Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
PLoS Biol ; 22(6): e3002666, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38905316

ABSTRACT

Breast cancer is the most prevalent malignancy and the most significant contributor to mortality in female oncology patients. Potassium Two Pore Domain Channel Subfamily K Member 1 (KCNK1) is differentially expressed in a variety of tumors, but the mechanism of its function in breast cancer is unknown. In this study, we found for the first time that KCNK1 was significantly up-regulated in human breast cancer and was correlated with poor prognosis in breast cancer patients. KCNK1 promoted breast cancer proliferation, invasion, and metastasis in vitro and vivo. Further studies unexpectedly revealed that KCNK1 increased the glycolysis and lactate production in breast cancer cells by binding to and activating lactate dehydrogenase A (LDHA), which promoted histones lysine lactylation to induce the expression of a series of downstream genes and LDHA itself. Notably, increased expression of LDHA served as a vicious positive feedback to reduce tumor cell stiffness and adhesion, which eventually resulted in the proliferation, invasion, and metastasis of breast cancer. In conclusion, our results suggest that KCNK1 may serve as a potential breast cancer biomarker, and deeper insight into the cancer-promoting mechanism of KCNK1 may uncover a novel therapeutic target for breast cancer treatment.


Subject(s)
Breast Neoplasms , Cell Proliferation , Histones , Animals , Female , Humans , Mice , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Glycolysis/genetics , Histones/metabolism , L-Lactate Dehydrogenase/metabolism , L-Lactate Dehydrogenase/genetics , Lactate Dehydrogenase 5/metabolism , Lactate Dehydrogenase 5/genetics , Mice, Inbred BALB C , Mice, Nude , Neoplasm Invasiveness , Neoplasm Metastasis , Potassium Channels, Tandem Pore Domain/metabolism , Potassium Channels, Tandem Pore Domain/genetics , Prognosis , Up-Regulation/genetics
2.
Int J Mol Med ; 53(4)2024 04.
Article in English | MEDLINE | ID: mdl-38426579

ABSTRACT

SET domain bifurcated 1 (SETDB1), a pivotal histone lysine methyltransferase, is transported to the cytoplasm via a chromosome region maintenance 1 (CMR1)­dependent pathway, contributing to non­histone methylation. However, the function and underlying mechanism of cytoplasmic SETDB1 in breast cancer remain elusive. In the present study, immunohistochemistry revealed that elevated cytoplasmic SETDB1 was correlated with lymph node metastasis and more aggressive breast cancer subtypes. Functionally, wound healing and Transwell assays showed that cytoplasmic SETDB1 is key for cell migration and invasion, as well as induction of epithelial­mesenchymal transition (EMT), which was reversed by leptomycin B (LMB, a CMR1 inhibitor) treatment. Furthermore, RNA­seq and metabolite detection revealed that cytoplasmic SETDB1 was associated with metabolism pathway and elevated levels of metabolites involved in the Warburg effect, including glucose, pyruvate, lactate and ATP. Immunoblotting and reverse transcription­quantitative PCR verified that elevation of cytoplasmic SETDB1 contributed to elevation of c­MYC expression and subsequent upregulation of lactate dehydrogenase A (LDHA) expression. Notably, gain­ and loss­of­function approaches revealed that LDHA overexpression in T47D cells enhanced migration and invasion by inducing EMT, while its depletion in SETDB1­overexpressing MCF7 cells reversed SETDB1­induced migration and invasion, as well as the Warburg effect and EMT. In conclusion, subcellular localization of cytoplasmic SETDB1 may be a pivotal factor in breast cancer progression. The present study offers valuable insight into the novel functions and mechanisms of cytoplasmic SETDB1.


Subject(s)
Breast Neoplasms , PR-SET Domains , Female , Humans , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement/genetics , Cytoplasm/metabolism , Gene Expression Regulation, Neoplastic , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Lactate Dehydrogenase 5/genetics , Lactate Dehydrogenase 5/metabolism
3.
Cancer Lett ; 589: 216825, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38548218

ABSTRACT

As one of the key metabolic enzymes in the glycolytic pathway, lactate dehydrogenase A (LDHA) might be linked to tumor proliferation by driving the Warburg effect. Circular RNAs (circRNAs) are widely implicated in tumor progression. Here, we report that circTATDN3, a circular RNA that interacts with LDHA, plays a critical role in proliferation and energy metabolism in CRC. We found that circTATDN3 expression was increased in CRC cells and tumor tissues and that high circTATDN3 expression was positively associated with poor postoperative prognosis in CRC patients. Additionally, circTATDN3 promoted the proliferation of CRC cells in vivo and vitro. Mechanistically, circTATDN3 was shown to function as an adaptor molecule that enhances the binding of LDHA to FGFR1, leading to increased LDHA phosphorylation and consequently promoting the Warburg effect. Moreover, circTATDN3 increased the expression of LDHA by sponging miR-511-5p, which synergistically promoted CRC progression and the Warburg effect. In conclusion, circTATDN3 may be a target for the treatment of CRC.


