Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
Add more filters










Publication year range
1.
Molecules ; 29(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38731521

ABSTRACT

Lactate dehydrogenase A (LDHA) primarily catalyzes the conversion between lactic acid and pyruvate, serving as a key enzyme in the aerobic glycolysis pathway of sugar in tumor cells. LDHA plays a crucial role in the occurrence, development, progression, invasion, metastasis, angiogenesis, and immune escape of tumors. Consequently, LDHA not only serves as a biomarker for tumor diagnosis and prognosis but also represents an ideal target for tumor therapy. Although LDHA inhibitors show great therapeutic potential, their development has proven to be challenging. In the development of LDHA inhibitors, the key active sites of LDHA are emphasized. Nevertheless, there is a relative lack of research on the amino acid residues around the active center of LDHA. Therefore, in this study, we investigated the amino acid residues around the active center of LDHA. Through structure comparison analysis, five key amino acid residues (Ala30, Met41, Lys131, Gln233, and Ala259) were identified. Subsequently, the effects of these five residues on the enzymatic properties of LDHA were investigated using site-directed mutagenesis. The results revealed that the catalytic activities of the five mutants varied to different degrees in both the reaction from lactic acid to pyruvate and pyruvate to lactic acid. Notably, the catalytic activities of LDHAM41G and LDHAK131I were improved, particularly in the case of LDHAK131I. The results of the molecular dynamics analysis of LDHAK131I explained the reasons for this phenomenon. Additionally, the optimum temperature of LDHAM41G and LDHAQ233M increased from 35 °C to 40 °C, whereas in the reverse reaction, the optimum temperature of LDHAM41G and LDHAK131I decreased from 70 °C to 60 °C. These findings indicate that Ala30, Met41, Lys131, Gln233, and Ala259 exert diverse effects on the catalytic activity and optimum temperature of LHDA. Therefore, these amino acid residues, in addition to the key catalytic site of the active center, play a crucial role. Considering these residues in the design and screening of LDHA inhibitors may lead to the development of more effective inhibitors.


Subject(s)
Catalytic Domain , Enzyme Inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Amino Acids/chemistry , Amino Acids/metabolism , L-Lactate Dehydrogenase/antagonists & inhibitors , L-Lactate Dehydrogenase/metabolism , L-Lactate Dehydrogenase/chemistry , Lactate Dehydrogenase 5/metabolism , Lactate Dehydrogenase 5/antagonists & inhibitors , Lactate Dehydrogenase 5/chemistry , Pyruvic Acid/metabolism , Pyruvic Acid/chemistry , Mutagenesis, Site-Directed , Molecular Dynamics Simulation
2.
Free Radic Biol Med ; 220: 312-323, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38740101

ABSTRACT

Podocytes are crucial for regulating glomerular permeability. They have foot processes that are integral to the renal filtration barrier. Understanding their energy metabolism could shed light on the pathogenesis of filtration barrier injury. Lactate has been increasingly recognized as more than a waste product and has emerged as a significant metabolic fuel and reserve. The recent identification of lactate transporters in podocytes, the expression of which is modulated by glucose levels and lactate, highlights lactate's relevance. The present study investigated the impact of lactate on podocyte respiratory efficiency and mitochondrial dynamics. We confirmed lactate oxidation in podocytes, suggesting its role in cellular energy production. Under conditions of glucose deprivation or lactate supplementation, a significant shift was seen toward oxidative phosphorylation, reflected by an increase in the oxygen consumption rate/extracellular acidification rate ratio. Notably, lactate dehydrogenase A (LDHA) and lactate dehydrogenase B (LDHB) isoforms, which are involved in lactate conversion to pyruvate, were detected in podocytes for the first time. The presence of lactate led to higher intracellular pyruvate levels, greater LDH activity, and higher LDHB expression. Furthermore, lactate exposure increased mitochondrial DNA-to-nuclear DNA ratios and resulted in upregulation of the mitochondrial biogenesis markers peroxisome proliferator-activated receptor coactivator-1α and transcription factor A mitochondrial, regardless of glucose availability. Changes in mitochondrial size and shape were observed in lactate-exposed podocytes. These findings suggest that lactate is a pivotal energy source for podocytes, especially during energy fluctuations. Understanding lactate's role in podocyte metabolism could offer insights into renal function and pathologies that involve podocyte injury.


Subject(s)
L-Lactate Dehydrogenase , Lactic Acid , Mitochondrial Dynamics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Podocytes , Podocytes/metabolism , Podocytes/pathology , Animals , Rats , Lactic Acid/metabolism , L-Lactate Dehydrogenase/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Mitochondria/metabolism , Mitochondria/pathology , Glucose/metabolism , Energy Metabolism , Lactate Dehydrogenase 5/metabolism , Oxidative Phosphorylation/drug effects , DNA, Mitochondrial/metabolism , DNA, Mitochondrial/genetics , Oxygen Consumption , Cells, Cultured , Pyruvic Acid/metabolism , Isoenzymes
3.
J Transl Med ; 22(1): 474, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38764020

