Astrocytes/drug effects , Glutamic Acid/metabolism , Glutamic Acid/toxicity , Mice , Kynurenine/metabolism , Kynurenic Acid/metabolism , Kynurenic Acid/pharmacology , alpha7 Nicotinic Acetylcholine Receptor/metabolism , HIV Envelope Protein gp120/metabolism , HIV Envelope Protein gp120/toxicity , Signal Transduction/drug effects , Mice, Knockout , Probenecid/pharmacology , Mice, Inbred C57BL , Male , Brain/metabolism , Brain/pathology , Brain/drug effects , NF-kappa B/metabolism
3.
Molecules ; 29(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38675522

ABSTRACT

Kynurenic acid (KYNA) is a bioactive compound exhibiting multiple actions and positive effects on human health due to its antioxidant, anti-inflammatory and neuroprotective properties. KYNA has been found to have a beneficial effect on wound healing and the prevention of scarring. Despite notable progress in the research focused on KYNA observed during the last 10 years, KYNA's presence in flax (Linum usitatissimum L.) has not been proven to date. In the present study, parts of flax plants were analysed for KYNA synthesis. Moreover, eight different cultivars of flax seeds were tested for the presence of KYNA, resulting in a maximum of 0.432 µg/g FW in the seeds of the cultivar Jan. The level of KYNA was also tested in the stems and roots of two selected flax cultivars: an oily cultivar (Linola) and a fibrous cultivar (Nike). The exposure of plants to the KYNA precursors tryptophan and kynurenine resulted in higher levels of KYNA accumulation in flax shoots and roots. Thus, the obtained results indicate that KYNA might be synthesized in flax. The highest amount of KYNA (295.9 µg/g dry weight [DW]) was detected in flax roots derived from plants grown in tissue cultures supplemented with tryptophan. A spectroscopic analysis of KYNA was performed using the FTIR/ATR method. It was found that, in tested samples, the characteristic KYNA vibration bands overlap with the bands corresponding to the vibrations of biopolymers (especially pectin and cellulose) present in flax plants and fibres.


Subject(s)
Flax , Kynurenic Acid , Plant Roots , Flax/chemistry , Flax/metabolism , Kynurenic Acid/metabolism , Kynurenic Acid/analysis , Plant Roots/chemistry , Plant Roots/metabolism , Seeds/chemistry , Seeds/metabolism , Tryptophan/metabolism , Tryptophan/analysis , Tryptophan/chemistry , Plant Extracts/chemistry
4.
Pharmacol Rep ; 76(2): 348-367, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38519733

ABSTRACT

BACKGROUND: The study aimed to assess the influence of a single valproate (VPA) administration on inhibitory and excitatory neurotransmitter concentrations in the brain structures involved in epileptogenesis in pentylenetetrazol (PTZ)-kindled rats. METHODS: Adult, male Wistar rats were kindled by repeated intraperitoneal (ip) injections of PTZ at a subconvulsive dose (30 mg/kg, three times a week). Due to the different times required to kindle the rats (18-22 injections of PTZ), a booster dose of PTZ was administrated 7 days after the last rats were kindled. Then rats were divided into two groups: acute administration of VPA (400 mg/kg) or saline given ip. The concentration of amino acids, kynurenic acid (KYNA), monoamines, and their metabolites in the prefrontal cortex, hippocampus, amygdala, and striatum was assessed by high-pressure liquid chromatography (HPLC). RESULTS: It was found that a single administration of VPA increased the gamma-aminobutyric acid (GABA), tryptophan (TRP), 5-hydroxyindoleacetic acid (5-HIAA), and KYNA concentrations and decreased aspartate (ASP) levels in PTZ-kindled rats in the prefrontal cortex, hippocampus, amygdala and striatum. CONCLUSIONS: Our results indicate that a single administration of VPA in the PTZ-kindled rats restored proper balance between excitatory (decreasing the level of ASP) and inhibitory neurotransmission (increased concentration GABA, KYNA) and affecting serotoninergic neurotransmission in the prefrontal cortex, hippocampus, amygdala, and striatum.