Subject(s)
Colorectal Neoplasms , MicroRNAs , Humans , RNA, Circular/genetics , Cell Line, Tumor , Lactate Dehydrogenase 5/genetics , Lactate Dehydrogenase 5/metabolism , Colorectal Neoplasms/pathology , Cell Proliferation , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Expression Regulation, Neoplastic
4.
Mol Biol Rep ; 51(1): 152, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38236332

ABSTRACT

BACKGROUND: Nasopharyngeal carcinoma (NPC) is a malignant tumor that originates in the nasopharyngeal mucosa and is common in China and Southeast Asian countries. Cancer cells reprogram glycolytic metabolism to promote their growth, survival and metastasis. Glycolysis plays an important role in NPC development, but the underlying mechanisms remain incompletely elucidated. Lactate dehydrogenase A (LDHA) is a crucial glycolytic enzyme, catalyzing the last step of glycolysis. This study aims to investigate the exact role of LDHA, which catalyzes the conversion of pyruvate into lactate, in NPC development. METHODS AND RESULTS: The western blot and immunohistochemical (IHC) results indicated that LDHA was significantly upregulated in NPC cells and clinical samples. LDHA knockdown by shRNA significantly inhibited NPC cell proliferation and invasion. Further knockdown of LDHA dramatically weakened the tumorigenicity of NPC cells in vivo. Mechanistic studies showed that LDHA activated TGF-ß-activated kinase 1 (TAK1) and subsequent nuclear factor κB (NF-κB) signaling to promote NPC cell proliferation and invasion. Exogenous lactate supplementation restored NPC cell proliferation and invasion inhibited by LDHA knockdown, and this restorative effect was reversed by NF-κB inhibitor (BAY 11-7082) or TAK1 inhibitor (5Z-7-oxozeaenol) treatment. Moreover, clinical sample analyses showed that LDHA expression was positively correlated with TAK1 Thr187 phosphorylation and poor prognosis. CONCLUSIONS: Our results suggest that LDHA and its major metabolite lactate drive NPC progression by regulating TAK1 and its downstream NF-κB signaling, which could become a therapeutic target in NPC.


Subject(s)
Lactate Dehydrogenase 5 , MAP Kinase Kinase Kinases , NF-kappa B , Nasopharyngeal Neoplasms , Humans , Lactate Dehydrogenase 5/genetics , Lactic Acid , MAP Kinase Kinase Kinases/metabolism , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Neoplasms/genetics , NF-kappa B/metabolism
5.
Cell Mol Biol Lett ; 28(1): 49, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37365531

ABSTRACT

BACKGROUND: Transfer (t)RNA-derived small RNA (tsRNA), generated from precursor or mature tRNA, is a new type of small non-coding RNA (sncRNA) that has recently been shown to play a vital role in human cancers. However, its role in laryngeal squamous cell carcinoma (LSCC) remains unclear. METHODS: We elucidated the expression profiles of tsRNAs in four paired LSCC and non-neoplastic tissues by sequencing and verified the sequencing data by quantitative real-time PCR (qRT-PCR) of 60 paired samples. The tyrosine-tRNA derivative tRFTyr was identified as a novel oncogene in LSCC for further study. Loss-of-function experiments were performed to evaluate the roles of tRFTyr in tumorigenesis of LSCC. Mechanistic experiments including RNA pull-down, parallel reaction monitoring (PRM) and RNA immunoprecipitation (RIP) were employed to uncover the regulatory mechanism of tRFTyr in LSCC. RESULTS: tRFTyr was significantly upregulated in LSCC samples. Functional assays showed that knockdown of tRFTyr significantly suppressed the progression of LSCC. A series of mechanistic studies revealed that tRFTyr could enhance the phosphorylated level of lactate dehydrogenase A (LDHA) by interacting with it. The activity of LDHA was also activated, which induced lactate accumulation in LSCC cells. CONCLUSIONS: Our data delineated the landscape of tsRNAs in LSCC and identified the oncogenic role of tRFTyr in LSCC. tRFTyr could promote lactate accumulation and tumour progression in LSCC by binding to LDHA. These findings may aid in the development of new diagnostic biomarkers and provide new insights into therapeutic strategies for LSCC.


Subject(s)
Head and Neck Neoplasms , Lactic Acid , Humans , Squamous Cell Carcinoma of Head and Neck/genetics , Lactate Dehydrogenase 5/genetics , Lactate Dehydrogenase 5/metabolism , RNA , RNA, Transfer/genetics , RNA, Transfer/metabolism , Carcinogenesis/genetics , Head and Neck Neoplasms/genetics , Tyrosine/genetics , Tyrosine/metabolism , Gene Expression Regulation, Neoplastic
6.
Cancer Lett ; 567: 216285, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37354982