ABSTRACT

BACKGROUND: The initiation of fibroblast growth factor 1 (FGF1) expression coincident with the decrease of FGF2 expression is a well-documented event in prostate cancer (PCa) progression. Lactate dehydrogenase A (LDHA) and LDHB are essential metabolic products that promote tumor growth. However, the relationship between FGF1/FGF2 and LDHA/B-mediated glycolysis in PCa progression is not reported. Thus, we aimed to explore whether FGF1/2 could regulate LDHA and LDHB to promote glycolysis and explored the involved signaling pathway in PCa progression. METHODS: In vitro studies used RT‒qPCR, Western blot, CCK-8 assays, and flow cytometry to analyze gene and protein expression, cell viability, apoptosis, and cell cycle in PCa cell lines. Glycolysis was assessed by measuring glucose consumption, lactate production, and extracellular acidification rate (ECAR). For in vivo studies, a xenograft mouse model of PCa was established and treated with an FGF pathway inhibitor, and tumor growth was monitored. RESULTS: FGF1, FGF2, and LDHA were expressed at high levels in PCa cells, while LDHB expression was low. FGF1/2 positively modulated LDHA and negatively modulated LDHB in PCa cells. The depletion of FGF1, FGF2, or LDHA reduced cell proliferation, induced cell cycle arrest, and inhibited glycolysis. LDHB overexpression showed similar inhibitory effect on PCa cells. Mechanistically, we found that FGF1/2 positively regulated STAT1 and STAT1 transcriptionally activated LDHA expression while suppressed LDHB expression. Furthermore, the treatment of an FGF pathway inhibitor suppressed PCa tumor growth in mice. CONCLUSION: The FGF pathway facilitates glycolysis by activating LDHA and suppressing LDHB in a STAT1-dependent manner in PCa.


Subject(s)
Fibroblast Growth Factors , Glycolysis , L-Lactate Dehydrogenase , Prostatic Neoplasms , STAT1 Transcription Factor , Signal Transduction , Male , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/genetics , Humans , Animals , L-Lactate Dehydrogenase/metabolism , Cell Line, Tumor , STAT1 Transcription Factor/metabolism , Fibroblast Growth Factors/metabolism , Mice, Nude , Cell Proliferation , Mice , Gene Expression Regulation, Neoplastic , Fibroblast Growth Factor 2/metabolism , Apoptosis , Lactate Dehydrogenase 5/metabolism , Isoenzymes
4.
Exp Mol Med ; 56(5): 1107-1122, 2024 May.
Article in English | MEDLINE | ID: mdl-38689083

ABSTRACT

Genotoxic therapy triggers reactive oxygen species (ROS) production and oxidative tissue injury. S-nitrosylation is a selective and reversible posttranslational modification of protein thiols by nitric oxide (NO), and 5,6,7,8-tetrahydrobiopterin (BH4) is an essential cofactor for NO synthesis. However, the mechanism by which BH4 affects protein S-nitrosylation and ROS generation has not been determined. Here, we showed that ionizing radiation disrupted the structural integrity of BH4 and downregulated GTP cyclohydrolase I (GCH1), which is the rate-limiting enzyme in BH4 biosynthesis, resulting in deficiency in overall protein S-nitrosylation. GCH1-mediated BH4 synthesis significantly reduced radiation-induced ROS production and fueled the global protein S-nitrosylation that was disrupted by radiation. Likewise, GCH1 overexpression or the administration of exogenous BH4 protected against radiation-induced oxidative injury in vitro and in vivo. Conditional pulmonary Gch1 knockout in mice (Gch1fl/fl; Sftpa1-Cre+/- mice) aggravated lung injury following irradiation, whereas Gch1 knock-in mice (Gch1lsl/lsl; Sftpa1-Cre+/- mice) exhibited attenuated radiation-induced pulmonary toxicity. Mechanistically, lactate dehydrogenase (LDHA) mediated ROS generation downstream of the BH4/NO axis, as determined by iodoacetyl tandem mass tag (iodoTMT)-based protein quantification. Notably, S-nitrosylation of LDHA at Cys163 and Cys293 was regulated by BH4 availability and could restrict ROS generation. The loss of S-nitrosylation in LDHA after irradiation increased radiosensitivity. Overall, the results of the present study showed that GCH1-mediated BH4 biosynthesis played a key role in the ROS cascade and radiosensitivity through LDHA S-nitrosylation, identifying novel therapeutic strategies for the treatment of radiation-induced lung injury.


Subject(s)
Biopterins , GTP Cyclohydrolase , Lung Injury , Reactive Oxygen Species , Animals , Biopterins/analogs & derivatives , Biopterins/metabolism , Reactive Oxygen Species/metabolism , Mice , Lung Injury/metabolism , Lung Injury/etiology , GTP Cyclohydrolase/metabolism , GTP Cyclohydrolase/genetics , Humans , Radiation Tolerance/genetics , Lactate Dehydrogenase 5/metabolism , Mice, Knockout , Nitric Oxide/metabolism , L-Lactate Dehydrogenase/metabolism , L-Lactate Dehydrogenase/genetics , Protein Processing, Post-Translational , Radiation, Ionizing
5.
Cancer Lett ; 589: 216825, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38548218