Subject(s)
Amino Acids , Kindling, Neurologic , Rats , Male , Animals , Amino Acids/pharmacology , Pentylenetetrazole/pharmacology , Valproic Acid/pharmacology , Kynurenic Acid/metabolism , Rats, Wistar , Brain/metabolism , Kindling, Neurologic/metabolism , Amines/metabolism , gamma-Aminobutyric Acid/metabolism
5.
Sci Rep ; 14(1): 6851, 2024 03 21.
Article in English | MEDLINE | ID: mdl-38514790

ABSTRACT

The kynurenine pathway (KP) of tryptophan degradation includes several compounds that reveal immunomodulatory properties. The present study aimed to investigate the alteration in KP metabolites in young women with autoimmune thyroiditis (AIT) and their associations with thyroid function. The thyroid function tests, antithyroid antibodies measurement and ultrasonography of the thyroid gland have been performed in 57 young women with AIT and 38 age-matched healthy controls. The serum levels of tryptophan, kynurenine (KYN) and its metabolites were determined, and the activity of KP enzymes was calculated indirectly as product-to-substrate ratios. KP was activated and dysregulated in AIT, along with significantly elevated levels of KYN and anthranilic acid (AA), at the expense of the reduction of kynurenic acid (KYNA), which was reflected by the increase in the AA/KYNA ratio (p < 0.001). In univariate and multiple regression analyses, peripheral deiodinase (SPINA-GD) activity in AIT was positively associated with KYNA, AA, and quinolinic acid (QA). The merger of AA, AA/KYNA ratio, QA and SPINA-GD exhibited the highest sensitivity and specificity to predict AIT (p < 0.001) in receiver operating characteristic (ROC) analysis. In conclusion, the serum KYN metabolite profile is dysregulated in young women with AIT and could serve as a new predictor of AIT risk.


Subject(s)
Kynurenine , Thyroiditis, Autoimmune , Humans , Female , Kynurenine/metabolism , Tryptophan/metabolism , Quinolinic Acid , Kynurenic Acid/metabolism
6.
Neurochem Res ; 49(5): 1200-1211, 2024 May.
Article in English | MEDLINE | ID: mdl-38381245

ABSTRACT

Cognitive dysfunctions are now recognized as core symptoms of various psychiatric disorders e.g., major depressive disorder. Sustained immune activation may leads to cognitive dysfunctions. Proinflammatory cytokines shunt the metabolism of tryptophan towards kynurenine and quinolinic acid may accumulate at toxic concentrations. This acid triggers an increase in neuronal nitric oxide synthase function and promotes oxidative stress. The searching for small molecules that can regulate tryptophan metabolites produced in the kynurenic pathway has become an important goal in developing treatments for various central nervous system diseases with an inflammatory component. Previously we have identified a small hybrid molecule - MM165 which significantly reduces depressive-like symptoms caused by inflammation induced by lipopolysaccharide administration. In the present study, we investigated whether this compound would mitigate cognitive deficits induced by lipopolysaccharide administration and whether treatment with it would affect the plasma or brain levels of quinolinic acid and kynurenic acid. Neuroinflammation was induced in rats by administering lipopolysaccharide at a dose of 0.5 mg/kg body weight for 10 days. We conducted two tests: novel object recognition and object location, to assess the effect on memory impairment in animals previously treated with lipopolysaccharide. In plasma collected from rats, the concentrations of C-reactive protein and tumor necrosis factor alfa were determined. The concentrations of kynurenic acid and quinolinic acid were determined in plasma and homogenates obtained from the cerebral cortex of rats. Interleukin 6 in the cerebral cortex of rats was determined. Additionally, the body and spleen mass and spontaneous activity were measured in rats. Our study shows that MM165 may mitigate cognitive deficits induced by inflammation after administration of lipopolysaccharide and alter the concentrations of tryptophan metabolites in the brain. Compounds exhibiting a mechanism of action analogous to that of MM165 may serve as foundational structures for the development of a new class of antidepressants.


Subject(s)
Depressive Disorder, Major , Kynurenine , Humans , Rats , Animals , Kynurenine/metabolism , Tryptophan/metabolism , Lipopolysaccharides/toxicity , Kynurenic Acid/metabolism , Quinolinic Acid/toxicity , Quinolinic Acid/metabolism , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Memory Disorders/chemically induced , Memory Disorders/drug therapy
7.
J Neurochem ; 168(5): 899-909, 2024 May.
Article in English | MEDLINE | ID: mdl-38299375

ABSTRACT

Cofilactin rods (CARs), which are 1:1 aggregates of cofilin-1 and actin, lead to neurite loss in ischemic stroke and other disorders. The biochemical pathways driving CAR formation are well-established, but how these pathways are engaged under ischemic conditions is less clear. Brain ischemia produces both ATP depletion and glutamate excitotoxicity, both of which have been shown to drive CAR formation in other settings. Here, we show that CARs are formed in cultured neurons exposed to ischemia-like conditions: oxygen-glucose deprivation (OGD), glutamate, or oxidative stress. Of these conditions, only OGD produced significant ATP depletion, showing that ATP depletion is not required for CAR formation. Moreover, the OGD-induced CAR formation was blocked by the glutamate receptor antagonists MK-801 and kynurenic acid; the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors GSK2795039 and apocynin; as well as an ROS scavenger. The findings identify a biochemical pathway leading from OGD to CAR formation in which the glutamate release induced by energy failure leads to activation of neuronal glutamate receptors, which in turn activates NADPH oxidase to generate oxidative stress and CARs.


