Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 695
Filter
1.
Sci Rep ; 14(1): 12427, 2024 05 30.
Article in English | MEDLINE | ID: mdl-38816543

ABSTRACT

Intracerebral hemorrhage (ICH) is a common cerebral vascular disease with high incidence, disability, and mortality. Ferroptosis is a regulated type of iron-dependent, non-apoptotic programmed cell death. There is increasing evidence that ferroptosis may lead to neuronal damage mediated by hemorrhagic stroke mediated neuronal damage. Salvianolic acid A (SAA) is a natural bioactive polyphenol compound extracted from salvia miltiorrhiza, which has anti-inflammatory, antioxidant, and antifibrosis activities. SAA is reported to be an iron chelator that inhibits lipid peroxidation and provides neuroprotective effects. However, whether SAA improves neuronal ferroptosis mediated by hemorrhagic stroke remains unclear. The study aims to evaluate the therapeutic effect of SAA on Ferroptosis mediated by Intracerebral hemorrhage and explore its potential mechanisms. We constructed in vivo and in vitro models of intracerebral hemorrhage in rats. Multiple methods were used to analyze the inhibitory effect of SAA on ferroptosis in both in vivo and in vitro models of intracerebral hemorrhage in rats. Then, network pharmacology is used to identify potential targets and mechanisms for SAA treatment of ICH. The SAA target ICH network combines SAA and ICH targets with protein-protein interactions (PPIs). Find the specific mechanism of SAA acting on ferroptosis through molecular docking and functional enrichment analysis. In rats, SAA (10 mg/kg in vivo and 50 µM in vitro, p < 0.05) alleviated dyskinesia and brain injury in the ICH model by inhibiting ferroptosis (p < 0.05). The molecular docking results and functional enrichment analyses suggested that AKT (V-akt murine thymoma viral oncogene homolog) could mediate the effect of SAA. NRF2 (Nuclear factor erythroid 2-related factor 2) was a potential target of SAA. Our further experiments showed that salvianolic acid A enhanced the Akt /GSK-3ß/Nrf2 signaling pathway activation in vivo and in vitro. At the same time, SAA significantly expanded the expression of GPX4, XCT proteins, and the nuclear expression of Nrf2, while the AKT inhibitor SH-6 and the Nrf2 inhibitor ML385 could reduce them to some extent. Therefore, SAA effectively ameliorated ICH-mediated neuronal ferroptosis. Meanwhile, one of the critical mechanisms of SAA inhibiting ferroptosis was activating the Akt/GSK-3ß/Nrf2 signaling pathway.


Subject(s)
Caffeic Acids , Cerebral Hemorrhage , Ferroptosis , Lactates , Neuroprotective Agents , Animals , Ferroptosis/drug effects , Cerebral Hemorrhage/drug therapy , Cerebral Hemorrhage/metabolism , Caffeic Acids/pharmacology , Caffeic Acids/chemistry , Rats , Lactates/pharmacology , Lactates/chemistry , Lactates/therapeutic use , Male , Neuroprotective Agents/pharmacology , Rats, Sprague-Dawley , NF-E2-Related Factor 2/metabolism , Molecular Docking Simulation , Disease Models, Animal , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism
2.
Shock ; 61(5): 748-757, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38662612

ABSTRACT

ABSTRACT: Cardiac fibrosis, characterized by excessive collagen accumulation in heart tissues, poses a significant clinical challenge in various heart diseases and complications. Although salvianolic acid A (Sal A) from Danshen ( Salvia miltiorrhiza ) has shown promise in the treatment of ischemic heart disease, myocardial infarction, and atherosclerosis, its effects on cardiac fibrosis remain unexplored. Our study investigated the efficacy of Sal A in reducing cardiac fibrosis and elucidated its underlying molecular mechanisms. We observed that Sal A demonstrated significant cardioprotective effects against Angiotensin II (Ang II)-induced cardiac remodeling and fibrosis, showing a dose-dependent reduction in fibrosis in mice and suppression of cardiac fibroblast proliferation and fibrotic protein expression in vitro . RNA sequencing revealed that Sal A counteracted Ang II-induced upregulation of Txnip, and subsequent experiments indicated that it acts through the inflammasome and ROS pathways. These findings establish the antifibrotic effects of Sal A, notably attenuated by Txnip overexpression, and highlight its significant role in modulating inflammation and oxidative stress pathways. This underscores the importance of further research on Sal A and similar compounds, especially regarding their effects on inflammation and oxidative stress, which are key factors in various cardiovascular diseases.