ABSTRACT

As one of the key metabolic enzymes in the glycolytic pathway, lactate dehydrogenase A (LDHA) might be linked to tumor proliferation by driving the Warburg effect. Circular RNAs (circRNAs) are widely implicated in tumor progression. Here, we report that circTATDN3, a circular RNA that interacts with LDHA, plays a critical role in proliferation and energy metabolism in CRC. We found that circTATDN3 expression was increased in CRC cells and tumor tissues and that high circTATDN3 expression was positively associated with poor postoperative prognosis in CRC patients. Additionally, circTATDN3 promoted the proliferation of CRC cells in vivo and vitro. Mechanistically, circTATDN3 was shown to function as an adaptor molecule that enhances the binding of LDHA to FGFR1, leading to increased LDHA phosphorylation and consequently promoting the Warburg effect. Moreover, circTATDN3 increased the expression of LDHA by sponging miR-511-5p, which synergistically promoted CRC progression and the Warburg effect. In conclusion, circTATDN3 may be a target for the treatment of CRC.


Subject(s)
Colorectal Neoplasms , MicroRNAs , Humans , RNA, Circular/genetics , Cell Line, Tumor , Lactate Dehydrogenase 5/genetics , Lactate Dehydrogenase 5/metabolism , Colorectal Neoplasms/pathology , Cell Proliferation , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Expression Regulation, Neoplastic
6.
Int J Mol Med ; 53(4)2024 04.
Article in English | MEDLINE | ID: mdl-38426579

ABSTRACT

SET domain bifurcated 1 (SETDB1), a pivotal histone lysine methyltransferase, is transported to the cytoplasm via a chromosome region maintenance 1 (CMR1)­dependent pathway, contributing to non­histone methylation. However, the function and underlying mechanism of cytoplasmic SETDB1 in breast cancer remain elusive. In the present study, immunohistochemistry revealed that elevated cytoplasmic SETDB1 was correlated with lymph node metastasis and more aggressive breast cancer subtypes. Functionally, wound healing and Transwell assays showed that cytoplasmic SETDB1 is key for cell migration and invasion, as well as induction of epithelial­mesenchymal transition (EMT), which was reversed by leptomycin B (LMB, a CMR1 inhibitor) treatment. Furthermore, RNA­seq and metabolite detection revealed that cytoplasmic SETDB1 was associated with metabolism pathway and elevated levels of metabolites involved in the Warburg effect, including glucose, pyruvate, lactate and ATP. Immunoblotting and reverse transcription­quantitative PCR verified that elevation of cytoplasmic SETDB1 contributed to elevation of c­MYC expression and subsequent upregulation of lactate dehydrogenase A (LDHA) expression. Notably, gain­ and loss­of­function approaches revealed that LDHA overexpression in T47D cells enhanced migration and invasion by inducing EMT, while its depletion in SETDB1­overexpressing MCF7 cells reversed SETDB1­induced migration and invasion, as well as the Warburg effect and EMT. In conclusion, subcellular localization of cytoplasmic SETDB1 may be a pivotal factor in breast cancer progression. The present study offers valuable insight into the novel functions and mechanisms of cytoplasmic SETDB1.


Subject(s)
Breast Neoplasms , PR-SET Domains , Female , Humans , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement/genetics , Cytoplasm/metabolism , Gene Expression Regulation, Neoplastic , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Lactate Dehydrogenase 5/genetics , Lactate Dehydrogenase 5/metabolism
7.
Cell Death Dis ; 15(3): 209, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38480704

ABSTRACT

Metabolic reprogramming, a hallmark of cancer, is closely associated with tumor development and progression. Changes in glycolysis play a crucial role in conferring radiation resistance to tumor cells. How radiation changes the glycolysis status of cancer cells is still unclear. Here we revealed the role of TAB182 in regulating glycolysis and lactate production in cellular response to ionizing radiation. Irradiation can significantly stimulate the production of TAB182 protein, and inhibiting TAB182 increases cellular radiosensitivity. Proteomic analysis indicated that TAB182 influences several vital biological processes, including multiple metabolic pathways. Knockdown of TAB182 results in decreased lactate production and increased pyruvate and ATP levels in cancer cells. Moreover, knocking down TAB182 reverses radiation-induced metabolic changes, such as radioresistant-related lactate production. TAB182 is necessary for activating LDHA transcription by affecting transcription factors SP1 and c-MYC; its knockdown attenuates the upregulation of LDHA by radiation, subsequently suppressing lactate production. Targeted suppression of TAB182 significantly enhances the sensitivity of murine xenograft tumors to radiotherapy. These findings advance our understanding of glycolytic metabolism regulation in response to ionizing radiation, which may offer significant implications for developing new strategies to overcome tumor radioresistance.