Subject(s)
Energy Metabolism , Glutamic Acid , Neurons , Animals , Cells, Cultured , Neurons/metabolism , Neurons/drug effects , Energy Metabolism/drug effects , Energy Metabolism/physiology , Glutamic Acid/metabolism , Rats , Adenosine Triphosphate/metabolism , Glucose/metabolism , Glucose/deficiency , Actins/metabolism , Oxidative Stress/drug effects , Oxidative Stress/physiology , NADPH Oxidases/metabolism , Acetophenones/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Dizocilpine Maleate/pharmacology , Kynurenic Acid/pharmacology , Kynurenic Acid/metabolism , Rats, Sprague-Dawley
8.
Hum Mol Genet ; 33(7): 594-611, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38181046

ABSTRACT

Duchenne muscular dystrophy (DMD) is a lethal degenerative muscle wasting disease caused by the loss of the structural protein dystrophin with secondary pathological manifestations including metabolic dysfunction, mood and behavioral disorders. In the mildly affected mdx mouse model of DMD, brief scruff stress causes inactivity, while more severe subordination stress results in lethality. Here, we investigated the kynurenine pathway of tryptophan degradation and the nicotinamide adenine dinucleotide (NAD+) metabolic pathway in mdx mice and their involvement as possible mediators of mdx stress-related pathology. We identified downregulation of the kynurenic acid shunt, a neuroprotective branch of the kynurenine pathway, in mdx skeletal muscle associated with attenuated peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) transcriptional regulatory activity. Restoring the kynurenic acid shunt by skeletal muscle-specific PGC-1α overexpression in mdx mice did not prevent scruff -induced inactivity, nor did abrogating extrahepatic kynurenine pathway activity by genetic deletion of the pathway rate-limiting enzyme, indoleamine oxygenase 1. We further show that reduced NAD+ production in mdx skeletal muscle after subordination stress exposure corresponded with elevated levels of NAD+ catabolites produced by ectoenzyme cluster of differentiation 38 (CD38) that have been implicated in lethal mdx response to pharmacological ß-adrenergic receptor agonism. However, genetic CD38 ablation did not prevent mdx scruff-induced inactivity. Our data do not support a direct contribution by the kynurenine pathway or CD38 metabolic dysfunction to the exaggerated stress response of mdx mice.


Subject(s)
ADP-ribosyl Cyclase 1 , Indoleamine-Pyrrole 2,3,-Dioxygenase , Membrane Glycoproteins , Muscular Dystrophy, Duchenne , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Animals , Mice , Disease Models, Animal , Kynurenic Acid/metabolism , Kynurenine/metabolism , Mice, Inbred mdx , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/pathology , NAD/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Membrane Glycoproteins/metabolism , ADP-ribosyl Cyclase 1/metabolism
9.
Neuropsychopharmacology ; 49(3): 584-592, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37735504

ABSTRACT

Major depressive disorder (MDD) is a serious psychiatric disorder that in extreme cases can lead to suicide. Evidence suggests that alterations in the kynurenine pathway (KP) contribute to the pathology of MDD. Activation of the KP leads to the formation of neuroactive metabolites, including kynurenic acid (KYNA) and quinolinic acid (QUIN). To test for changes in the KP, postmortem anterior cingulate cortex (ACC) was obtained from the National Institute of Health NeuroBioBank. Gene expression of KP enzymes and relevant neuroinflammatory markers were investigated via RT-qPCR (Fluidigm) and KP metabolites were measured using liquid chromatography-mass spectrometry in tissue from individuals with MDD (n = 44) and matched nonpsychiatric controls (n = 36). We report increased IL6 and IL1B mRNA in MDD. Subgroup analysis found that female MDD subjects had significantly decreased KYNA and a trend decrease in the KYNA/QUIN ratio compared to female controls. In addition, MDD subjects that died by suicide had significantly decreased KYNA in comparison to controls and MDD subjects that did not die by suicide, while subjects that did not die by suicide had increased KYAT2 mRNA, which we hypothesise may protect against a decrease in KYNA. Overall, we found sex- and suicide-specific alterations in the KP in the ACC in MDD. This is the first molecular evidence in the brain of subgroup specific changes in the KP in MDD, which not only suggests that treatments aimed at upregulation of the KYNA arm in the brain may be favourable for female MDD sufferers but also might assist managing suicidal behaviour.