Subject(s)
Angiotensin II , Carrier Proteins , Fibrosis , Lactates , Signal Transduction , Thioredoxins , Animals , Mice , Signal Transduction/drug effects , Carrier Proteins/metabolism , Male , Lactates/pharmacology , Lactates/therapeutic use , Caffeic Acids/pharmacology , Caffeic Acids/therapeutic use , Mice, Inbred C57BL , Myocardium/metabolism , Myocardium/pathology , Cell Cycle Proteins/metabolism
3.
Commun Biol ; 7(1): 325, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38486093

ABSTRACT

Regulating metabolic disorders has become a promising focus in treating intervertebral disc degeneration (IDD). A few drugs regulating metabolism, such as atorvastatin, metformin, and melatonin, show positive effects in treating IDD. Glutamine participates in multiple metabolic processes, including glutaminolysis and glycolysis; however, its impact on IDD is unclear. The current study reveals that glutamine levels are decreased in severely degenerated human nucleus pulposus (NP) tissues and aging Sprague-Dawley (SD) rat nucleus pulposus tissues, while lactate accumulation and lactylation are increased. Supplementary glutamine suppresses glycolysis and reduces lactate production, which downregulates adenosine-5'-monophosphate-activated protein kinase α (AMPKα) lactylation and upregulates AMPKα phosphorylation. Moreover, glutamine treatment reduces NP cell senescence and enhances autophagy and matrix synthesis via inhibition of glycolysis and AMPK lactylation, and glycolysis inhibition suppresses lactylation. Our results indicate that glutamine could prevent IDD by glycolysis inhibition-decreased AMPKα lactylation, which promotes autophagy and suppresses NP cell senescence.


Subject(s)
Intervertebral Disc Degeneration , Rats , Animals , Humans , Intervertebral Disc Degeneration/drug therapy , Intervertebral Disc Degeneration/metabolism , Rats, Sprague-Dawley , Glutamine , AMP-Activated Protein Kinases , Autophagy , Lactates/pharmacology , Lactates/therapeutic use
4.
Radiat Oncol ; 19(1): 7, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38229111

ABSTRACT

BACKGROUND: An enhanced aerobic glycolysis ("Warburg effect") associated with an increase in lactic acid in the tumor microenvironment contributes to tumor aggressiveness and resistance to radiation and chemotherapy. We investigated the radiation- and chemo-sensitizing effects of the nonsteroidal anti-inflammatory drug (NSAID) diclofenac in different cancer cell types. METHODS: The effects of a non-lethal concentration of diclofenac was investigated on c-MYC and Lactate Dehydrogenase (LDH) protein expression/activity and the Heat shock Protein (HSP)/stress response in human colorectal (LS174T, LoVo), lung (A549), breast (MDA-MB-231) and pancreatic (COLO357) carcinoma cells. Radiation- and chemo-sensitization of diclofenac was determined using clonogenic cell survival assays and a murine xenograft tumor model. RESULTS: A non-lethal concentration of diclofenac decreases c-MYC protein expression and LDH activity, reduces cytosolic Heat Shock Factor 1 (HSF1), Hsp70 and Hsp27 levels and membrane Hsp70 positivity in LS174T and LoVo colorectal cancer cells, but not in A549 lung carcinoma cells, MDA-MB-231 breast cancer cells and COLO357 pancreatic adenocarcinoma cells. The impaired lactate metabolism and stress response in diclofenac-sensitive colorectal cancer cells was associated with a significantly increased sensitivity to radiation and 5Fluorouracil in vitro, and in a human colorectal cancer xenograft mouse model diclofenac causes radiosensitization. CONCLUSION: These findings suggest that a decrease in the LDH activity and/or stress response upon diclofenac treatment predicts its radiation/chemo-sensitizing capacity.


