Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 344
Filter
1.
Nat Commun ; 15(1): 5779, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987535

ABSTRACT

To the best of our knowledge, enzymes that catalyse intramolecular Diels-Alder ([4+2] cycloaddition) reactions are frequently reported in natural product biosynthesis; however, no native enzymes utilising Lewis acid catalysis have been reported. Verticilactam is a representative member of polycyclic macrolactams, presumably produced by spontaneous cycloaddition. We report that the intramolecular [4+2] cycloadditions can be significantly accelerated by ferredoxins (Fds), a class of small iron-sulphur (Fe-S) proteins. Through iron atom substitution by Lewis acidic gallium (Ga) iron and computational calculations, we confirm that the ubiquitous Fe-S cluster efficiently functions as Lewis acid to accelerate the tandem [4+2] cycloaddition and Michael addition reactions by lowering free energy barriers. Our work highlights Nature's ingenious strategy to generate complex molecule structures using the ubiquitous Fe-S protein. Furthermore, our study sheds light on the future design of Fd as a versatile Lewis acid catalyst for [4+2] cycloaddition reactions.


Subject(s)
Biological Products , Cycloaddition Reaction , Iron-Sulfur Proteins , Lewis Acids , Biological Products/metabolism , Biological Products/chemistry , Iron-Sulfur Proteins/metabolism , Iron-Sulfur Proteins/chemistry , Lewis Acids/chemistry , Lewis Acids/metabolism , Catalysis , Iron/chemistry , Iron/metabolism , Lactams/metabolism , Lactams/chemistry , Biocatalysis
2.
Appl Environ Microbiol ; 90(6): e0060024, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38771054

ABSTRACT

Polycyclic tetramate macrolactams (PTMs) are bioactive natural products commonly associated with certain actinobacterial and proteobacterial lineages. These molecules have been the subject of numerous structure-activity investigations since the 1970s. New members continue to be pursued in wild and engineered bacterial strains, and advances in PTM biosynthesis suggest their outwardly simplistic biosynthetic gene clusters (BGCs) belie unexpected product complexity. To address the origins of this complexity and understand its influence on PTM discovery, we engaged in a combination of bioinformatics to systematically classify PTM BGCs and PTM-targeted metabolomics to compare the products of select BGC types. By comparing groups of producers and BGC mutants, we exposed knowledge gaps that complicate bioinformatics-driven product predictions. In sum, we provide new insights into the evolution of PTM BGCs while systematically accounting for the PTMs discovered thus far. The combined computational and metabologenomic findings presented here should prove useful for guiding future discovery.IMPORTANCEPolycyclic tetramate macrolactam (PTM) pathways are frequently found within the genomes of biotechnologically important bacteria, including Streptomyces and Lysobacter spp. Their molecular products are typically bioactive, having substantial agricultural and therapeutic interest. Leveraging bacterial genomics for the discovery of new related molecules is thus desirable, but drawing accurate structural predictions from bioinformatics alone remains challenging. This difficulty stems from a combination of previously underappreciated biosynthetic complexity and remaining knowledge gaps, compounded by a stream of yet-uncharacterized PTM biosynthetic loci gleaned from recently sequenced bacterial genomes. We engaged in the following study to create a useful framework for cataloging historic PTM clusters, identifying new cluster variations, and tracing evolutionary paths for these molecules. Our data suggest new PTM chemistry remains discoverable in nature. However, our metabolomic and mutational analyses emphasize the practical limitations of genomics-based discovery by exposing hidden complexity.


Subject(s)
Multigene Family , Phylogeny , Biosynthetic Pathways/genetics , Streptomyces/genetics , Streptomyces/metabolism , Streptomyces/classification , Lysobacter/genetics , Lysobacter/metabolism , Lysobacter/classification , Computational Biology , Lactams/metabolism
3.
J Am Chem Soc ; 146(19): 13399-13405, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38698691

ABSTRACT

Structural motifs containing nitrogen-nitrogen (N-N) bonds are prevalent in a large number of clinical drugs and bioactive natural products. Hydrazine (N2H4) serves as a widely utilized building block for the preparation of these N-N-containing molecules in organic synthesis. Despite its common use in chemical processes, no enzyme has been identified to catalyze the incorporation of free hydrazine in natural product biosynthesis. Here, we report that a hydrazine transferase catalyzes the condensation of N2H4 and an aromatic polyketide pathway intermediate, leading to the formation of a rare N-aminolactam pharmacophore in the biosynthesis of broad-spectrum antibiotic albofungin. These results expand the current knowledge on the biosynthetic mechanism for natural products with N-N units and should facilitate future development of biocatalysts for the production of N-N-containing chemicals.