Subject(s)
Depressive Disorder, Major , Suicide , Humans , Female , Depressive Disorder, Major/metabolism , Kynurenine , Gyrus Cinguli/metabolism , Depression , RNA, Messenger/metabolism , Kynurenic Acid/metabolism , Quinolinic Acid
10.
J Dual Diagn ; 20(2): 132-177, 2024.
Article in English | MEDLINE | ID: mdl-38117676

ABSTRACT

The detrimental physical, mental, and socioeconomic effects of substance use disorders (SUDs) have been apparent to the medical community for decades. However, it has become increasingly urgent in recent years to develop novel pharmacotherapies to treat SUDs. Currently, practitioners typically rely on monotherapy. Monotherapy has been shown to be superior to no treatment at all for most substance classes. However, many randomized controlled trials (RCTs) have revealed that monotherapy leads to poorer outcomes when compared with combination treatment in all specialties of medicine. The results of RCTs suggest that monotherapy frequently fails since multiple dysregulated pathways, enzymes, neurotransmitters, and receptors are involved in the pathophysiology of SUDs. As such, research is urgently needed to determine how various neurobiological mechanisms can be targeted by novel combination treatments to create increasingly specific yet exceedingly comprehensive approaches to SUD treatment. This article aims to review the neurobiology that integrates many pathophysiologic mechanisms and discuss integrative pharmacology developments that may ultimately improve clinical outcomes for patients with SUDs. Many neurobiological mechanisms are known to be involved in SUDs including dopaminergic, nicotinic, N-methyl-D-aspartate (NMDA), and kynurenic acid (KYNA) mechanisms. Emerging evidence indicates that KYNA, a tryptophan metabolite, modulates all these major pathophysiologic mechanisms. Therefore, achieving KYNA homeostasis by harmonizing integrative pathophysiology and pharmacology could prove to be a better therapeutic approach for SUDs. We propose KYNA-NMDA-α7nAChRcentric pathophysiology, the "conductor of the orchestra," as a novel approach to treat many SUDs concurrently. KYNA-NMDA-α7nAChR pathophysiology may be the "command center" of neuropsychiatry. To date, extant RCTs have shown equivocal findings across comparison conditions, possibly because investigators targeted single pathophysiologic mechanisms, hit wrong targets in underlying pathophysiologic mechanisms, and tested inadequate monotherapy treatment. We provide examples of potential combination treatments that simultaneously target multiple pathophysiologic mechanisms in addition to KYNA. Kynurenine pathway metabolism demonstrates the greatest potential as a target for neuropsychiatric diseases. The investigational medications with the most evidence include memantine, galantamine, and N-acetylcysteine. Future RCTs are warranted with novel combination treatments for SUDs. Multicenter RCTs with integrative pharmacology offer a promising, potentially fruitful avenue to develop novel therapeutics for the treatment of SUDs.


Subject(s)
N-Methylaspartate , Substance-Related Disorders , Humans , alpha7 Nicotinic Acetylcholine Receptor , Kynurenic Acid/metabolism , Memantine , Multicenter Studies as Topic , Substance-Related Disorders/drug therapy , Randomized Controlled Trials as Topic
11.
Cells ; 12(24)2023 12 11.
Article in English | MEDLINE | ID: mdl-38132134

ABSTRACT

Tryptophan (TRP) catabolites exert neuroactive effects, with the plethora of evidence suggesting that kynurenic acid (KYNA), a catabolite of the kynurenine pathway (KP), acts as the regulator of glutamate and acetylcholine in the brain, contributing to the schizophrenia pathophysiology. Newer evidence regarding measures of KP metabolites in the blood of schizophrenia patients and from the central nervous system suggest that blood levels of these metabolites by no means could reflect pathological changes of TRP degradation in the brain. The aim of this study was to investigate plasma concentrations of TRP, kynurenine (KYN) and KYNA at the acute phase and remission of schizophrenia in a prospective, case-control study of highly selected and matched schizophrenia patients and healthy individuals. Our study revealed significantly decreased KYN and KYNA in schizophrenia patients (p < 0.001), irrespective of illness state, type of antipsychotic treatment, number of episodes or illness duration and no differences in the KYN/TRP ratio between schizophrenia patients and healthy individuals. These findings could be interpreted as indices that kynurenine pathway might not be dysregulated in the periphery and that other factors contribute to observed disturbances in concentrations, but as our study had certain limitations, we cannot draw definite conclusions. Further studies, especially those exploring other body compartments that participate in kynurenine pathway, are needed.