Subject(s)
Adenocarcinoma , Colorectal Neoplasms , Pancreatic Neoplasms , Humans , Animals , Mice , Diclofenac/pharmacology , Diclofenac/therapeutic use , Adenocarcinoma/drug therapy , Lactates/therapeutic use , Cell Line, Tumor , Tumor Microenvironment
5.
J Drug Target ; 32(3): 241-257, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38251656

ABSTRACT

Metabolic heterogeneity is one of the characteristics of tumour cells. In order to adapt to the tumour microenvironment of hypoxia, acidity and nutritional deficiency, tumour cells have undergone extensive metabolic reprogramming. Metabolites involved in tumour cell metabolism are also very different from normal cells, such as a large number of lactate and adenosine. Metabolites play an important role in regulating the whole tumour microenvironment. Taking metabolites as the target, it aims to change the metabolic pattern of tumour cells again, destroy the energy balance it maintains, activate the immune system, and finally kill tumour cells. In this paper, the regulatory effects of metabolites such as lactate, glutamine, arginine, tryptophan, fatty acids and adenosine were reviewed, and the related targeting strategies of nano-medicines were summarised, and the future therapeutic strategies of nano-drugs were discussed. The abnormality of tumour metabolites caused by tumour metabolic remodelling not only changes the energy and material supply of tumour, but also participates in the regulation of tumour-related signal pathways, which plays an important role in the survival, proliferation, invasion and metastasis of tumour cells. Regulating the availability of local metabolites is a new aspect that affects tumour progress. (The graphical abstract is by Figdraw).


Metabolic heterogeneity is one of the important characteristics of tumour cells, and the metabolites of tumour cells are very different from those of normal cells.Lactate, fatty acids, glutamine, arginine, tryptophan and adenosine are all important metabolites in tumour metabolism.Nano-medicines are used to regulate tumour metabolites, affecting the energy and material supply of tumour cells, thus achieving therapeutic effects.


Subject(s)
Neoplasms , Humans , Neoplasms/metabolism , Energy Metabolism , Metabolic Networks and Pathways , Lactates/pharmacology , Lactates/therapeutic use , Adenosine , Tumor Microenvironment
6.
Adv Sci (Weinh) ; 11(3): e2305662, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37941489

ABSTRACT

Increasing numbers of studies have shown that tumor cells prefer fermentative glycolysis over oxidative phosphorylation to provide a vast amount of energy for fast proliferation even under oxygen-sufficient conditions. This metabolic alteration not only favors tumor cell progression and metastasis but also increases lactate accumulation in solid tumors. In addition to serving as a byproduct of glycolytic tumor cells, lactate also plays a central role in the construction of acidic and immunosuppressive tumor microenvironment, resulting in therapeutic tolerance. Recently, targeted drug delivery and inherent therapeutic properties of nanomaterials have attracted great attention, and research on modulating lactate metabolism based on nanomaterials to enhance antitumor therapy has exploded. In this review, the advanced tumor therapy strategies based on nanomaterials that interfere with lactate metabolism are discussed, including inhibiting lactate anabolism, promoting lactate catabolism, and disrupting the "lactate shuttle". Furthermore, recent advances in combining lactate metabolism modulation with other therapies, including chemotherapy, immunotherapy, photothermal therapy, and reactive oxygen species-related therapies, etc., which have achieved cooperatively enhanced therapeutic outcomes, are summarized. Finally, foreseeable challenges and prospective developments are also reviewed for the future development of this field.


Subject(s)
Nanostructures , Neoplasms , Humans , Prospective Studies , Neoplasms/drug therapy , Neoplasms/metabolism , Glycolysis , Lactates/therapeutic use , Tumor Microenvironment
7.
Adv Mater ; 36(5): e2308774, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37917791