Subject(s)
L-Lactate Dehydrogenase , Proteomics , Humans , Animals , Mice , L-Lactate Dehydrogenase/metabolism , Lactate Dehydrogenase 5/metabolism , Cell Line, Tumor , Glycolysis , Lactates , Radiation Tolerance/genetics
8.
Cancer Lett ; 587: 216696, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38331089

ABSTRACT

Lactate dehydrogenase A (LDHA) serves as a key regulator of the Warburg Effect by catalyzing the conversion of pyruvate to lactate in the final step of glycolysis. Both the expression level and enzyme activity of LDHA are upregulated in cancers, however, the underlying mechanism remains incompletely understood. Here, we show that LDHA is post-translationally palmitoylated by ZDHHC9 at cysteine 163, which promotes its enzyme activity, lactate production, and reduces reactive oxygen species (ROS) generation. Replacement of endogenous LDHA with a palmitoylation-deficient mutant leads to reduced pancreatic cancer cell proliferation, increased T-cell infiltration, and limited tumor growth; it also affects pancreatic cancer cell response to chemotherapy. Moreover, LDHA palmitoylation is upregulated in gemcitabine resistant pancreatic cancer cells. Clinically, ZDHHC9 is upregulated in pancreatic cancer and correlated with poor prognoses for patients. Overall, our findings identify ZDHHC9-mediated palmitoylation as a positive regulator of LDHA, with potentially significant implications for cancer etiology and targeted therapy for pancreatic cancer.


Subject(s)
L-Lactate Dehydrogenase , Pancreatic Neoplasms , Humans , L-Lactate Dehydrogenase/genetics , Lipoylation , Cell Line, Tumor , Lactate Dehydrogenase 5/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Glycolysis , Cell Proliferation , Lactates
9.
Cell Death Dis ; 15(1): 64, 2024 01 17.
Article in English | MEDLINE | ID: mdl-38233415

ABSTRACT

Renal cell carcinoma (RCC) is one of the three major malignant tumors of the urinary system and originates from proximal tubular epithelial cells. Clear cell renal cell carcinoma (ccRCC) accounts for approximately 80% of RCC cases and is recognized as a metabolic disease driven by genetic mutations and epigenetic alterations. Through bioinformatic analysis, we found that FK506 binding protein 10 (FKBP10) may play an essential role in hypoxia and glycolysis pathways in ccRCC progression. Functionally, FKBP10 promotes the proliferation and metastasis of ccRCC in vivo and in vitro depending on its peptidyl-prolyl cis-trans isomerase (PPIase) domains. Mechanistically, FKBP10 binds directly to lactate dehydrogenase A (LDHA) through its C-terminal region, the key regulator of glycolysis, and enhances the LDHA-Y10 phosphorylation, which results in a hyperactive Warburg effect and the accumulation of histone lactylation. Moreover, HIFα negatively regulates the expression of FKBP10, and inhibition of FKBP10 enhances the antitumor effect of the HIF2α inhibitor PT2385. Therefore, our study demonstrates that FKBP10 promotes clear cell renal cell carcinoma progression and regulates sensitivity to HIF2α blockade by facilitating LDHA phosphorylation, which may be exploited for anticancer therapy.


Subject(s)
Carcinoma, Renal Cell , Carcinoma , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/metabolism , Lactate Dehydrogenase 5/metabolism , Phosphorylation , Cell Line, Tumor , Carcinoma/genetics , Kidney Neoplasms/metabolism , Cell Proliferation , Gene Expression Regulation, Neoplastic , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/metabolism
10.
Cell Commun Signal ; 22(1): 51, 2024 01 17.
Article in English | MEDLINE | ID: mdl-38233839

ABSTRACT

The dynamic changes of RNA N6-methyladenosine (m6A) during cancer progression participate in various cellular processes. However, less is known about a possible direct connection between upstream regulator and m6A modification, and therefore affects oncogenic progression. Here, we have identified that a key enzyme in N4-acetylcytidine (ac4C) acetylation NAT10 is highly expressed in human osteosarcoma tissues, and its knockdown enhanced m6A contents and significantly suppressed osteosarcoma cell growth, migration and invasion. Further results revealed that NAT10 silence inhibits mRNA stability and translation of m6A reader protein YTHDC1, and displayed an increase in glucose uptake, a decrease in lactate production and pyruvate content. YTHDC1 recognizes differential m6A sites on key enzymes of glycolysis phosphofructokinase (PFKM) and lactate dehydrogenase A (LDHA) mRNAs, which suppress glycolysis pathway by increasing mRNA stability of them in an m6A methylation-dependent manner. YTHDC1 partially abrogated the inhibitory effect caused by NAT10 knockdown in tumor models in vivo, lentiviral overexpression of YTHDC1 partially restored the reduced stability of YTHDC1 caused by lentiviral depleting NAT10 at the cellular level. Altogether, we found ac4C driven RNA m6A modification can positively regulate the glycolysis of cancer cells and reveals a previously unrecognized signaling axis of NAT10/ac4C-YTHDC1/m6A-LDHA/PFKM in osteosarcoma. Video Abstract.


Subject(s)
Cytidine/analogs & derivatives , Osteosarcoma , Phosphofructokinases , Humans , Lactate Dehydrogenase 5/metabolism , Phosphofructokinases/metabolism , Acetylation , RNA/metabolism , Glycolysis/genetics , Osteosarcoma/pathology , Phosphofructokinase-1, Muscle Type/metabolism , RNA Splicing Factors/metabolism , Nerve Tissue Proteins/metabolism , N-Terminal Acetyltransferases/metabolism
11.
Hepatology ; 79(3): 606-623, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37733267