Subject(s)
Antipsychotic Agents , Schizophrenia , Humans , Kynurenine/metabolism , Kynurenic Acid/metabolism , Antipsychotic Agents/therapeutic use , Schizophrenia/drug therapy , Case-Control Studies , Prospective Studies , Tryptophan/metabolism
12.
Amino Acids ; 55(12): 1937-1947, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37925676

ABSTRACT

Systemic lupus erythematosus (SLE) is an autoimmune disease accompanied by increased release of proinflammatory cytokines that are known to activate the indoleamine 2,3-dioxygenase (IDO-1) enzyme, which catalyzes the rate-limiting step of the kynurenine pathway (KP). This study aimed to measure KP metabolite levels in patients with SLE and investigate the relationship between disease activity, clinical findings, and KP. The study included 100 patients with SLE and 100 healthy controls. Serum tryptophan (TRP), kynurenine (KYN), kynurenic acid (KYNA), 3-hydroxyanthranilic acid (3HAA), 3-hydroxykynurenine (3HK), quinolinic acid (QA) concentrations were measured with tandem mass spectrometry. Serum KYN, KYNA, 3HAA, 3HK, and QA levels of the patients with SLE were significantly higher than the control group. Serum QA levels were elevated in patients with neurological involvement (four patients with peripheral neuropathy and two patients with mononeuropathy), serum KYN levels and KYN/TRP ratio increased in patients with joint involvement, and serum KYN, 3HK, and 3HAA levels and the KYN/TRP ratio were increased in patients with renal involvement. Moreover, KYN and KYN/TRP ratios were positively correlated with the disease activity score. These findings indicated that imbalances in KP metabolites may be associated with the pathogenesis, activation, and clinical manifestations of SLE.


Subject(s)
Kynurenine , Lupus Erythematosus, Systemic , Humans , Kynurenine/metabolism , Tryptophan/metabolism , Cytokines , Kynurenic Acid/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
13.
Medicina (Kaunas) ; 59(11)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-38003955

ABSTRACT

Background and Objectives: It is known that inflammatory processes play a role in the pathogenesis of autism spectrum disorder (ASD). It is also reported that immune activation induces the kynurenine pathway (KP), as known as the tryptophan destruction pathway. In our study, we aimed to investigate whether the serum levels of KP products and interleukin (IL)-6 activating indolamine 2-3 dioxygenase (IDO) enzyme are different in healthy developing children and children with ASD. Materials and Methods: Forty-three ASD children aged 2-9 were included in this study. Forty-two healthy developing children, similar to the patient group in terms of age and gender, were selected as the control group. Serum levels of kynurenic acid, kynurenine, quinolinic acid and IL-6 were analyzed using the ELISA method. ASD severity was evaluated with the Autism Behavior Checklist (ABC). Results: The mean age of children with ASD was 42.4 ± 20.5 months, and that of healthy controls was 48.1 ± 15.8 months. While the serum levels of kynurenic acid, kynurenine and interleukin-6 were higher in the group with ASD (p < 0.05), there was no significant difference (p > 0.05) in terms of the quinolinic acid level. There was no significant difference between the ABC total and subscale scores of children with ASD and biochemical parameters (p > 0.05). Conclusions: We conclude that these biomarkers must be measured in all ASD cases. They may be important for the diagnosis of ASD.


Subject(s)
Autism Spectrum Disorder , Kynurenine , Child , Humans , Infant , Child, Preschool , Kynurenine/metabolism , Kynurenic Acid/metabolism , Interleukin-6 , Quinolinic Acid/metabolism
14.
Biochem Pharmacol ; 218: 115867, 2023 12.
Article in English | MEDLINE | ID: mdl-37866801