ABSTRACT

Near-infrared (NIR) laser-induced photoimmunotherapy has aroused great interest due to its intrinsic noninvasiveness and spatiotemporal precision, while immune evasion evoked by lactic acid (LA) accumulation severely limits its clinical outcomes. Although several metabolic interventions have been devoted to ameliorate immunosuppression, intracellular residual LA still remains a potential energy source for oncocyte proliferation. Herein, an immunomodulatory nanoadjuvant based on a yolk-shell CoP/NiCoP (CNCP) heterostructure loaded with the monocarboxylate transporter 4 inhibitor fluvastatin sodium (Flu) is constructed to concurrently relieve immunosuppression and elicit robust antitumor immunity. Under NIR irradiation, CNCP heterojunctions exhibit superior photothermal performance and photocatalytic production of reactive oxygen species and hydrogen. The continuous heat then facilitates Flu release to restrain LA exudation from tumor cells, whereas cumulative LA can be depleted as a hole scavenger to improve photocatalytic efficiency. Subsequently, potentiated photocatalytic therapy can not only initiate systematic immunoreaction, but also provoke severe mitochondrial dysfunction and disrupt the energy supply for heat shock protein synthesis, in turn realizing mild photothermal therapy. Consequently, LA metabolic remodeling endows an intensive cascade treatment with an optimal safety profile to effectually suppress tumor proliferation and metastasis, which offers a new paradigm for the development of metabolism-regulated immunotherapy.


Subject(s)
Nanoparticles , Neoplasms , Humans , Phototherapy , Light , Neoplasms/drug therapy , Immunotherapy , Lactates/therapeutic use , Cell Line, Tumor , Nanoparticles/chemistry
8.
Diagn Microbiol Infect Dis ; 108(3): 116149, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38142580

ABSTRACT

AIM: To evaluate the effect of timing of antimicrobial therapy on clinical progress of patients with septic shock. MATERIALS AND METHOD: We included 204 adult patients diagnosed with septic shock according to Sepsis-3 criteria between March 2016 and April 2021. One-month survival was evaluated using univariate and logistic regression analysis. RESULTS: Antibiotic treatment was initiated within 1 h of the vasopressors in 26.4 % of patients. One-month mortality did not differ significantly between patients with and without empirical therapy coverage on etiological agents. Univariate factors that significantly affected one-month survival were starting antibiotics at the first hour, the unit where the case was diagnosed with septic shock, SOFA scores, qSOFA scores, and lactate level. In multivariate analysis, diagnosis of septic shock in the Emergency Service, SOFA score ≥11, qSOFA score of three and lactate level ≥4 were significantly associated with one-month mortality. CONCLUSION: Training programs should be designed to increase the awareness of septic shock diagnosis and treatment in the Emergency Service and other hospital units. Additionally, electronic patient files should have warning systems for earlier diagnosis and consultation.


Subject(s)
Sepsis , Shock, Septic , Adult , Humans , Shock, Septic/diagnosis , Shock, Septic/drug therapy , Retrospective Studies , Sepsis/diagnosis , Anti-Bacterial Agents/therapeutic use , Lactates/therapeutic use , Prognosis , Emergency Service, Hospital
9.
Arch Pharm Res ; 46(11-12): 907-923, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38048029

ABSTRACT

Although tamoxifen (TAM) is widely used in patients with estrogen receptor-positive breast cancer, the development of tamoxifen resistance is common. The previous finding suggests that the development of tamoxifen resistance is driven by epiregulin or hypoxia-inducible factor-1α-dependent glycolysis activation. Nonetheless, the mechanisms responsible for cancer cell survival and growth in a lactic acid-rich environment remain elusive. We found that the growth and survival of tamoxifen-resistant MCF-7 cells (TAMR-MCF-7) depend on glycolysis rather than oxidative phosphorylation. The levels of the glycolytic enzymes were higher in TAMR-MCF-7 cells than in parental MCF-7 cells, whereas the mitochondrial number and complex I level were decreased. Importantly, TAMR-MCF-7 cells were more resistant to low glucose and high lactate growth conditions. Isotope tracing analysis using 13C-lactate confirmed that lactate conversion to pyruvate was enhanced in TAMR-MCF-7 cells. We identified monocarboxylate transporter1 (MCT1) and lactate dehydrogenase B (LDHB) as important mediators of lactate influx and its conversion to pyruvate, respectively. Consistently, AR-C155858 (MCT1 inhibitor) inhibited the proliferation, migration, spheroid formation, and in vivo tumor growth of TAMR-MCF-7 cells. Our findings suggest that TAMR-MCF-7 cells depend on glycolysis and glutaminolysis for energy and support that targeting MCT1- and LDHB-dependent lactate recycling may be a promising strategy to treat patients with TAM-resistant breast cancer.