Subject(s)
Hydrazines , Hydrazines/chemistry , Hydrazines/metabolism , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/pharmacology , Streptomyces/enzymology , Streptomyces/metabolism , Lactams/chemistry , Lactams/metabolism , Pharmacophore
4.
Proteins ; 92(8): 959-974, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38602129

ABSTRACT

Peptides are promising therapeutic agents for various biological targets due to their high efficacy and low toxicity, and the design of peptide ligands with high binding affinity to the target of interest is of utmost importance in peptide-based drug design. Introducing a conformational constraint to a flexible peptide ligand using a side-chain lactam-bridge is a convenient and efficient method to improve its binding affinity to the target. However, in general, such a small structural modification to a flexible ligand made with the intent of lowering the configurational entropic penalty for binding may have unintended consequences in different components of the binding enthalpy and entropy, including the configurational entropy component, which are still not clearly understood. Toward probing this, we examine different components of the binding enthalpy and entropy as well as the underlying structure and dynamics, for a side-chain lactam-bridged peptide inhibitor and its flexible analog forming complexes with vascular endothelial growth factor (VEGF), using all-atom molecular dynamics simulations. It is found that introducing a side-chain lactam-bridge constraint into the flexible peptide analog led to a gain in configurational entropy change but losses in solvation entropy, solute internal energy, and solvation energy changes upon binding, pinpointing the opportunities and challenges in drug design. The present study features an interplay between configurational and solvation entropy changes, as well as the one between binding enthalpy and entropy, in ligand-target binding upon imposing a conformational constraint into a flexible ligand.


Subject(s)
Angiogenesis Inhibitors , Entropy , Lactams , Molecular Dynamics Simulation , Protein Binding , Thermodynamics , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factor A/chemistry , Vascular Endothelial Growth Factor A/metabolism , Lactams/chemistry , Lactams/metabolism , Ligands , Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/pharmacology , Humans , Peptides/chemistry , Peptides/metabolism , Binding Sites
5.
Chem Biol Interact ; 391: 110903, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38331335

ABSTRACT

This study delves into the intricate mechanisms underlying drug-induced liver injury (DILI) with a specific focus on bromfenac, the withdrawn nonsteroidal anti-inflammatory drug. DILI is a pervasive concern in drug development, prompting market withdrawals and posing significant challenges to healthcare. Despite the withdrawal of bromfenac due to DILI, the exact role of its microsomal metabolism in inducing hepatotoxicity remains unclear. Herein, employing HepG2 cells with human liver microsomes and UDP-glucuronic acid (UDPGA), our investigation revealed a substantial increase in bromfenac-induced cytotoxicity in the presence of UDPGA, pointing to the significance of UDP-glucuronosyltransferase (UGT)-dependent metabolism in augmenting toxicity. Notably, among the recombinant UGTs examined, UGT2B7 emerged as a pivotal enzyme in the metabolic activation of bromfenac. Metabolite identification studies disclosed the formation of reactive intermediates, with bromfenac indolinone (lactam) identified as a potential mediator of hepatotoxic effects. Moreover, in cytotoxicity experiments, the toxicity of bromfenac lactam exhibited a 34-fold increase, relative to bromfenac. The toxicity of bromfenac lactam was mitigated by nicotinamide adenine dinucleotide phosphate-dependent metabolism. This finding underscores the role of UGT-dependent metabolism in generating reactive metabolites that contribute to the observed hepatotoxicity associated with bromfenac. Understanding these metabolic pathways and the involvement of specific enzymes, such as UGT2B7, provides crucial insights into the mechanisms of bromfenac-induced liver injury. In conclusion, this research sheds light on the metabolic intricacies leading to cytotoxicity induced by bromfenac, especially emphasizing the role of UGT-dependent metabolism and the formation of reactive intermediates like bromfenac lactam. These findings offer insight into the mechanistic basis of DILI and emphasize the importance of understanding metabolism-mediated toxicity.