ABSTRACT

Transporter-mediated drug-drug interactions (DDIs) are assessed using probe drugs and in vitro and in vivo models during drug development. The utility of endogenous metabolites as transporter biomarkers is emerging for prediction of DDIs during early phases of clinical trials. Endogenous metabolites such as pyridoxic acid and kynurenic acid have shown potential to predict DDIs mediated by organic anion transporters (OAT1 and OAT3). However, these metabolites have not been assessed in rats as potential transporter biomarkers. We carried out a rat pharmacokinetic DDI study using probenecid and furosemide as OAT inhibitor and substrate, respectively. Probenecid administration led to a 3.8-fold increase in the blood concentrations and a 3-fold decrease in renal clearance of furosemide. High inter-individual and intra-day variability in pyridoxic acid and kynurenic acid, and no or moderate effect of probenecid administration on these metabolites suggest their limited utility for prediction of Oat-mediated DDI in rats. Therefore, rat blood and urine samples were further analysed using untargeted metabolomics. Twenty-one m/z features (out of >8000 detected features) were identified as putative biomarkers of rat Oat1 and Oat3 using a robust biomarker qualification approach. These m/z features belong to metabolic pathways such as fatty acid analogues, peptides, prostaglandin analogues, bile acid derivatives, flavonoids, phytoconstituents, and steroids, and can be used as a panel to decrease variability caused by processes other than Oats. When validated, these putative biomarkers will be useful in predicting DDIs caused by Oats in rats.


Subject(s)
Organic Anion Transporters , Rats , Animals , Organic Anion Transporters/metabolism , Probenecid/pharmacology , Probenecid/metabolism , Organic Anion Transporters, Sodium-Independent/metabolism , Renal Elimination , Furosemide/pharmacology , Furosemide/metabolism , Organic Anion Transport Protein 1/metabolism , Kynurenic Acid/metabolism , Kynurenic Acid/pharmacology , Pyridoxic Acid/metabolism , Pyridoxic Acid/pharmacology , Drug Interactions , Biomarkers/metabolism , Kidney/metabolism
15.
PeerJ ; 11: e15833, 2023.
Article in English | MEDLINE | ID: mdl-37780388

ABSTRACT

Background: The unconventional yeast species Yarrowia lipolytica is a valuable source of protein and many other nutrients. It can be used to produce hydrolytic enzymes and metabolites, including kynurenic acid (KYNA), an endogenous metabolite of tryptophan with a multidirectional effect on the body. The administration of Y. lipolytica with an increased content of KYNA in the diet may have a beneficial effect on metabolism, which was evaluated in a nutritional experiment on mice. Methods: In the dry biomass of Y. lipolytica S12 enriched in KYNA (high-KYNA yeast) and low-KYNA (control) yeast, the content of KYNA was determined by high-performance liquid chromatography. Then, proximate and amino acid composition and selected indicators of antioxidant status were compared. The effect of 5% high-KYNA yeast content in the diet on the growth, hematological and biochemical indices of blood and the redox status of the liver was determined in a 7-week experiment on adult male mice from an outbred colony derived from A/St, BALB/c, BN/a and C57BL/6J inbred strains. Results: High-KYNA yeast was characterized by a greater concentration of KYNA than low-KYNA yeast (0.80 ± 0.08 vs. 0.29 ± 0.01 g/kg dry matter), lower content of crude protein with a less favorable amino acid composition and minerals, higher level of crude fiber and fat and lower ferric-reducing antioxidant power, concentration of phenols and glutathione. Consumption of the high-KYNA yeast diet did not affect the cumulative body weight gain per cage, cumulative food intake per cage and protein efficiency ratio compared to the control diet. A trend towards lower mean corpuscular volume and hematocrit, higher mean corpuscular hemoglobin concentration and lower serum total protein and globulins was observed, increased serum total cholesterol and urea were noted. Its ingestion resulted in a trend towards greater ferric-reducing antioxidant power in the liver and did not affect the degree of liver lipid and protein oxidation. Conclusions: The improvement of the quality of Y. lipolytica yeast biomass with increased content of KYNA, including its antioxidant potential, would be affected by the preserved level of protein and unchanged amino acid profile. It will be worth investigating the effect of such optimized yeast on model animals, including animals with metabolic diseases.