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is characterized by hypoxia and hypovascular tumor microenvironment. Nucleolar and spindle associated protein 1 (NUSAP1) is a microtubule-associated protein that is known to be involved in cancer biology. Our study aimed to investigate the role of NUSAP1 in glycolytic metabolism and metastasis in PDAC. Expression and prognostic value of NUSAP1 in PDAC and common gastrointestinal tumors was evaluated. The function of NUSAP1 in PDAC progression was clarified by single-cell RNA-seq and further experiments in vitro, xenograft mouse model, spontaneous PDAC mice model and human tissue microarray. The downstream genes and signaling pathways regulated by NUSAP1 were explored by RNA-Seq. And the regulation of NUSAP1 on Lactate dehydrogenase A (LDHA)-mediated glycolysis and its underlying mechanism was further clarified by CHIP-seq. NUSAP1 was an independent unfavorable predictor of PDAC prognosis that playing a critical role in metastasis of PDAC by regulating LDHA-mediated glycolysis. Mechanically, NUSAP1 could bind to c-Myc and HIF-1α that forming a transcription regulatory complex localized to LDHA promoter region and enhanced its expression. Intriguingly, lactate upregulated NUSAP1 expression by inhibiting NUSAP1 protein degradation through lysine lactylated (Kla) modification, thus forming a NUSAP1-LDHA-glycolysis-lactate feedforward loop. The NUSAP1-LDHA-glycolysis-lactate feedforward loop is one of the underlying mechanisms to explain the metastasis and glycolytic metabolic potential in PDAC, which also provides a novel insights to understand the Warburg effect in cancer. Targeting NUSAP1 would be an attractive paradigm for PDAC treatment.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Animals , Mice , Lactate Dehydrogenase 5/genetics , Lactate Dehydrogenase 5/metabolism , Cell Line, Tumor , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Microtubule-Associated Proteins/metabolism , Glycolysis/genetics , Lactates , Gene Expression Regulation, Neoplastic , L-Lactate Dehydrogenase/genetics , Cell Proliferation , Tumor Microenvironment , Pancreatic Neoplasms
7.
Cell Death Differ ; 30(6): 1517-1532, 2023 06.
Article in English | MEDLINE | ID: mdl-37031273

ABSTRACT

Dysregulation of long noncoding RNAs (lncRNAs) has been associated with the development and progression of many human cancers. Lactate dehydrogenase A (LDHA) enzymatic activity is also crucial for cancer development, including the development of papillary thyroid cancer (PTC). However, whether specific lncRNAs can regulate LDHA activity during cancer progression remains unclear. Through screening, we identified an LDHA-interacting lncRNA, GLTC, which is required for the increased aerobic glycolysis and cell viability in PTC. GLTC was significantly upregulated in PTC tissues compared with nontumour thyroid tissues. High expression of GLTC was correlated with more extensive distant metastasis, a larger tumour size, and poorer prognosis. Mass spectrometry revealed that GLTC, as a binding partner of LDHA, promotes the succinylation of LDHA at lysine 155 (K155) via competitive inhibition of the interaction between SIRT5 and LDHA, thereby promoting LDHA enzymatic activity. Overexpression of the succinylation mimetic LDHAK155E mutant restored glycolytic metabolism and cell viability in cells in which metabolic reprogramming and cell viability were ceased due to GLTC depletion. Interestingly, GLTC inhibition abrogated the effects of K155-succinylated LDHA on radioiodine (RAI) resistance in vitro and in vivo. Taken together, our results indicate that GLTC plays an oncogenic role and is an attractive target for RAI sensitisation in PTC treatment.


Subject(s)
RNA, Long Noncoding , Thyroid Neoplasms , Humans , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/metabolism , Thyroid Cancer, Papillary/pathology , Lactate Dehydrogenase 5/genetics , Lactate Dehydrogenase 5/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Iodine Radioisotopes/metabolism , Cell Line, Tumor , Thyroid Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Cell Proliferation/genetics
8.
J Cell Biochem ; 124(4): 495-519, 2023 04.
Article in English | MEDLINE | ID: mdl-36999756

ABSTRACT

Homeobox gene families are associated with embryonic development and organogenesis. Pieces of evidence suggest that these Homeobox genes are also crucial in facilitating oncogenesis when mutated or overexpressed. Paired homeodomain transcription factor-2 (PITX2), one of the members of this family, is involved in oncogenic regulation apart from its different development regulatory functions. PITX2 has been earlier shown to induce ovarian cancer cell proliferation through the activation of different signaling cascades. Increased cancer cell proliferation requires a constant supply of nutrients for both adenosine triphosphate and biomass synthesis, which is facilitated by altered cancer cell metabolism that includes enhanced glucose uptake and increased glycolytic rate. This present study highlights the involvement of PITX2 in enhancing the cellular glycolysis pathway in ovarian cancer cells through protein kinase B-phosphorylation (phospho-AKT). PITX2 expression correlates positively with that of the glycolytic rate-determining enzyme, lactate dehydrogenase-A (LDHA), in both high-grade serous ovarian cancer tissues and common ovarian cancer cell lines. Interestingly, transient localization of enzymatically active LDHA in the nucleus was observed in PITX2-overexpressed ovarian cancer cells. This nuclear LDHA produces higher concentrations of the glycolytic end product, lactate, which accumulates in the nuclear compartment resulting in decreased histone deacetylase (HDAC1/2) expression and increased histone acetylation at H3/H4. However, the mechanistic details of lactate-HDAC interaction are still elusive in the earlier reports. Our in silico studies elaborated on the interaction dynamics of lactate in the HDAC catalytic core through ligand-binding studies and molecular dynamics simulation approaches. Blocking lactate production by silencing LDHA reduced cancer cell proliferation. Thus, PITX2-induced epigenetic changes can lead to high cellular proliferation and increase the size of tumors in syngeneic mice as well. Taken together, this is the first report of its kind to show that the developmental regulatory homeobox gene PITX2 could enhance oncogenesis through enhanced glycolysis of tumor cells followed by epigenetic modifications.