Subject(s)
Benzophenones , Bromobenzenes , Chemical and Drug Induced Liver Injury , Uridine Diphosphate Glucuronic Acid , Humans , Uridine Diphosphate Glucuronic Acid/metabolism , Uridine Diphosphate Glucuronic Acid/pharmacology , Microsomes, Liver/metabolism , Glucuronosyltransferase/metabolism , Chemical and Drug Induced Liver Injury/metabolism , Lactams/metabolism , Lactams/pharmacology , Glucuronides/metabolism
6.
mBio ; 14(5): e0141123, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37728370

ABSTRACT

IMPORTANCE: Penicillin-binding proteins (PBPs) are essential for proper bacterial cell division and morphogenesis. The genome of Streptococcus pneumoniae encodes for two class B PBPs (PBP2x and 2b), which are required for the assembly of the peptidoglycan framework and three class A PBPs (PBP1a, 1b and 2a), which remodel the peptidoglycan mesh during cell division. Therefore, their activities should be finely regulated in space and time to generate the pneumococcal ovoid cell shape. To date, two proteins, CozE and MacP, are known to regulate the function of PBP1a and PBP2a, respectively. In this study, we describe a novel regulator (CopD) that acts on both PBP1a and PBP2b. These findings provide valuable information for understanding bacterial cell division. Furthermore, knowing that ß-lactam antibiotic resistance often arises from PBP mutations, the characterization of such a regulator represents a promising opportunity to develop new strategies to resensitize resistant strains.


Subject(s)
Peptidyl Transferases , Streptococcus pneumoniae , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/metabolism , Peptidoglycan/metabolism , Penicillin-Binding Proteins/genetics , Penicillin-Binding Proteins/metabolism , Lactams/metabolism , Mutation , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Microbial Sensitivity Tests , Peptidyl Transferases/genetics , Peptidyl Transferases/metabolism
7.
Metab Eng ; 79: 78-85, 2023 09.
Article in English | MEDLINE | ID: mdl-37451533

ABSTRACT

Valerolactam (VL) is an important precursor chemical for nylon-5 and nylon 6,5. It has been produced by petroleum-based route involving harsh reaction conditions and generating toxic wastes. Here, we report the complete biosynthesis of VL by metabolically engineered Corynebacterium glutamicum overproducing L-lysine. The pathway comprising L-lysine monooxygenase (davB) and 5-aminovaleramide amidohydrolase (davA) from Pseudomonas putida, and ß-alanine CoA transferase (act) from Clostridium propionicum was introduced into the C. glutamicum GA16 strain. To increase the VL flux, competitive pathways predicted from sRNA knockdown target screening were deleted. This engineered C. glutamicum strain produced VL as a major product, but still secreted significant amount of its precursor, 5-aminovaleric acid (5AVA). To circumvent this problem, putative 5AVA transporter genes were screened and engineered in the genome, thereby reuptaking 5AVA excreted. Also, multiple copies of the act gene were integrated into the genome to strengthen the conversion of 5AVA to VL. The final VL10 (pVL1) strain was constructed by enhancing glucose uptake system, which produced 9.68 g/L of VL in flask culture. Fed-batch fermentation of the VL10 (pVL1) strain produced 76.1 g/L of VL from glucose with the yield and productivity of 0.28 g/g and 0.99 g/L/h, respectively, showcasing a high potential for bio-based production of VL from renewable resources.


Subject(s)
Corynebacterium glutamicum , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Nylons/metabolism , Metabolic Engineering , Lactams/metabolism , Fermentation
8.
Biochemistry ; 62(8): 1342-1346, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37021938

ABSTRACT

Some bacteria survive in nutrient-poor environments and resist killing by antimicrobials by forming spores. The cortex layer of the peptidoglycan cell wall that surrounds mature spores contains a unique modification, muramic-δ-lactam, that is essential for spore germination and outgrowth. Two proteins, the amidase CwlD and the deacetylase PdaA, are required for muramic-δ-lactam synthesis in cells, but their combined ability to generate muramic-δ-lactam has not been directly demonstrated. Here we report an in vitro reconstitution of cortex peptidoglycan biosynthesis, and we show that CwlD and PdaA together are sufficient for muramic-δ-lactam formation. Our method enables characterization of the individual reaction steps, and we show for the first time that PdaA has transamidase activity, catalyzing both the deacetylation of N-acetylmuramic acid and cyclization of the product to form muramic-δ-lactam. This activity is unique among peptidoglycan deacetylases and is notable because it may involve the direct ligation of a carboxylic acid with a primary amine. Our reconstitution products are nearly identical to the cortex peptidoglycan found in spores, and we expect that they will be useful substrates for future studies of enzymes that act on the spore cortex.