Subject(s)
Breast Neoplasms , Tamoxifen , Female , Humans , Antineoplastic Agents, Hormonal/pharmacology , Antineoplastic Agents, Hormonal/therapeutic use , Breast Neoplasms/pathology , Cell Line, Tumor , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Lactates/therapeutic use , MCF-7 Cells , Pyruvates/therapeutic use , Tamoxifen/pharmacology , Tamoxifen/therapeutic use
10.
Kardiologiia ; 63(11): 36-45, 2023 Dec 05.
Article in Russian, English | MEDLINE | ID: mdl-38088111

ABSTRACT

Aim      To assess the tolerability of an individualized physical rehabilitation program (PRP) in inotrope-dependent patients with end-stage chronic heart failure (CHF).Material and methods  This prospective randomized study included 120 men aged 18-65 years with left ventricular ejection fraction ≤30 % and blood pressure ≥90 / 60 mm Hg. Patients who have received dobutamine or dopamine for ≥2 weeks were randomized into two groups: group 1, 40 patients who participated in the PRP and group 2, 40 patients who did not participate in the PRP. Group 3 included 40 patients without inotropic support who participated in the PRP.Results Patients of groups 1 and 3 attended >80 % of the scheduled classes without developing life-threatening adverse events (AEs) associated with exercise (E). After 6 months of the study, the exercising patients achieved a comparable (average) E intensity: 44 [35; 50]% and 45 [40;52]% of heart rate reserve and Borg scale scores 14 [12; 14] and 13 [11; 14] in groups 1 and 3, respectively (p>0.05). Initially, after 3 and 6 months at the peak of physical activity in groups 1 and 3, there was no decrease in arterial blood oxygen saturation according to pulse oximetry (SpO2) <93 %. At baseline, lactate levels in central venous blood at rest were normal in all groups. After 6 months, the lactate concentration was 1.1 mmol / l in group 1, 2.3 mmol / l in group 2, and 1.4 mmol / l in group 3 (р1-2=0.005; p2-3=0.008, respectively). At the E peak at baseline, after 3 and 6 months, comparable increases in lactate not exceeding 3 mmol / l were detected in groups 1 and 3.Conclusion      The study allowed assessment of the tolerability of individualized PRP performed at the aerobic level of energy supply, in inotropic-dependent patients with CHF. Individualized 6-month PRP in inotropic-dependent patients with end-stage CHF, provided safety criteria are met, is well tolerated and does not increase the number of AEs associated with CHF and physical rehabilitation (PR). Continued inotropic support with dopamine or dobutamine should not be considered as a contraindication to PR in patients with CHF in the absence of E intolerance or life-threatening AEs.


Subject(s)
Cardiovascular Agents , Heart Failure , Male , Humans , Dobutamine/therapeutic use , Stroke Volume , Dopamine/therapeutic use , Prospective Studies , Ventricular Function, Left , Cardiovascular Agents/therapeutic use , Lactates/therapeutic use
11.
Curr Psychiatry Rep ; 25(11): 659-669, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37812338

ABSTRACT

PURPOSE OF REVIEW: Schizophrenia (SZ) is a debilitating mental illness; existing treatments are partially effective and associated with significant side effect burden, largely due to our limited understanding of disease mechanisms and the trajectory of disease progression. Accumulating evidence suggests that metabolic changes associated with glucose metabolism, mitochondrial dysfunction, and redox imbalance play an important role in the pathophysiology of schizophrenia. However, the molecular mechanisms associated with these abnormalities in the brains of schizophrenia patients and the ways in which they change over time remain unclear. This paper aims to review the current literature on molecular mechanisms and in vivo magnetic resonance spectroscopy (MRS) studies of impaired energy metabolism in patients at clinical high risk for psychosis, with first-episode SZ, and with chronic SZ. Our review covers research related to high-energy phosphate metabolism, lactate, intracellular pH, redox ratio, and the antioxidant glutathione. RECENT FINDINGS: Both first-episode and chronic SZ patients display a significant reduction in creatine kinase reaction activity and redox (NAD + /NADH) ratio in the prefrontal cortex. Chronic, but not first-episode, SZ patients also show a trend toward increased lactate levels and decreased pH value. These findings suggest a progressive shift from oxidative phosphorylation to glycolysis for energy production over the course of SZ, which is associated with redox imbalance and mitochondrial dysfunction. Accumulating evidence indicates that aberrant brain energy metabolism associated with mitochondrial dysfunction and redox imbalance plays a critical role in SZ and will be a promising target for future treatments.