Subject(s)
Lactic Acid , Ovarian Neoplasms , Humans , Female , Animals , Mice , Lactic Acid/metabolism , Ovarian Neoplasms/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Cell Proliferation , Oncogenes , Lactate Dehydrogenase 5/genetics , Carcinogenesis/genetics , Epigenesis, Genetic , Glycolysis/genetics , L-Lactate Dehydrogenase/metabolism
9.
Nat Commun ; 13(1): 5208, 2022 09 05.
Article in English | MEDLINE | ID: mdl-36064857

ABSTRACT

Adipose tissue macrophage (ATM) inflammation is involved with meta-inflammation and pathology of metabolic complications. Here we report that in adipocytes, elevated lactate production, previously regarded as the waste product of glycolysis, serves as a danger signal to promote ATM polarization to an inflammatory state in the context of obesity. Adipocyte-selective deletion of lactate dehydrogenase A (Ldha), the enzyme converting pyruvate to lactate, protects mice from obesity-associated glucose intolerance and insulin resistance, accompanied by a lower percentage of inflammatory ATM and reduced production of pro-inflammatory cytokines such as interleukin 1ß (IL-1ß). Mechanistically, lactate, at its physiological concentration, fosters the activation of inflammatory macrophages by directly binding to the catalytic domain of prolyl hydroxylase domain-containing 2 (PHD2) in a competitive manner with α-ketoglutarate and stabilizes hypoxia inducible factor (HIF-1α). Lactate-induced IL-1ß was abolished in PHD2-deficient macrophages. Human adipose lactate level is positively linked with local inflammatory features and insulin resistance index independent of the body mass index (BMI). Our study shows a critical function of adipocyte-derived lactate in promoting the pro-inflammatory microenvironment in adipose and identifies PHD2 as a direct sensor of lactate, which functions to connect chronic inflammation and energy metabolism.


Subject(s)
Adipocytes , Hypoxia-Inducible Factor-Proline Dioxygenases , Inflammation , Lactate Dehydrogenase 5 , Lactic Acid , Macrophages , Adipocytes/immunology , Adipose Tissue/immunology , Animals , Humans , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/immunology , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Insulin Resistance/genetics , Insulin Resistance/immunology , Insulin Resistance/physiology , L-Lactate Dehydrogenase/genetics , L-Lactate Dehydrogenase/immunology , Lactate Dehydrogenase 5/genetics , Lactate Dehydrogenase 5/immunology , Lactic Acid/immunology , Macrophages/immunology , Mice , Obesity/genetics , Obesity/immunology , Obesity/pathology , Procollagen-Proline Dioxygenase/genetics , Procollagen-Proline Dioxygenase/immunology , Prolyl Hydroxylases
10.
Pharmacol Res ; 176: 106051, 2022 02.
Article in English | MEDLINE | ID: mdl-34973467

ABSTRACT

Aortic dissection (AD) is a disease with high mortality and lacks effective drug treatment. Recent studies have shown that the development of AD is closely related to glucose metabolism. Lactate dehydrogenase A (LDHA) is a key glycolytic enzyme and plays an important role in cardiovascular disease. However, the role of LDHA in the progression of AD remains to be elucidated. Here, we found that the level of LDHA was significantly elevated in AD patients and the mouse model established by BAPN combined with Ang II. In vitro, the knockdown of LDHA reduced the growth of human aortic vascular smooth muscle cells (HAVSMCs), glucose consumption, and lactate production induced by PDGF-BB. The overexpression of LDHA in HAVSMCs promoted the transformation of HAVSMCs from contractile phenotype to synthetic phenotype, and increased the expression of MMP2/9. Mechanistically, LDHA promoted MMP2/9 expression through the LDHA-NDRG3-ERK1/2-MMP2/9 pathway. In vivo, Oxamate, LDH and lactate inhibitor, reduced the degradation of elastic fibers and collagen deposition, inhibited the phenotypic transformation of HAVSMCs from contractile phenotype to synthetic phenotype, reduced the expression of NDRG3, p-ERK1/2, and MMP2/9, and delayed the progression of AD. To sum up, the increase of LDHA promotes the production of MMP2/9, stimulates the degradation of extracellular matrix (ECM), and promoted the transformation of HAVSMCs from contractile phenotype to synthetic phenotype. Oxamate reduced the progression of AD in mice. LDHA may be a therapeutic target for AD.


Subject(s)
Aortic Dissection/drug therapy , Lactate Dehydrogenase 5/antagonists & inhibitors , Oxamic Acid/therapeutic use , Adult , Aged , Aortic Dissection/metabolism , Animals , Aorta, Thoracic/drug effects , Aorta, Thoracic/metabolism , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Female , Glucose/metabolism , Humans , Lactate Dehydrogenase 5/genetics , Lactate Dehydrogenase 5/metabolism , Lactic Acid/metabolism , Male , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Mice, Inbred C57BL , Middle Aged , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Oxamic Acid/pharmacology
11.
Biochem Genet ; 60(2): 640-655, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34409524