Subject(s)
Peptidoglycan , Spores, Bacterial , Spores, Bacterial/chemistry , Spores, Bacterial/metabolism , Peptidoglycan/chemistry , Bacteria/metabolism , Cell Wall/chemistry , Lactams/metabolism , Bacterial Proteins/metabolism
9.
Chembiochem ; 24(11): e202300282, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37072375

ABSTRACT

Clostridioides difficile is a spore-forming human pathogen responsible for significant morbidity and mortality. Infections by this pathogen ensue dysbiosis of the intestinal tract, which leads to germination of the spores. The process of spore formation requires a transition for the cell-wall peptidoglycan of the vegetative C. difficile to that of spores, which entails the formation of muramyl-δ-lactam. We describe a set of reactions for three recombinant C. difficile proteins, GerS, CwlD, and PdaA1, with the use of four synthetic peptidoglycan analogs. CwlD and PdaA1 excise the peptidoglycan stem peptide and the acetyl moiety of N-acetyl muramate, respectively. The reaction of CwlD is accelerated in the presence of GerS. With the use of a suitable substrate, we document that PdaA1 catalyzes a novel zinc-dependent transamidation/transpeptidation reaction, an unusual reaction that requires excision of the stem peptide as a pre-requisite.


Subject(s)
Clostridioides difficile , Clostridioides , Humans , Clostridioides/metabolism , Spores, Bacterial/metabolism , Peptidoglycan/metabolism , Lactams/metabolism , Bacterial Proteins/metabolism
10.
Microbiology (Reading) ; 168(7)2022 07.
Article in English | MEDLINE | ID: mdl-35796718

ABSTRACT

Lysophosphatidic acid (LPA) occurs naturally in inflammatory exudates and has previously been shown to increase the susceptibility of Pseudomonas aeruginosa to ß-lactam antibiotics whilst concomitantly reducing accumulation of the virulence factors pyoverdine and elastase. Here it is demonstrated that LPA can also exert inhibitory effects upon pyocyanin production in P. aeruginosa, as well as influencing susceptibility to a wide range of chemically diverse non ß-lactam antimicrobials. Most strikingly, LPA markedly antagonizes the effect of the polycationic antibiotics colistin and tobramycin at a concentration of 250 µg ml-1 whilst conversely enhancing their efficacy at the lower concentration of 8.65 µg ml-1, approximating the maximal physiological concentrations found in inflammatory exudates. Transcriptomic responses of the virulent strain UCBPP-PA14 to LPA were analysed using RNA-sequencing along with BioLog phenoarrays and whole cell assays in attempts to delineate possible mechanisms underlying these effects. The results strongly suggest involvement of LPA-induced carbon catabolite repression together with outer-membrane (OM) stress responses whilst raising questions about the effect of LPA upon other P. aeruginosa virulence factors including type III secretion. This could have clinical relevance as it suggests that endogenous LPA may, at concentrations found in vivo, differentially modulate antibiotic susceptibility of P. aeruginosa whilst simultaneously regulating expression of virulence factors, thereby influencing host-pathogen interactions during infection. The possibility of applying exogenous LPA locally as an enhancer of select antibiotics merits further investigation.


Subject(s)
Pseudomonas Infections , Pseudomonas aeruginosa , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Humans , Lactams/metabolism , Lactams/pharmacology , Pseudomonas aeruginosa/metabolism , Virulence/genetics , Virulence Factors/metabolism
11.
J Virol ; 96(8): e0201321, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35389231