Subject(s)
Yarrowia , Male , Animals , Mice , Antioxidants/metabolism , Kynurenic Acid/metabolism , Biomass , Mice, Inbred C57BL , Amino Acids/metabolism
16.
Int J Mol Sci ; 24(19)2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37833970

ABSTRACT

Kynurenic acid (KYNA), an endogenous neuroprotectant with antiexcitotoxic, antioxidant, and anti-inflammatory effects, is synthesized through the tryptophan-kynurenine (KYN) pathway. We investigated whether brain KYN or KYNA levels were affected by asphyxia in a translational piglet model of hypoxic-ischemic encephalopathy (HIE). We also studied brain levels of the putative blood-brain barrier (BBB) permeable neuroprotective KYNA analogue SZR72, and whether SZR72 or therapeutic hypothermia (TH) modified KYN or KYNA levels. KYN, KYNA, and SZR72 levels were determined using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry in five brain regions 24 h after 20 min of asphyxia in vehicle-, SZR72- and TH-treated newborn piglets (n = 6-6-6) and naive controls (n = 4). Endogenous brain KYN levels (median range 311.2-965.6 pmol/g) exceeded KYNA concentrations (4.5-6.0 pmol/g) ~100-fold. Asphyxia significantly increased cerebral KYN and KYNA levels in all regions (1512.0-3273.9 and 16.9-21.2 pmol/g, respectively), increasing the KYN/Tryptophan-, but retaining the KYNA/KYN ratio. SZR72 treatment resulted in very high cerebral SZR72 levels (13.2-33.2 nmol/g); however, KYN and KYNA levels remained similar to those of the vehicle-treated animals. However, TH virtually ameliorated asphyxia-induced elevations in brain KYN and KYNA levels. The present study reports for the first time that the KYN pathway is altered during HIE development in the piglet. SZR72 readily crosses the BBB in piglets but fails to affect cerebral KYNA levels. Beneficial effects of TH may include restoration of the tryptophan metabolism to pre-asphyxia levels.


Subject(s)
Hypothermia , Hypoxia-Ischemia, Brain , Swine , Animals , Kynurenine/metabolism , Tryptophan/metabolism , Kynurenic Acid/metabolism , Asphyxia , Hypoxia-Ischemia, Brain/therapy
17.
Mult Scler Relat Disord ; 77: 104898, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37481818

ABSTRACT

BACKGROUND: Tryptophan is an essential amino acid primarily metabolized by the kynurenine pathway in mammals. Intermediate metabolites emerging in this pathway have been associated with many neurogenerative diseases. This study aimed to compare tryptophan pathway metabolite levels in patients with multiple sclerosis (MS) and healthy controls and reveal the relationship of tryptophan metabolites with disease subtype and the Expanded Disability Status Scale (EDSS) score. METHODS: The study included a total of 80 MS cases [53 with relapsing remitting MS (RRMS) and 27 with secondary progressive MS (SPMS)] and 41 healthy volunteers. The patients with RRMS were further divided into relapse (RRMS-attack) and non-attack (RRMS-stable) groups. Using liquid chromatography mass spectrometry, tryptophan, kynurenine, kynurenic acid, quinolinic acid, 3-hydroxykynurenine, and 3-hydroxyanthranilic acid levels were measured. The serum metabolite levels of the patient and control groups were compared. In addition, the link and relationship between the EDSS score and disease duration of the patients and their plasma tryptophan metabolite levels were examined. RESULTS: The tryptophan level of the patient group was significantly lower than that of the healthy controls (p<0.05). The kynurenine (105.38±65.43), quinolinic acid (10.42±3.56), kynurenine/tryptophan ratio (0.0218±0.019), and quinolinic acid/kynurenic acid ratio (1.7054±0.96141) of the patients with MS were significantly higher compared to the controls (p<0.05). In the receiver operating characteristic analysis of the power of kynurenine/tryptophan and quinolinic acid/kynurenic acid ratios in predicting the disease, both ratios predicted the diagnosis of MS (area under the curve: 0.793 and 0.645, respectively; p<0.05), albeit at low sensitivity and specificity. The parameters were similar between the RRMS-attack and RRMS-stable patient groups (p>0.05). There was also no significant difference between the RRMS and SPMS patient groups in terms of tryptophan metabolites (p>0.05). Lastly, no significant relationship was observed between tryptophan metabolites and MS subtype and the EDSS score. CONCLUSION: Our findings revealed that the kynurenine pathway involved in the tryptophan metabolism differed between the patients with MS and healthy controls, and this difference may be a limited guide in the diagnosis of MS, due to major overlaps in values for MS versus Controls, and is insufficient to determine the disease subtype.