ABSTRACT

Earlier studies have shown that circular RNA (circRNA) expression is closely related to the malignant progression of cancer, but the role of circ-DONSON in gastric cancer (GC) has not been fully elucidated. The expression of circ-DONSON, miR-149-5p and lactate dehydrogenase A (LDHA) was measured via qRT-PCR. CCK8 assay was used to assess cell viability, and colony formation assay was performed to detect the number of colonies and the radiosensitivity of cells. Besides, flow cytometry, transwell assay and tube formation assay were employed to determine cell apoptosis, migration, invasion and angiogenesis. Western blot analysis was used to assess the protein expression. The interaction between miR-149-5p and circ-DONSON or LDHA was confirmed by dual-luciferase reporter assay. The influence of circ-DONSON on GC tumor growth in vivo was explored through constructing mice xenograft models. Our results suggested that circ-DONSON was highly expressed in GC tissues and cells. Loss-functional assay results confirmed that silenced circ-DONSON could inhibit the proliferation, metastasis and angiogenesis, while enhance the apoptosis and radiosensitivity of GC cells. In terms of mechanism, circ-DONSON could sponge miR-149-5p, which could target LDHA in GC. MiR-149-5p inhibitor or LDHA overexpression could reverse the suppression effect of circ-DONSON knockdown on GC progression. Additionally, our results also suggested that circ-DONSON silencing could restrain the tumor growth of GC in vivo. These results demonstrated that circ-DONSON could facilitate GC progression by increasing LDHA expression via sponging miR-149-5p, indicating that circ-DONSON might be a novel biomarker for GC treatment.


Subject(s)
Lactate Dehydrogenase 5 , MicroRNAs , RNA, Circular , Stomach Neoplasms , Animals , Cell Proliferation , Humans , L-Lactate Dehydrogenase , Lactate Dehydrogenase 5/genetics , Mice , MicroRNAs/genetics , RNA, Circular/genetics , Stomach Neoplasms/pathology
12.
Nat Commun ; 12(1): 5977, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34645816

ABSTRACT

Muscle diseases and aging are associated with impaired myogenic stem cell self-renewal and fewer proliferating progenitors (MPs). Importantly, distinct metabolic states induced by glycolysis or oxidative phosphorylation have been connected to MP proliferation and differentiation. However, how these energy-provisioning mechanisms cooperate remain obscure. Herein, we describe a mechanism by which mitochondrial-localized transcriptional co-repressor p107 regulates MP proliferation. We show p107 directly interacts with the mitochondrial DNA, repressing mitochondrial-encoded gene transcription. This reduces ATP production by limiting electron transport chain complex formation. ATP output, controlled by the mitochondrial function of p107, is directly associated with the cell cycle rate. Sirt1 activity, dependent on the cytoplasmic glycolysis product NAD+, directly interacts with p107, impeding its mitochondrial localization. The metabolic control of MP proliferation, driven by p107 mitochondrial function, establishes a cell cycle paradigm that might extend to other dividing cell types.


Subject(s)
Lactate Dehydrogenase 5/genetics , Mitochondria/genetics , Muscle, Skeletal/metabolism , Myoblasts/metabolism , Retinoblastoma-Like Protein p107/genetics , Stem Cells/metabolism , Adenosine Triphosphate/biosynthesis , Animals , Cell Cycle/genetics , Cell Line , Cell Proliferation , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Electron Transport Chain Complex Proteins/genetics , Electron Transport Chain Complex Proteins/metabolism , Gene Expression Regulation , Glycolysis , Humans , Lactate Dehydrogenase 5/antagonists & inhibitors , Lactate Dehydrogenase 5/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Muscle, Skeletal/cytology , Myoblasts/cytology , Oxidative Phosphorylation , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Retinoblastoma-Like Protein p107/metabolism , Sirtuin 1/genetics , Sirtuin 1/metabolism , Stem Cells/cytology , Transcription, Genetic
13.
Mol Med Rep ; 24(3)2021 Sep.
Article in English | MEDLINE | ID: mdl-34278456

ABSTRACT

The pathological expression and function of lactate dehydrogenase A (LDHA), a key enzyme that converts pyruvate into lactic acid during glycolysis, remains unknown in endometriosis. In the present study, LDHA expression in tissue samples was determined by immunohistochemistry. To examine whether LDHA was induced by hypoxia, primary cultured endometrial stromal cells (ESCs) and glandular epithelial Ishikawa cells were exposed to 1% O2 (hypoxia) or 21% O2 (normoxia). Cellular functions were assessed by flow cytometry, Transwell and Cell Counting Kit­8 assays in LDHA­silenced ESCs and Ishikawa cells. Mitochondrial functions were evaluated using mitochondrial membrane potential JC­1 staining, reactive oxygen species flow cytometric analysis and ATP detection. Additionally, lactic acid production was examined and western blotting was used to evaluate the expression levels of proteins associated with apoptosis, cell cycle and glycolysis, as well as regulatory proteins involved in epithelial­mesenchymal transformation and glycolytic pathways. LDHA was localized to endometrial glandular cells and stromal cells. However, LDHA protein expression was higher in endometriotic lesions compared with that in normal and eutopic endometria. LDHA expression levels in ectopic glandular cells were higher during the proliferative stage compared with during the secretory stage. Hypoxia treatment of Ishikawa cells and ESCs markedly induced the mRNA and protein expression of LDHA. Silencing of LDHA expression in Ishikawa cells and THESC cells significantly promoted impaired mitochondrial function and apoptosis while inhibiting migration and glycolysis. However, it had no obvious effect on proliferation. In conclusion, the present study revealed that LDHA was highly expressed in endometriotic tissues, where it may serve a notable role in the occurrence and development of endometriosis.


