Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 104(15): 6679-6692, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32556414

ABSTRACT

At least 24 aldehyde reductases from Saccharomyces cerevisiae have been characterized and most function in in situ detoxification of lignocellulosic aldehyde inhibitors, but none is classified into the polyol dehydrogenase (PDH) subfamily of the medium-chain dehydrogenase/reductase (MDR) superfamily. This study confirmed that two (2R,3R)-2,3-butanediol dehydrogenases (BDHs) from industrial (denoted Y)/laboratory (denoted B) strains of S. cerevisiae, Bdh1p(Y)/Bdh1p(B) and Bdh2p(Y)/Bdh2p(B), were members of the PDH subfamily with an NAD(P)H binding domain and a catalytic zinc binding domain, and exhibited reductive activities towards lignocellulosic aldehyde inhibitors, such as acetaldehyde, glycolaldehyde, and furfural. Especially, the highest enzyme activity towards acetaldehyde by Bdh2p(Y) was 117.95 U/mg with cofactor nicotinamide adenine dinucleotide reduced (NADH). Based on the comparative kinetic property analysis, Bdh2p(Y)/Bdh2p(B) possessed higher specific activity, substrate affinity, and catalytic efficiency towards glycolaldehyde than Bdh1p(Y)/Bdh1p(B). This was speculated to be related to their 49% sequence differences and five nonsynonymous substitutions (Ser41Thr, Glu173Gln, Ile270Leu, Ile316Met, and Gly317Cys) occurred in their conserved NAD(P)H binding domains. Compared with BDHs from a laboratory strain, Bdh1p(Y) and Bdh2p(Y) from an industrial strain displayed five nonsynonymous mutations (Thr12, Asn61, Glu168, Val222, and Ala235) and three nonsynonymous mutations (Ala34, Ile96, and Ala369), respectively. From a first analysis with selected aldehydes, their reductase activities were different from BDHs of laboratory strain, and their catalytic efficiency was higher towards glycolaldehyde and lower towards acetaldehyde. Comparative investigation of kinetic properties of BDHs from S. cerevisiae as aldehyde reductases provides a guideline for their practical applications in in situ detoxification of aldehyde inhibitors during lignocellulose bioconversion.Key Points• Two yeast BDHs have enzyme activities for reduction of aldehydes.• Overexpression of BDHs slightly improves yeast tolerance to acetaldehyde and glycolaldehyde.• Bdh1p and Bdh2p differ in enzyme kinetic properties.• BDHs from strains with different genetic backgrounds differ in enzyme kinetic properties.


Subject(s)
Alcohol Oxidoreductases/metabolism , Aldehydes/antagonists & inhibitors , L-Iditol 2-Dehydrogenase/metabolism , Lignin/antagonists & inhibitors , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Acetaldehyde/analogs & derivatives , Acetaldehyde/metabolism , Alcohol Oxidoreductases/classification , Kinetics , L-Iditol 2-Dehydrogenase/classification , Lignin/metabolism , Substrate Specificity
2.
BMC Evol Biol ; 12: 147, 2012 Aug 16.
Article in English | MEDLINE | ID: mdl-22899811

ABSTRACT

BACKGROUND: Short chain dehydrogenases/reductases (SDR) are NAD(P)(H)-dependent oxidoreductases with a highly conserved 3D structure and of an early origin, which has allowed them to diverge into several families and enzymatic activities. The SDR196C family (http://www.sdr-enzymes.org) groups bacterial sorbitol dehydrogenases (SDH), which are of great industrial interest. In this study, we examine the phylogenetic relationship between the members of this family, and based on the findings and some sequence conserved blocks, a new and a more accurate classification is proposed. RESULTS: The distribution of the 66 bacterial SDH species analyzed was limited to Gram-negative bacteria. Six different bacterial families were found, encompassing α-, ß- and γ-proteobacteria. This broad distribution in terms of bacteria and niches agrees with that of SDR, which are found in all forms of life. A cluster analysis of sorbitol dehydrogenase revealed different types of gene organization, although with a common pattern in which the SDH gene is surrounded by sugar ABC transporter proteins, another SDR, a kinase, and several gene regulators.According to the obtained trees, six different lineages and three sublineages can be discerned. The phylogenetic analysis also suggested two different origins for SDH in ß-proteobacteria and four origins for γ-proteobacteria.Finally, this subdivision was further confirmed by the differences observed in the sequence of the conserved blocks described for SDR and some specific blocks of SDH, and by a functional divergence analysis, which made it possible to establish new consensus sequences and specific fingerprints for the lineages and sub lineages. CONCLUSION: SDH distribution agrees with that observed for SDR, indicating the importance of the polyol metabolism, as an alternative source of carbon and energy. The phylogenetic analysis pointed to six clearly defined lineages and three sub lineages, and great variability in the origin of this gene, despite its well conserved 3D structure. This suggests that SDH are very old and emerged early during the evolution. This study also opens up a new and more accurate classification of SDR196C family, introducing two numbers at the end of the family name, which indicate the lineage and the sublineage of each member, i.e, SDR196C6.3.


Subject(s)
Bacteria/enzymology , Bacteria/genetics , Evolution, Molecular , L-Iditol 2-Dehydrogenase/genetics , Sorbitol/metabolism , Bacteria/metabolism , Genes, Bacterial , L-Iditol 2-Dehydrogenase/classification , L-Iditol 2-Dehydrogenase/metabolism , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...