ABSTRACT

The high mutation rate of COVID-19 and the prevalence of multiple variants strongly support the need for pharmacological options to complement vaccine strategies. One region that appears highly conserved among different genera of coronaviruses is the substrate-binding site of the main protease (Mpro or 3CLpro), making it an attractive target for the development of broad-spectrum drugs for multiple coronaviruses. PF-07321332, developed by Pfizer, is the first orally administered inhibitor targeting the main protease of SARS-CoV-2, which also has shown potency against other coronaviruses. Here, we report three crystal structures of the main protease of SARS-CoV-2, SARS-CoV, and Middle East respiratory syndrome (MERS)-CoV bound to the inhibitor PF-07321332. The structures reveal a ligand-binding site that is conserved among SARS-CoV-2, SARS-CoV, and MERS-CoV, providing insights into the mechanism of inhibition of viral replication. The long and narrow cavity in the cleft between domains I and II of the main protease harbors multiple inhibitor-binding sites, where PF-07321332 occupies subsites S1, S2, and S4 and appears more restricted than other inhibitors. A detailed analysis of these structures illuminated key structural determinants essential for inhibition and elucidated the binding mode of action of the main proteases from different coronaviruses. Given the importance of the main protease for the treatment of SARS-CoV-2 infection, insights derived from this study should accelerate the design of safer and more effective antivirals. IMPORTANCE The current pandemic of multiple variants has created an urgent need for effective inhibitors of SARS-CoV-2 to complement vaccine strategies. PF-07321332, developed by Pfizer, is the first orally administered coronavirus-specific main protease inhibitor approved by the FDA. We solved the crystal structures of the main protease of SARS-CoV-2, SARS-CoV, and MERS-CoV that bound to the PF-07321332, suggesting PF-07321332 is a broad-spectrum inhibitor for coronaviruses. Structures of the main protease inhibitor complexes present an opportunity to discover safer and more effective inhibitors for COVID-19.


Subject(s)
Lactams , Leucine , Nitriles , Peptide Hydrolases , Proline , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Humans , Lactams/chemistry , Lactams/metabolism , Leucine/chemistry , Leucine/metabolism , Middle East Respiratory Syndrome Coronavirus/chemistry , Middle East Respiratory Syndrome Coronavirus/enzymology , Nitriles/chemistry , Nitriles/metabolism , Peptide Hydrolases/chemistry , Peptide Hydrolases/metabolism , Proline/chemistry , Proline/metabolism , Protease Inhibitors/chemistry , Protease Inhibitors/metabolism , Severe acute respiratory syndrome-related coronavirus/chemistry , Severe acute respiratory syndrome-related coronavirus/enzymology , SARS-CoV-2/chemistry , SARS-CoV-2/enzymology , COVID-19 Drug Treatment
12.
Biol Chem ; 403(4): 433-443, 2022 03 28.
Article in English | MEDLINE | ID: mdl-35218689

ABSTRACT

Penicillin-binding proteins (PBPs) are integral to bacterial cell division as they mediate the final steps of cell wall maturation. Selective fluorescent probes are useful for understanding the role of individual PBPs, including their localization and activity during growth and division of bacteria. For the development of new selective probes for PBP imaging, several ß-lactam antibiotics were screened, as they are known to covalently bind PBP in vivo. The PBP inhibition profiles of 16 commercially available ß-lactam antibiotics were evaluated in an unencapsulated derivative of the D39 strain of Streptococcus pneumoniae, IU1945. These ß-lactams have not previously been characterized for their PBP inhibition profiles in S. pneumoniae and these data augment those obtained from a library of 20 compounds that we previously reported. We investigated seven penicillins, three carbapenems, and six cephalosporins. Most of these ß-lactams were found to be co-selective for PBP2x and PBP3, as was noted in our previous studies. Six out of 16 antibiotics were selective for PBP3 and one molecule was co-selective for PBP1a and PBP3. Overall, this work expands the chemical space available for development of future ß-lactam-based probes for specific pneumococcal PBP labeling and these methods can be used for the development of probes for PBP labelling in other bacterial species.