Subject(s)
Apoptosis/drug effects , Endometriosis/drug therapy , Hypoxia/chemically induced , Lactate Dehydrogenase 5/metabolism , Lactate Dehydrogenase 5/pharmacology , Protective Agents/pharmacology , Adult , Cell Proliferation , Endometriosis/pathology , Endometrium/metabolism , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition , Female , Glycolysis , Humans , L-Lactate Dehydrogenase/metabolism , Lactate Dehydrogenase 5/genetics , Lactic Acid/metabolism , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism , Stromal Cells/metabolism
14.
NMR Biomed ; 34(8): e4560, 2021 08.
Article in English | MEDLINE | ID: mdl-34086382

ABSTRACT

In many tumors, cancer cells take up large quantities of glucose and metabolize it into lactate, even in the presence of sufficient oxygen to support oxidative metabolism. It has been hypothesized that this malignant metabolic phenotype supports cancer growth and metastasis, and that reversal of this so-called "Warburg effect" may selectively harm cancer cells. Conversion of glucose to lactate can be reduced by ablation or inhibition of lactate dehydrogenase (LDH), the enzyme responsible for conversion of pyruvate to lactate at the endpoint of glycolysis. Recently developed inhibitors of LDH provide new opportunities to investigate the role of this metabolic pathway in cancer. Here we show that magnetic resonance spectroscopic imaging of hyperpolarized pyruvate and its metabolites in models of breast and lung cancer reveal that inhibition of LDH was readily visualized through reduction in label exchange between pyruvate and lactate, while genetic ablation of the LDH-A isoform alone had smaller effects. During the acute phase of LDH inhibition in breast cancer, no discernible bicarbonate signal was observed and small signals from alanine were unchanged.


Subject(s)
Breast Neoplasms/enzymology , Gene Deletion , Lactate Dehydrogenase 5/antagonists & inhibitors , Lactate Dehydrogenase 5/genetics , Lung Neoplasms/enzymology , Magnetic Resonance Spectroscopy , Pyruvic Acid/metabolism , Animals , BRCA1 Protein/metabolism , Breast Neoplasms/diagnostic imaging , Female , Lactate Dehydrogenase 5/metabolism , Lung Neoplasms/diagnostic imaging , Mice , Monocarboxylic Acid Transporters/metabolism , Muscle Proteins/metabolism , Pyridones/administration & dosage , Pyridones/pharmacology , Symporters/metabolism , Thiophenes/administration & dosage , Thiophenes/pharmacology
15.
Mol Cell Biol ; 41(9): e0044920, 2021 08 24.
Article in English | MEDLINE | ID: mdl-34124933

ABSTRACT

A desynchronized circadian rhythm in tumors is coincident with aberrant inflammation and dysregulated metabolism. As their interrelationship in cancer etiology is largely unknown, we investigated the link among the three in glioma. The tumor metabolite lactate-mediated increase in the proinflammatory cytokine interleukin-1ß (IL-1ß) was concomitant with elevated levels of the core circadian regulators Clock and Bmal1. Small interfering RNA (siRNA)-mediated knockdown of Bmal1 and Clock decreased (i) lactate dehydrogenase A (LDHA) and IL-1ß levels and (ii) the release of lactate and proinflammatory cytokines. Lactate-mediated deacetylation of Bmal1 and its interaction with Clock regulate IL-1ß levels and vice versa. Site-directed mutagenesis and luciferase reporter assays indicated the functionality of E-box sites on LDHA and IL-1ß promoters. Sequential chromatin immunoprecipitation (ChIP-re-ChIP) revealed that lactate-IL-1ß cross talk positively affects the corecruitment of Clock-Bmal1 to these E-box sites. Clock-Bmal1 enrichment was accompanied by decreased H3K9me3 and increased H3K9ac and RNA polymerase II (Pol II) occupancy. The lactate-IL-1ß-Clock (LIC) loop positively regulated the expression of genes associated with the cell cycle, DNA damage, and cytoskeletal organization involved in glioma progression. TCGA (The Cancer Genome Atlas) data analysis suggested the presence of lactate-IL-1ß cross talk in other cancers. The responsiveness of stomach and cervical cancer cells to lactate inhibition followed the same trend as that exhibited by glioma cells. In addition, components of the LIC loop were found to be correlated with (i) patient survival, (ii) clinically actionable genes, and (iii) anticancer drug sensitivity. Our findings provide evidence for potential cancer-specific axis wiring of IL-1ß and LDHA through Clock-Bmal1, the outcome of which is to fuel an IL-1ß-lactate autocrine loop that drives proinflammatory and oncogenic signals.