ABSTRACT

BACKGROUND AND AIMS: Aerobic glycolysis reprogramming occurs during HSC activation, but how it is initiated and sustained remains unknown. We investigated the mechanisms by which canonical Wnt signaling regulated HSC glycolysis and the therapeutic implication for liver fibrosis. APPROACH AND RESULTS: Glycolysis was examined in HSC-LX2 cells upon manipulation of Wnt/ß-catenin signaling. Nuclear translocation of lactate dehydrogenase A (LDH-A) and its interaction with hypoxia-inducible factor-1α (HIF-1α) were investigated using molecular simulation and site-directed mutation assays. The pharmacological relevance of molecular discoveries was intensified in primary cultures, rodent models, and human samples. HSC glycolysis was enhanced by Wnt3a but reduced by ß-catenin inhibitor or small interfering RNA (siRNA). Wnt3a-induced rapid transactivation and high expression of LDH-A dependent on TCF4. Wnt/ß-catenin signaling also stimulated LDH-A nuclear translocation through importin ß2 interplay with a noncanonical nuclear location signal of LDH-A. Mechanically, LDH-A bound to HIF-1α and enhanced its stability by obstructing hydroxylation-mediated proteasome degradation, leading to increased transactivation of glycolytic genes. The Gly28 residue of LDH-A was identified to be responsible for the formation of the LDH-A/HIF-1α transcription complex and stabilization of HIF-1α. Furthermore, LDH-A-mediated glycolysis was required for HSC activation in the presence of Wnt3a. Results in vivo showed that HSC activation and liver fibrosis were alleviated by HSC-specific knockdown of LDH-A in mice. ß-catenin inhibitor XAV-939 mitigated HSC activation and liver fibrosis, which were abrogated by HSC-specific LDH-A overexpression in mice with fibrosis. CONCLUSIONS: Inhibition of HSC glycolysis by targeting Wnt/ß-catenin signaling and LDH-A had therapeutic promise for liver fibrosis.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit , Liver Cirrhosis , Wnt Signaling Pathway , beta Catenin , Animals , Humans , Mice , beta Catenin/metabolism , Glycolysis , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lactate Dehydrogenase 5/metabolism , Wnt Signaling Pathway/physiology , Hepatic Stellate Cells/metabolism
12.
J Pharmacol Sci ; 153(4): 197-207, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37973217

ABSTRACT

Osteoclasts are multinucleated, specializes bone-resorbing cells that are derived from the monocyte/macrophage lineage. Excessive resorbing activities of osteoclasts are involved in destructive bone diseases. The detailed mechanism of acidification at the bone adhesion surface during the bone resorption process of osteoclasts remains to be defined. During glycolysis, pyruvate proceeds to the tricarboxylic cycle under aerobic conditions and pyruvate is converted to lactate via lactate dehydrogenase A (LDHA) under anaerobic conditions. However, tumor cells produce ATP during aerobic glycolysis and large amounts of pyruvate are converted to lactate and H+ by LDHA. Lactate and H+ are excreted outside the cell, whereby they are involved in invasion of tumor cells due to the pH drop around the cell. In this study, we focused on aerobic glycolysis and investigated the production of lactate by LDHA in osteoclasts. Expression of LDHA and monocarboxylate transporter 4 (MCT4) was upregulated during osteoclast differentiation. Intracellular and extracellular lactate levels increased with upregulation of LDHA and MCT4, respectively. FX11 (an LDHA inhibitor) inhibited osteoclast differentiation and suppressed the bone-resorbing activity of osteoclasts. We propose that inhibition of LDHA may represent a novel therapeutic strategy for controlling excessive bone resorption in osteoporosis and rheumatoid arthritis.


Subject(s)
Bone Resorption , Osteogenesis , Humans , Lactate Dehydrogenase 5/metabolism , Osteoclasts/physiology , Bone Resorption/prevention & control , Bone Resorption/metabolism , Lactates/metabolism , Glycolysis , Pyruvates/metabolism , L-Lactate Dehydrogenase/metabolism
13.
ACS Biomater Sci Eng ; 9(11): 6045-6057, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37856794

ABSTRACT

Cancer is the second leading cause of death worldwide, with a dramatic impact due to the acquired resistance of cancers to used chemotherapeutic drugs and treatments. The enzyme lactate dehydrogenase (LDH-A) is responsible for cancer cell proliferation. Recently the development of selective LDH-A inhibitors as drugs for cancer treatment has been reported to be an efficient strategy aiming to decrease cancer cell proliferation and increase the sensitivity to traditional chemotherapeutics. This study aims to obtain a stable and active biocatalyst that can be utilized for such drug screening purposes. It is conceived by adopting human LDH-A enzyme (hLDH-A) and investigating different immobilization techniques on porous supports to achieve a stable and reproducible biosensor for anticancer drugs. The hLDH-A enzyme is covalently immobilized on mesoporous silica (MCM-41) functionalized with amino and aldehyde groups following two different methods. The mesoporous support is characterized by complementary techniques to evaluate the surface chemistry and the porous structure. Fluorescence microscopy analysis confirms the presence of the enzyme on the support surface. The tested immobilizations achieve yields of ≥80%, and the best retained activity of the enzyme is as high as 24.2%. The optimal pH and temperature of the best immobilized hLDH-A are pH 5 and 45 °C for the reduction of pyruvate into lactate, while those for the free enzyme are pH 8 and 45 °C. The stability test carried out at 45 °C on the immobilized enzyme shows a residual activity close to 40% for an extended time. The inhibition caused by NHI-2 is similar for free and immobilized hLDH-A, 48% and 47%, respectively. These findings are significant for those interested in immobilizing enzymes through covalent attachment on inorganic porous supports and pave the way to develop stable and active biocatalyst-based sensors for drug screenings that are useful to propose drug-based cancer treatments.