Subject(s)
Streptococcus pneumoniae , beta-Lactams , Anti-Bacterial Agents/chemistry , Bacterial Proteins/metabolism , Lactams/metabolism , Microbial Sensitivity Tests , Penicillin-Binding Proteins/metabolism , Streptococcus pneumoniae/metabolism , beta-Lactams/metabolism , beta-Lactams/pharmacology
13.
Interdiscip Sci ; 14(1): 233-244, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34699036

ABSTRACT

D-amino acid introduction in peptides can enrich their biological activities and pharmacological properties as potential drugs. This achievement of stereochemical inversion usually owes to an epimerase or racemase. Interestingly, a unique bifunctional thioesterase (NocTE), which is incorporated in nonribosomal peptide synthetase (NRPS) NocA-NocB assembly line for the biosynthesis of monocyclic ß-lactam antibiotic nocardicin A, can control the generation of D-products with high stereochemical purity. However, the molecular basis of NocTE selectivity on substrates and products is still unclear. Herein, we constructed a series of systems with different peptides varying in stereochemistry, length, and composition to investigate the substrate selectivity. The studies on binding affinities and loading conformations elucidated the important roles of peptide length and ß-lactam ring in substrate selectivity. Through energy decomposition and interaction analyses, some key residues involved in substrate selectivity were captured. On the other hand, natural product undergoing epimerization was found to be liberated from the active pocket more easily in comparison with its diastereomer (epi-nocardicin G), explaining the superiority of nocardicin G. These results provide detailed molecular insights into the exquisite control of substrate and product scopes for NocTE, and encourage to diversification of substrates and final products for NRPS assembly line. The molecular insights into substrate and product selectivities of unique bifunctional thioesterase NocTE were illustrated via several molecular simulations and free energy calculations, contributing to expanding substrate and product scopes of nonribosomal peptide synthetases.


Subject(s)
Lactams , Peptide Synthases , Anti-Bacterial Agents/chemistry , Lactams/chemistry , Lactams/metabolism , Peptide Synthases/chemistry , Peptide Synthases/metabolism , Peptides , Substrate Specificity
14.
Nat Commun ; 12(1): 5672, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34584078

ABSTRACT

Nature forms S-S bonds by oxidizing two sulfhydryl groups, and no enzyme installing an intact hydropersulfide (-SSH) group into a natural product has been identified to date. The leinamycin (LNM) family of natural products features intact S-S bonds, and previously we reported an SH domain (LnmJ-SH) within the LNM hybrid nonribosomal peptide synthetase (NRPS)-polyketide synthase (PKS) assembly line as a cysteine lyase that plays a role in sulfur incorporation. Here we report the characterization of an S-adenosyl methionine (SAM)-dependent hydropersulfide methyltransferase (GnmP) for guangnanmycin (GNM) biosynthesis, discovery of hydropersulfides as the nascent products of the GNM and LNM hybrid NRPS-PKS assembly lines, and revelation of three SH domains (GnmT-SH, LnmJ-SH, and WsmR-SH) within the GNM, LNM, and weishanmycin (WSM) hybrid NRPS-PKS assembly lines as thiocysteine lyases. Based on these findings, we propose a biosynthetic model for the LNM family of natural products, featuring thiocysteine lyases as PKS domains that directly install a -SSH group into the GNM, LNM, or WSM polyketide scaffold. Genome mining reveals that SH domains are widespread in Nature, extending beyond the LNM family of natural products. The SH domains could also be leveraged as biocatalysts to install an -SSH group into other biologically relevant scaffolds.


Subject(s)
Biological Products/metabolism , Carbon-Sulfur Lyases/metabolism , Cysteine/analogs & derivatives , Methyltransferases/metabolism , Polyketide Synthases/metabolism , Sulfides/metabolism , Animals , Biological Products/chemistry , Cysteine/metabolism , Cystine/chemistry , Cystine/metabolism , Humans , Lactams/chemical synthesis , Lactams/chemistry , Lactams/metabolism , Macrolides/chemical synthesis , Macrolides/chemistry , Macrolides/metabolism , Models, Chemical , Molecular Structure , Peptide Synthases/metabolism , Streptomyces/genetics , Streptomyces/metabolism , Substrate Specificity , Sulfides/chemistry , Thiazoles/chemical synthesis , Thiazoles/chemistry , Thiazoles/metabolism , Thiones/chemical synthesis , Thiones/chemistry , Thiones/metabolism , src Homology Domains
15.
ACS Synth Biol ; 10(10): 2434-2439, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34543003

ABSTRACT

Polycyclic tetramate macrolactams (PoTeMs) are a family of natural products containing a tetramic acid moiety and a polycyclic system. Due to the valuable biological activities of different PoTeMs and the genetic simplicity of their biosynthetic genes, it is highly desirable to manipulate the biosynthesis of PoTeMs by swapping modification genes between different pathways. Herein, by combining the cytochrome P450 (CYP) enzymes from different PoTeM pathways with the combamides' biosynthetic genes, the new combamides G (3), I (5), and J (6) along with the known combamides B (1), D (2), and H (4) were identified from the recombinant strains. Combamides G (3), H (4), and J (6) displayed cytotoxic activity against human cancer cell lines. Furthermore, our results demonstrated for the first time the substrate specificity of the PoTeM-related CYPs in vivo, which will facilitate the engineered biosynthesis of other PoTeMs in the future.