Subject(s)
Multiple Sclerosis , Tryptophan , Animals , Humans , Kynurenine/metabolism , Kynurenic Acid/metabolism , Quinolinic Acid , Mammals/metabolism
18.
J Affect Disord ; 339: 624-632, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37467793

ABSTRACT

BACKGROUND: A disruption of the kynurenine (KYN) pathway may exist in major depressive disorder (MDD). However, the changing pattern of the KYN pathway across the different disease states in MDD is unclear. Herein, we performed a meta-analysis to examine the differences in KYN metabolites between patients in the current episode of MDD (cMDD) and patients in remission (rMDD), as well as the changes after treatments. METHODS: Literature was systematically searched from electronic databases, from inception up to September 2022. Random-effect models were used to quantify the differences in KYN metabolites between patients with MDD across acute depressive episode and remission phases, as well as the changes after treatments. RESULTS: Fifty-one studies involving 7056 participants were included. Tryptophan (TRP), KYN, kynurenic acid (KYNA), KYNA/quinolinic acid (QA), KYNA/3-hydroxykynurenine (3-HK), and KYNA/KYN were significantly lower, while KYN/TRP was significantly higher in patients with cMDD. Moreover, these effect sizes were generally larger in medication-free patients. No significant differences were found between patients with rMDD and HCs. Additionally, KYNA was found negatively correlated with depression severity and significantly increased after treatments, while the alteration was not found in QA. LIMITATIONS: The number of included studies of patients with rMDD and longitudinal studies investigating the change of the KYN metabolites after treatment with antidepressants was limited. In addition, the heterogeneity across included studies was relatively high. CONCLUSIONS: These findings showed a comprehensive image of the unique dysfunction pattern of the KYN pathway across different MDD states and highlighted KYNA as a potentially sensitive biomarker of MDD.


Subject(s)
Depressive Disorder, Major , Kynurenine , Humans , Kynurenine/metabolism , Tryptophan/metabolism , Depression/metabolism , Biomarkers , Kynurenic Acid/metabolism , Quinolinic Acid/metabolism
19.
Alzheimers Dement ; 19(12): 5573-5582, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37264981

ABSTRACT

INTRODUCTION: The kynurenine pathway's (KP) malfunction is closely related to Alzheimer's disease (AD), for antagonistic kynurenic acid (KA) and agonistic quinolinic acid act on the N-methyl-D-aspartate receptor, a possible therapeutic target in treating AD. METHODS: In our longitudinal case-control study, KP metabolites in the cerebrospinal fluid were analyzed in 311 patients with AD and 105 cognitively unimpaired controls. RESULTS: Patients with AD exhibited higher concentrations of KA (ß = 0.18, P < 0.01) and picolinic acid (ß = 0.20, P < 0.01) than the controls. KA was positively associated with tau pathology (ß = 0.29, P < 0.01), and a higher concentration of KA was associated with the slower progression of dementia. DISCUSSION: The higher concentrations of neuroprotective metabolites KA and picolinic acid suggest that the activation of the KP's neuroprotective branch is an adaptive response in AD and may be a promising target for intervention and treatment. Highlights Patients with Alzheimer's disease (AD) exhibited higher concentrations of kynurenic acid and picolinic acid than controls. Higher concentrations of kynurenic acid were associated with slower progression of AD. Potential neurotoxic kynurenines were not increased among patients with AD. Activation of the kynurenine pathway's neuroprotective branch may be an adaptive response in AD.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/metabolism , Kynurenine/cerebrospinal fluid , Kynurenic Acid/metabolism , Case-Control Studies , Disease Progression
20.
Arch Pharm Res ; 46(6): 550-563, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37227682

ABSTRACT

GPR35, an orphan receptor, has been waiting for its ligand since its cloning in 1998. Many endogenous and exogenous molecules have been suggested to act as agonists of GPR35 including kynurenic acid, zaprinast, lysophosphatidic acid, and CXCL17. However, complex and controversial responses to ligands among species have become a huge hurdle in the development of therapeutics in addition to the orphan state. Recently, a serotonin metabolite, 5-hydroxyindoleacetic acid (5-HIAA), is reported to be a high potency ligand for GPR35 by investigating the increased expression of GPR35 in neutrophils. In addition, a transgenic knock-in mouse line is developed, in which GPR35 was replaced with a human ortholog, making it possible not only to overcome the different selectivity of agonists among species but also to conduct therapeutic experiments on human GPR35 in mouse models. In the present article, I review the recent advances and prospective therapeutic directions in GPR35 research. Especially, I'd like to draw attention of readers to the finding of 5-HIAA as a ligand of GPR35 and lead to apply the 5-HIAA and human GPR35 knock-in mice to their research fields in a variety of pathophysiological conditions.


Subject(s)
Receptors, G-Protein-Coupled , Serotonin , Mice , Humans , Animals , Hydroxyindoleacetic Acid , Ligands , Receptors, G-Protein-Coupled/metabolism , Kynurenic Acid/metabolism , Kynurenic Acid/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...