Subject(s)
Biosensing Techniques , L-Lactate Dehydrogenase , Humans , Enzyme Stability , L-Lactate Dehydrogenase/chemistry , L-Lactate Dehydrogenase/metabolism , Lactate Dehydrogenase 5/metabolism , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Biosensing Techniques/methods
14.
Cancer Lett ; 577: 216425, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37805163

ABSTRACT

Lung adenocarcinoma (LUAD) is one of the most prevalent and aggressive types of lung cancer. Metabolic reprogramming plays a critical role in the development and progression of LUAD. Pyruvate dehydrogenase kinase 1 (PDK1) and lactate dehydrogenase A (LDHA) are two key enzymes involved in glucose metabolism, whilst their aberrant expressions are often associated with tumorigenesis. Herein, we investigated the anticancer effects of combined inhibition of PDK1 and LDHA in LUAD in vitro and in vivo and its underlying mechanisms of action. The combination of a PDK1 inhibitor, 64, and a LDHA inhibitor, NHI-Glc-2, led to a synergistic growth inhibition in 3 different LUAD cell lines and more than additively suppressed tumor growth in the LUAD xenograft H1975 model. This combination also inhibited cellular migration and colony formation, while it induced a metabolic shift from glycolysis to oxidative phosphorylation (OXPHOS) resulting in mitochondrial depolarization and apoptosis in LUAD cells. These effects were related to modulation of multiple cell signaling pathways, including AMPK, RAS/ERK, and AKT/mTOR. Our findings demonstrate that simultaneous inhibition of multiple glycolytic enzymes (PDK1 and LDHA) is a promising novel therapeutic approach for LUAD.


Subject(s)
Adenocarcinoma of Lung , Lactate Dehydrogenase 5 , Lung Neoplasms , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Humans , Adenocarcinoma of Lung/drug therapy , Cell Death , Cell Line, Tumor , Cell Proliferation , Glycolysis , L-Lactate Dehydrogenase , Lactate Dehydrogenase 5/antagonists & inhibitors , Lactate Dehydrogenase 5/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/antagonists & inhibitors , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Signal Transduction
15.
Ecotoxicol Environ Saf ; 263: 115288, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37481861

ABSTRACT

We have previously reported the toxicity of microcystin-LR (MC-LR) to the male reproductive system, which results in functional changes in mouse testes. In this study, mice were orally exposed to MC-LR at 1, 7.5, 15, or 30 µg/L daily for 180 days. We found an increase in germ cell apoptosis in the seminiferous tubules and low-quality sperm in the epididymis. A decrease in lactate dehydrogenase A (Ldha) expression in testes through high-throughput sequencing was observed. We validated that MC-LR disrupted lactate production in Sertoli cells by suppressing the expression of Ldha. Further studies identified that methyltransferase 3 (Mettl3) catalysed N6-methyladenosine (m6A) methylation of Ldha mRNA. Mettl3 was downregulated in Sertoli cells following exposure to MC-LR, decreasing m6A levels of Ldha. The stability of Ldha mRNA decreased when m6A levels of Ldha were inhibited. In conclusion, these results showed that MC-LR inhibits the expression of Ldha in an m6A-dependent manner, which might result in the apoptosis of spermatogenic cells and a decline in sperm quality. Our work provides a new perspective to understanding MC-LR-induced male infertility.


Subject(s)
Lactic Acid , Sertoli Cells , Male , Mice , Animals , Sertoli Cells/metabolism , Lactic Acid/metabolism , Semen , Microcystins/toxicity , Microcystins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Lactate Dehydrogenase 5/metabolism
16.
Int J Mol Sci ; 24(13)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37445948

ABSTRACT

Osteoarthritis (OA) is the most common form of arthritis and joint disorder worldwide. Metabolic reprogramming of osteoarthritic chondrocytes from oxidative phosphorylation to glycolysis results in the accumulation of lactate from glycolytic metabolite pyruvate by lactate dehydrogenase A (LDHA), leading to cartilage degeneration. In the present study, we investigated the protective effects of the intra-articular administration of oxamate (LDHA inhibitor) against OA development and glycolysis-related protein expression in experimental OA rats. The animals were randomly allocated into four groups: Sham, anterior cruciate ligament transection (ACLT), ACLT + oxamate (0.25 and 2.5 mg/kg). Oxamate-treated groups received an intra-articular injection of oxamate once a week for 5 weeks. Intra-articular oxamate significantly reduced the weight-bearing defects and knee width in ACLT rats. Histopathological analyses showed that oxamate caused significantly less cartilage degeneration in the ACLT rats. Oxamate exerts hypertrophic effects in articular cartilage chondrocytes by inhibiting glucose transporter 1, glucose transporter 3, hexokinase II, pyruvate kinase M2, pyruvate dehydrogenase kinases 1 and 2, pyruvate dehydrogenase kinase 2, and LHDA. Further analysis revealed that oxamate significantly reduced chondrocyte apoptosis in articular cartilage. Oxamate attenuates nociception, inflammation, cartilage degradation, and chondrocyte apoptosis and possibly attenuates glycolysis-related protein expression in ACLT-induced OA rats. The present findings will facilitate future research on LDHA inhibitors in prevention strategies for OA progression.