Subject(s)
Amides/metabolism , Cytochrome P-450 Enzyme System/metabolism , Lactams/metabolism , Biological Products/metabolism , Combinatorial Chemistry Techniques , Genes, Bacterial , Oxidation-Reduction , Streptomyces/genetics , Streptomyces/metabolism
16.
PLoS Genet ; 17(9): e1009791, 2021 09.
Article in English | MEDLINE | ID: mdl-34570752

ABSTRACT

Spore-forming pathogens like Clostridioides difficile depend on germination to initiate infection. During gemination, spores must degrade their cortex layer, which is a thick, protective layer of modified peptidoglycan. Cortex degradation depends on the presence of the spore-specific peptidoglycan modification, muramic-∂-lactam (MAL), which is specifically recognized by cortex lytic enzymes. In C. difficile, MAL production depends on the CwlD amidase and its binding partner, the GerS lipoprotein. To gain insight into how GerS regulates CwlD activity, we solved the crystal structure of the CwlD:GerS complex. In this structure, a GerS homodimer is bound to two CwlD monomers such that the CwlD active sites are exposed. Although CwlD structurally resembles amidase_3 family members, we found that CwlD does not bind Zn2+ stably on its own, unlike previously characterized amidase_3 enzymes. Instead, GerS binding to CwlD promotes CwlD binding to Zn2+, which is required for its catalytic mechanism. Thus, in determining the first structure of an amidase bound to its regulator, we reveal stabilization of Zn2+ co-factor binding as a novel mechanism for regulating bacterial amidase activity. Our results further suggest that allosteric regulation by binding partners may be a more widespread mode for regulating bacterial amidase activity than previously thought.


Subject(s)
Amidohydrolases/metabolism , Clostridioides difficile/physiology , Lipoproteins/metabolism , Spores, Bacterial/growth & development , Allosteric Regulation , Amidohydrolases/chemistry , Catalysis , Catalytic Domain , Chromatography, Gel , Clostridioides difficile/enzymology , Crystallography, X-Ray , Lactams/metabolism , Molecular Structure , Muramic Acids/metabolism , Protein Binding
17.
Chem Commun (Camb) ; 57(72): 9096-9099, 2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34498651

ABSTRACT

We present a detailed computational analysis of the binding mode and reactivity of the novel oral inhibitor PF-07321332 developed against the SARS-CoV-2 3CL protease. Alchemical free energy calculations suggest that positions P3 and P4 could be susceptible to improvement in order to get a larger binding strength. QM/MM simulations unveil the reaction mechanism for covalent inhibition, showing that the nitrile warhead facilitates the recruitment of a water molecule for the proton transfer step.


Subject(s)
Coronavirus 3C Proteases/antagonists & inhibitors , Molecular Dynamics Simulation , Nitriles/chemistry , Protease Inhibitors/chemistry , SARS-CoV-2/enzymology , Binding Sites , COVID-19/pathology , COVID-19/virology , Catalytic Domain , Coronavirus 3C Proteases/metabolism , Humans , Lactams/chemistry , Lactams/metabolism , Leucine/chemistry , Leucine/metabolism , Nitriles/metabolism , Proline/chemistry , Proline/metabolism , Protease Inhibitors/metabolism , Quantum Theory , SARS-CoV-2/isolation & purification , Thermodynamics
18.
Bioorg Med Chem Lett ; 50: 128333, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34418570

ABSTRACT

Specific anti-coronaviral drugs complementing available vaccines are urgently needed to fight the COVID-19 pandemic. Given its high conservation across the betacoronavirus genus and dissimilarity to human proteases, the SARS-CoV-2 main protease (Mpro) is an attractive drug target. SARS-CoV-2 Mpro inhibitors have been developed at unprecedented speed, most of them being substrate-derived peptidomimetics with cysteine-modifying warheads. In this study, Mpro has proven resistant towards the identification of high-affinity short substrate-derived peptides and peptidomimetics without warheads. 20 cyclic and linear substrate analogues bearing natural and unnatural residues, which were predicted by computational modelling to bind with high affinity and designed to establish structure-activity relationships, displayed no inhibitory activity at concentrations as high as 100 µM. Only a long linear peptide covering residues P6 to P5' displayed moderate inhibition (Ki = 57 µM). Our detailed findings will inform current and future drug discovery campaigns targeting Mpro.