Subject(s)
ARNTL Transcription Factors/metabolism , Circadian Clocks , Glioma/metabolism , Homeostasis , Interleukin-1beta/metabolism , Lactic Acid/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Circadian Clocks/drug effects , Circadian Clocks/genetics , Cytokines/metabolism , Disease Progression , E-Box Elements/genetics , Epigenesis, Genetic/drug effects , Gene Regulatory Networks/drug effects , Glioma/drug therapy , Glioma/genetics , Glioma/pathology , Homeostasis/drug effects , Humans , Inflammation Mediators/metabolism , Interleukin-1beta/genetics , Lactate Dehydrogenase 5/genetics , Lactate Dehydrogenase 5/metabolism , Promoter Regions, Genetic , Survival Analysis
16.
World Neurosurg ; 153: e76-e95, 2021 09.
Article in English | MEDLINE | ID: mdl-34144167

ABSTRACT

BACKGROUND: We previously reported that glioma stemlike cells (GSCs) exist in the area of the tumor periphery showing no gadolinium enhancement on magnetic resonance imaging. In the present work, we analyzed glucose metabolism to investigate whether lactate could be predictive of tumor invasiveness and of use in detection of the tumor invasion area in glioblastoma multiforme (GBM). METHODS: The expression of lactate dehydrogenase A (LDH-A) and pyruvate dehydrogenase (PDH) was investigated in 20 patients. In GSC lines, LDH-A and PDH expression also was examined in parallel to assessments of mitochondrial respiration. We then investigated the relationship between lactate/creatine ratios in the tumor periphery measured by magnetic resonance spectroscopy, using learning-compression-model algorithms and phenotypes of GBMs. RESULTS: In 20 GBMs, high-invasive GBM expressed LDH-A at significantly higher expression than did low-invasive GBM, whereas low-invasive GBM showed significantly higher expression of PDH than did high-invasive GBM. The highly invasive GSC line showed higher expression of LDH-A and lower expression of PDH compared with low-invasive GSC lines. The highly invasive GSC line also showed the lowest consumption of oxygen and the lowest production of adenosine triphosphate. Lactate levels, as measured by magnetic resonance spectroscopy, showed a significant positive correlation with LDH-A transcript levels, permitting classification of the GBMs into high-invasive and low-invasive phenotypes based on a cutoff value of 0.66 in the lactate/creatine ratio. CONCLUSIONS: In the tumor periphery area of the highly invasive GBM, aerobic glycolysis was the predominant pathway for glucose metabolism, resulting in the accumulation of lactate. The level of lactate may facilitate prediction of the tumor-infiltrating area on GBM.


Subject(s)
Brain Neoplasms/metabolism , Glioblastoma/metabolism , Lactic Acid/metabolism , Neoplastic Stem Cells/metabolism , Adult , Aged , Aged, 80 and over , Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/therapy , Chemoradiotherapy, Adjuvant , Energy Metabolism , Female , Glioblastoma/diagnostic imaging , Glioblastoma/therapy , Humans , Lactate Dehydrogenase 5/genetics , Lactate Dehydrogenase 5/metabolism , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Male , Methionine , Middle Aged , Mitochondria/metabolism , Neurosurgical Procedures , Positron-Emission Tomography , Pyruvate Dehydrogenase (Lipoamide)/genetics , Pyruvate Dehydrogenase (Lipoamide)/metabolism , RNA, Messenger/metabolism , Radiopharmaceuticals , Temozolomide/therapeutic use , Young Adult
17.
FEBS Lett ; 595(9): 1289-1302, 2021 05.
Article in English | MEDLINE | ID: mdl-33626175

ABSTRACT

Microrchidia family CW-type zinc finger 2 (MORC2) is a recently identified chromatin modifier with an emerging role in cancer metastasis. However, its role in glucose metabolism, a hallmark of malignancy, remains to be explored. We found that MORC2 is a glucose-inducible gene and a target of c-Myc. Our meta-analysis revealed that MORC2 expression is positively correlated with the expression of enzymes involved in glucose metabolism in breast cancer patients. Furthermore, overexpression of MORC2 in MCF-7 and BT-549 cells augmented the expression and activity of a key glucose metabolism enzyme, lactate dehydrogenase A (LDHA). Conversely, selective knockdown of MORC2 by siRNA markedly decreased LDHA expression and activity and in turn reduced cancer cell migration. Collectively, these findings provide evidence that MORC2, a glucose-inducible gene, modulates the migration of breast cancer cells through the MORC2-c-Myc-LDHA axis.


Subject(s)
Lactate Dehydrogenase 5/genetics , Proto-Oncogene Proteins c-myc/genetics , Transcription Factors/genetics , Chromatin/genetics , Gene Expression Regulation/genetics , Glucose/genetics , Humans , MCF-7 Cells , RNA, Small Interfering/genetics , Signal Transduction/genetics
18.
Clin Transl Med ; 11(1): e279, 2021 01.
Article in English | MEDLINE | ID: mdl-33463054

ABSTRACT

BACKGROUND AND AIM: We previously identified forkhead box (FOX) O4 mRNA as a predictor in gastric cancer (GC). However, the underlying mechanism has yet to be elucidated. We aimed to illustrate the mechanism by which FOXO4 regulated glycolysis under hypoxia in GC. METHODS: FOXO4 protein expression was investigated by immunohistochemical staining of 252 GC and their normal adjacent tissues. We restored or silenced FOXO4 expression in GC cell lines to explore the underlying mechanisms. RESULTS: FOXO4 was downregulated in GC. Loss of FOXO4 expression was validated in univariate and multivariate survival analysis as an independent prognostic predictor for overall survival (P < 0.05) and disease-free survival (P<0.05). Restored FOXO4 expression significantly impaired the glycolysis rate in GC cells, while silencing FOXO4 expression enhanced glycolysis rate. FOXO4 expression was inversely associated with maximum standardized uptake value in mice models and patient samples. Mechanistically, FOXO4 bound to the glycolytic enzyme lactate dehydrogenase (LDH)A promoter and inactivated its activity in a dose-dependent manner (P < 0.05). Finally, we determined that FOXO4 was a transcriptional target of hypoxia-inducible factor (HIF) -1α, which is central in response to hypoxia. CONCLUSIONS: Our data suggested that FOXO4 plays a key role in the regulation of glycolysis in GC, and disrupting the HIF-1α-FOXO4-LDHA axis might be a promising therapeutic strategy for GC.