Subject(s)
Cartilage Diseases , Cartilage, Articular , Osteoarthritis , Rats , Animals , Lactate Dehydrogenase 5/metabolism , Nociception , Osteoarthritis/metabolism , Chondrocytes/metabolism , Cartilage, Articular/metabolism , Cartilage Diseases/metabolism , Disease Models, Animal
17.
Eur Rev Med Pharmacol Sci ; 27(14): 6605-6617, 2023 07.
Article in English | MEDLINE | ID: mdl-37522672

ABSTRACT

OBJECTIVE: In 1930, Otto Warburg reported that "aerobic glycolysis" is the intrinsic property of all tumor cells' fermentation of glucose to L-Lactate by lactate dehydrogenase A (LDHA) activity. This only produces per mole of glucose two moles of adenosine triphosphate (ATP), compared with 32 moles of ATP in a normal cell. Thus, tumor cells have to uptake 30 folds more glucose, the resulting accumulated lactate are then transported by a monocarboxylate transporter (MCT) with the participation of a CD147 molecule. Inhibition of MCT1 by RNA interference (RNAi) disrupted the unique metabolism of the tumor and caused tumor cell death. However, the effectiveness of the strategies depends on the targeted delivery of the therapeutics. MATERIALS AND METHODS: In this study, a synergistic approach was used to target LDHA and MCT1 with small molecule inhibitors FX11 and AR-C155858, respectively. Cell cytotoxicity assays (AlamarBlue assay), and Mitochondria Membrane Potential (JC-1) dye assays were performed on human breast cancer cells MCF-7 and colorectal cancer cells HCT116. To achieve this aim, the following objectives were proposed: the effect of metabolic inhibitors on tumor glycolytic metabolite environment, and the efficacy of metabolite inhibitors on human breast and colorectal cancer cells in vitro. Then, gene expression analysis was performed using Qiagen RT2 Profiler PCR array for apoptosis. All these assays were performed on human breast cancer cells MCF-7 and colorectal cancer cells HCT116. Normal human fibroblasts were used as control cells under normal and hypoxic culture conditions. RESULTS: In this study, the use of FX-11 inhibitors under normoxia or hypoxia in two or more cancer and normal cell lines has a direct effect on LDHA, whereby it inhibits its production, and this reduces the growth and cell proliferation of tumors. One of the more significant findings to emerge from this study is that using AR-C155858 inhibitor alone has increased the cell proliferation and showed no significant changes compared with the control. The other major finding was that combination of the two inhibitors, FX-11 and AR-C155858, under normoxia or hypoxia in two different cell lines MCF-7 and HCT-116 measured a decrease in the cells proliferative and red/green ratio. CONCLUSIONS: We successfully demonstrated that a combination of MCT1 inhibitor and LDHA inhibitor led to better outcomes. Indeed, this makes LDHA an ideal metabolic therapeutic target.


Subject(s)
Breast Neoplasms , Colorectal Neoplasms , Lactate Dehydrogenase 5 , Monocarboxylic Acid Transporters , Female , Humans , Adenosine Triphosphate/metabolism , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation , Colorectal Neoplasms/drug therapy , Glucose/metabolism , Glycolysis , Lactate Dehydrogenase 5/antagonists & inhibitors , Lactate Dehydrogenase 5/metabolism , Lactates/pharmacology , Monocarboxylic Acid Transporters/antagonists & inhibitors , Monocarboxylic Acid Transporters/metabolism
18.
FASEB J ; 37(7): e23031, 2023 07.
Article in English | MEDLINE | ID: mdl-37342917

ABSTRACT

It has been demonstrated that hair follicle stem cells (HFSCs) can contribute to wound closure and repair. However, the specific mechanism remains unclear due to the complexity of the wound repair process. Lysine-specific demethylase 1 (LSD1), an important gene for the regulation of stem cell differentiation, has been reported to participate in wound healing regulation. Heat shock protein 90 (HSP90), a chaperone protein, is recently discovered to be a driver gene for wound healing. This study explored the molecular mechanisms by which the binding between LSD1 and HSP90 affects the role of HFSCs during skin wound healing. Following bioinformatics analysis, the key genes acting on HFSCs were identified. The expression of LSD1, HSP90, and c-MYC was found to be upregulated in differentiated HFSCs. Analysis of their binding affinity revealed that LSD1 interacted with HSP90 to enhance the stability of the transcription factor c-MYC. Lactate dehydrogenase A (LDHA) has been documented to be essential for HFSC activation. Therefore, we speculate that LDHA may induce the differentiation of HFSCs through glucose metabolism reprogramming. The results showed that c-MYC activated LDHA activity to promote glycolytic metabolism, proliferation, and differentiation of HFSCs. Finally, in vivo animal experiments further confirmed that LSD1 induced skin wound healing in mice via the HSP90/c-MYC/LDHA axis. From our data, we conclude that LSD1 interacting with HSP90 accelerates skin wound healing by inducing HFSC glycolytic metabolism, proliferation, and differentiation via c-MYC/LDHA axis.