Subject(s)
COVID-19/pathology , Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/chemistry , SARS-CoV-2/enzymology , COVID-19/virology , Coronavirus 3C Proteases/metabolism , Cysteine/chemistry , Cysteine/metabolism , Humans , Lactams/chemistry , Lactams/metabolism , Leucine/chemistry , Leucine/metabolism , Nitriles/chemistry , Nitriles/metabolism , Peptides/chemistry , Peptides/metabolism , Peptidomimetics/chemistry , Peptidomimetics/metabolism , Proline/chemistry , Proline/metabolism , Protease Inhibitors/metabolism , SARS-CoV-2/isolation & purification , Structure-Activity Relationship , Substrate Specificity
19.
Org Lett ; 23(17): 6895-6899, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34406772

ABSTRACT

Colibactin is a genotoxic hybrid polyketide-nonribosomal peptide that drives colorectal cancer initiation. While clinical data suggest colibactin genotoxicity in vivo is largely caused by the major DNA-cross-linking metabolite, the colibactin locus produces a diverse collection of metabolites with mostly unknown biological activities. Here, we describe 10 new colibactin pathway metabolites (1-10) that are dependent on its α-aminomalonyl-carrier protein. The most abundant metabolites, 1 and 2, were isolated and structurally characterized mainly by nuclear magnetic resonance spectroscopy to be γ-lactam derivatives, and the remaining related structures were inferred via shared biosynthetic logic. Our proposed formation of 1-10, which is supported by stereochemical analysis, invokes cross-talk between colibactin and fatty acid biosynthesis, illuminating further the complexity of this diversity-oriented pathway.


Subject(s)
Escherichia coli/chemistry , Fatty Acids/chemistry , Peptides/chemistry , Polyketides/chemistry , DNA Damage , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Fatty Acids/metabolism , Humans , Lactams/chemistry , Lactams/metabolism , Molecular Structure
20.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Article in English | MEDLINE | ID: mdl-33893237

ABSTRACT

Nonribosomal peptide synthetases (NRPSs) are large, multidomain biosynthetic enzymes involved in the assembly-line-like synthesis of numerous peptide natural products. Among these are clinically useful antibiotics including three classes of ß-lactams: the penicillins/cephalosporins, the monobactams, and the monocyclic nocardicins, as well as the vancomycin family of glycopeptides and the depsipeptide daptomycin. During NRPS synthesis, peptide bond formation is catalyzed by condensation (C) domains, which couple the nascent peptide with the next programmed amino acid of the sequence. A growing number of additional functions are linked to the activity of C domains. In the biosynthesis of the nocardicins, a specialized C domain prepares the embedded ß-lactam ring from a serine residue. Here, we examine the evolutionary descent of this unique ß-lactam-synthesizing C domain. Guided by its ancestry, we predict and demonstrate in vitro that this C domain alternatively performs peptide bond formation when a single stereochemical change is introduced into its peptide starting material. Remarkably, the function of the downstream thioesterase (TE) domain also changes. Natively, the TE directs C terminus epimerization prior to hydrolysis when the ß-lactam is made but catalyzes immediate release of the alternative peptide. In addition, we investigate the roles of C-domain histidine residues in light of clade-specific sequence motifs, refining earlier mechanistic proposals of both ß-lactam formation and canonical peptide synthesis. Finally, expanded phylogenetic analysis reveals unifying connections between ß-lactam synthesis and allied C domains associated with the appearance of ᴅ-amino acid and dehydroamino acid residues in other NRPS-derived natural products.


Subject(s)
Anti-Bacterial Agents/biosynthesis , Evolution, Molecular , Lactams/metabolism , Peptide Synthases/genetics , Histidine/metabolism , Peptide Synthases/metabolism , Thiolester Hydrolases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...