Subject(s)
Cell Cycle Proteins/metabolism , Forkhead Transcription Factors/metabolism , Glycolysis/physiology , Hypoxia/metabolism , Lactate Dehydrogenase 5/metabolism , Stomach Neoplasms/metabolism , Animals , Cell Cycle Proteins/genetics , Cohort Studies , Disease Models, Animal , Disease Progression , Disease-Free Survival , Female , Forkhead Transcription Factors/genetics , Glycolysis/genetics , Humans , Lactate Dehydrogenase 5/genetics , Male , Mice , Middle Aged , Stomach Neoplasms/genetics
19.
Science ; 371(6527): 405-410, 2021 01 22.
Article in English | MEDLINE | ID: mdl-33479154

ABSTRACT

Infection triggers expansion and effector differentiation of T cells specific for microbial antigens in association with metabolic reprograming. We found that the glycolytic enzyme lactate dehydrogenase A (LDHA) is induced in CD8+ T effector cells through phosphoinositide 3-kinase (PI3K) signaling. In turn, ablation of LDHA inhibits PI3K-dependent phosphorylation of Akt and its transcription factor target Foxo1, causing defective antimicrobial immunity. LDHA deficiency cripples cellular redox control and diminishes adenosine triphosphate (ATP) production in effector T cells, resulting in attenuated PI3K signaling. Thus, nutrient metabolism and growth factor signaling are highly integrated processes, with glycolytic ATP serving as a rheostat to gauge PI3K-Akt-Foxo1 signaling in the control of T cell immunity. Such a bioenergetic mechanism for the regulation of signaling may explain the Warburg effect.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Glycolysis , Lactate Dehydrogenase 5/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Animals , CD8-Positive T-Lymphocytes/enzymology , Forkhead Box Protein O1/metabolism , Humans , Lactate Dehydrogenase 5/genetics , Listeria monocytogenes , Listeriosis/enzymology , Listeriosis/immunology , Mice , Mice, Mutant Strains , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Warburg Effect, Oncologic
20.
Int J Oncol ; 57(5): 1223-1233, 2020 11.
Article in English | MEDLINE | ID: mdl-32901837

ABSTRACT

Pancreatic cancer is one of the most lethal solid malignancies, with a poor prognosis and a high mortality rate. Pancreatic cancer cells exhibit enhanced glycolysis to maintain their rapid growth. Canagliflozin (CANA) is a sodium­glucose co­transporter 2 inhibitor used for the clinical treatment of diabetes. Recent studies have demonstrated the potential ability of CANA to suppress hepatocellular carcinoma, whereas its therapeutic effects on and mechanisms in pancreatic cancer have rarely been reported. In the present study, the antitumor effects of CANA on pancreatic cancer were investigated. The data obtained indicated that pancreatic cancer growth was effectively suppressed by CANA in a dose­dependent manner, with peak inhibition rates of 54.3 and 57.6% in cultured Capan­1 and PANC­1 cells respectively. The tumor inhibitory rate reached 45.2% in nude mice with PANC­1­derived tumors, suggesting its effective antitumor activity against pancreatic cancer in vitro and/or in vivo. In addition, the combined treatment of Capan­1 and PANC­1 cells with gemcitabine and CANA exhibited a greater efficacy compared with that of treatment with gemcitabine alone. Moreover, glucose uptake and lactate production were decreased, and the mRNA levels of the glycolysis­associated genes, including glucose transporter­1 and lactate dehydrogenase A were decreased, indicating the inhibitory effects caused by the combination treatment on the metabolism of glucose in pancreatic cancer cells. Furthermore, CANA induced apoptosis, notably early apoptosis, and decreased the protein levels of PI3K, p­AKT, p­mTOR and HIF­1α, which indicated that the PI3K/AKT/mTOR signaling pathway was involved in the glycolytic process. These results demonstrated that pancreatic cancer growth was effectively inhibited by CANA via the suppression of glycolysis. This was mediated primarily by the PI3K/AKT/mTOR signaling pathway, revealing the underlying role and potential of this pathway for the clinical treatment of pancreatic cancer. Novel applications for the existing drug CANA can be explored, which could reduce the cost and time required for drug development in the field of drug discovery.


Subject(s)
Canagliflozin/pharmacology , Glucose Transporter Type 1/genetics , Lactate Dehydrogenase 5/genetics , Pancreatic Neoplasms/drug therapy , Animals , Apoptosis/drug effects , Canagliflozin/therapeutic use , Cell Line, Tumor , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Down-Regulation , Glycolysis , Humans , Male , Mice , Mice, Inbred BALB C , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Phosphatidylinositol 3-Kinases/physiology , Proto-Oncogene Proteins c-akt/physiology , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/physiology , Gemcitabine
SELECTION OF CITATIONS
SEARCH DETAIL
...