Subject(s)
Hair Follicle , Stem Cells , Animals , Mice , Hair Follicle/metabolism , Histone Demethylases/genetics , Histone Demethylases/metabolism , Lactate Dehydrogenase 5/metabolism , Stem Cells/metabolism , Wound Healing/physiology
19.
Cancer Med ; 12(14): 15632-15649, 2023 07.
Article in English | MEDLINE | ID: mdl-37326348

ABSTRACT

INTRODUCTION: Patients with cervical cancer (CC) may experience local recurrence very often after treatment; when only clinical parameters are used, most cases are diagnosed in late stages, which decreases the chance of recovery. Molecular markers can improve the prediction of clinical outcome. Glycolysis is altered in 70% of CCs, so molecular markers of this pathway associated with the aggressiveness of CC can be identified. METHODS: The expression of 14 glycolytic genes was analyzed in 97 CC and 29 healthy cervical tissue (HCT) with microarray; only LDHA and PFKP were validated at the mRNA and protein levels in 36 of those CC samples and in 109 new CC samples, and 31 HCT samples by qRT-PCR, Western blotting, or immunohistochemistry. A replica analysis was performed on 295 CC from The Cancer Genome Atlas (TCGA) database. RESULTS: The protein expression of LDHA and PFKP was associated with poor overall survival [OS: LDHA HR = 4.0 (95% CI = 1.4-11.1); p = 8.0 × 10-3 ; PFKP HR = 3.3 (95% CI = 1.1-10.5); p = 4.0 × 10-2 ] and disease-free survival [DFS: LDHA HR = 4.5 (95% CI = 1.9-10.8); p = 1.0 × 10-3 ; PFKP HR = 3.2 (95% CI = 1.2-8.2); p = 1.8 × 10-2 ] independent of FIGO clinical stage, and the results for mRNA expression were similar. The risk of death was greater in patients with overexpression of both biomarkers than in patients with advanced FIGO stage [HR = 8.1 (95% CI = 2.6-26.1; p = 4.3 × 10-4 ) versus HR = 7 (95% CI 1.6-31.1, p = 1.0 × 10-2 )] and increased exponentially as the expression of LDHA and PFKP increased. CONCLUSIONS: LDHA and PFKP overexpression at the mRNA and protein levels was associated with poor OS and DFS and increased risk of death in CC patients regardless of FIGO stage. The measurement of these two markers could be very useful for evaluating clinical evolution and the risk of death from CC and could facilitate better treatment decision making.


Subject(s)
Phosphofructokinases , Uterine Cervical Neoplasms , Female , Humans , Biomarkers/metabolism , Glycolysis/genetics , L-Lactate Dehydrogenase/genetics , L-Lactate Dehydrogenase/metabolism , Lactate Dehydrogenase 5/metabolism , Phosphofructokinases/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Uterine Cervical Neoplasms/genetics
20.
Cell Mol Biol Lett ; 28(1): 49, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37365531

ABSTRACT

BACKGROUND: Transfer (t)RNA-derived small RNA (tsRNA), generated from precursor or mature tRNA, is a new type of small non-coding RNA (sncRNA) that has recently been shown to play a vital role in human cancers. However, its role in laryngeal squamous cell carcinoma (LSCC) remains unclear. METHODS: We elucidated the expression profiles of tsRNAs in four paired LSCC and non-neoplastic tissues by sequencing and verified the sequencing data by quantitative real-time PCR (qRT-PCR) of 60 paired samples. The tyrosine-tRNA derivative tRFTyr was identified as a novel oncogene in LSCC for further study. Loss-of-function experiments were performed to evaluate the roles of tRFTyr in tumorigenesis of LSCC. Mechanistic experiments including RNA pull-down, parallel reaction monitoring (PRM) and RNA immunoprecipitation (RIP) were employed to uncover the regulatory mechanism of tRFTyr in LSCC. RESULTS: tRFTyr was significantly upregulated in LSCC samples. Functional assays showed that knockdown of tRFTyr significantly suppressed the progression of LSCC. A series of mechanistic studies revealed that tRFTyr could enhance the phosphorylated level of lactate dehydrogenase A (LDHA) by interacting with it. The activity of LDHA was also activated, which induced lactate accumulation in LSCC cells. CONCLUSIONS: Our data delineated the landscape of tsRNAs in LSCC and identified the oncogenic role of tRFTyr in LSCC. tRFTyr could promote lactate accumulation and tumour progression in LSCC by binding to LDHA. These findings may aid in the development of new diagnostic biomarkers and provide new insights into therapeutic strategies for LSCC.


Subject(s)
Head and Neck Neoplasms , Lactic Acid , Humans , Squamous Cell Carcinoma of Head and Neck/genetics , Lactate Dehydrogenase 5/genetics , Lactate Dehydrogenase 5/metabolism , RNA , RNA, Transfer/genetics , RNA, Transfer/metabolism , Carcinogenesis/genetics , Head and Neck Neoplasms/genetics , Tyrosine/genetics , Tyrosine/metabolism , Gene Expression Regulation, Neoplastic
SELECTION OF CITATIONS
SEARCH DETAIL
...