Subject(s)
Psychotic Disorders , Schizophrenia , Humans , Schizophrenia/drug therapy , Psychotic Disorders/pathology , Magnetic Resonance Spectroscopy/methods , Brain/pathology , Energy Metabolism , Lactates/metabolism , Lactates/therapeutic use
12.
J Neuropathol Exp Neurol ; 82(11): 911-920, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37742129

ABSTRACT

Temozolomide (TMZ) is a commonly used chemotherapeutic agent for glioblastoma (GBM), but acquired drug resistance prevents its therapeutic efficacy. We investigated potential mechanisms underlying TMZ resistance and glycolysis in GBM cells through regulation by nuclear transcription factor Y subunit ß (NFYB) of the oncogene serine hydroxymethyltransferase 2 (SHMT2). GBM U251 cells were transfected with NFYB-, SHMT2-, and the potential NFYB target histone deacetylase 5 (HDAC5)-related vectors. Glucose uptake and lactate production were measured with detection kits. CCK-8/colony formation, scratch, Transwell, and flow cytometry assays were performed to detect cell proliferation, migration, invasion, and apoptosis, respectively. The binding of NFYB to the HDAC5 promoter and the regulation of NFYB on HDAC5 promoter activity were detected with chromatin immunoprecipitation and dual-luciferase reporter assays, respectively. NFYB and HDAC5 were poorly expressed and SHMT2 was expressed at high levels in GBM U251 cells. NFYB overexpression or SHMT2 knockdown decreased glucose uptake, lactate production, proliferation, migration, and invasion and increased apoptosis and TMZ sensitivity of the cells. NFYB activated HDAC5 to inhibit SHMT2 expression. SHMT2 overexpression nullified the inhibitory effects of NFYB overexpression on glycolysis and TMZ resistance. Thus, NFYB may reduce tumorigenicity and TMZ resistance of GBM through effects on the HDAC5/SHMT2 axis.


Subject(s)
Brain Neoplasms , Glioblastoma , MicroRNAs , Humans , Glioblastoma/genetics , MicroRNAs/metabolism , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Temozolomide/pharmacology , Temozolomide/therapeutic use , Cell Proliferation , Lactates/pharmacology , Lactates/therapeutic use , Glucose , Brain Neoplasms/genetics , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Gene Expression Regulation, Neoplastic , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Histone Deacetylases/pharmacology , CCAAT-Binding Factor/metabolism , CCAAT-Binding Factor/pharmacology
13.
Signal Transduct Target Ther ; 8(1): 391, 2023 09 30.
Article in English | MEDLINE | ID: mdl-37777506

ABSTRACT

Immunotherapy is a revolutionized therapeutic strategy for tumor treatment attributing to the rapid development of genomics and immunology, and immune checkpoint inhibitors have successfully achieved responses in numbers of tumor types, including hematopoietic malignancy. However, acute myeloid leukemia (AML) is a heterogeneous disease and there is still a lack of systematic demonstration to apply immunotherapy in AML based on PD-1/PD-L1 blockage. Thus, the identification of molecules that drive tumor immunosuppression and stratify patients according to the benefit from immune checkpoint inhibitors is urgently needed. Here, we reported that STAT5 was highly expressed in the AML cohort and activated the promoter of glycolytic genes to promote glycolysis in AML cells. As a result, the increased-lactate accumulation promoted E3BP nuclear translocation and facilitated histone lactylation, ultimately inducing PD-L1 transcription. Immune checkpoint inhibitor could block the interaction of PD-1/PD-L1 and reactive CD8+ T cells in the microenvironment when co-culture with STAT5 constitutively activated AML cells. Clinically, lactate accumulation in bone marrow was positively correlated with STAT5 as well as PD-L1 expression in newly diagnosed AML patients. Therefore, we have illustrated a STAT5-lactate-PD-L1 network in AML progression, which demonstrates that AML patients with STAT5 induced-exuberant glycolysis and lactate accumulation may be benefited from PD-1/PD-L-1-based immunotherapy.


Subject(s)
Histones , Leukemia, Myeloid, Acute , Humans , CD8-Positive T-Lymphocytes , Programmed Cell Death 1 Receptor , B7-H1 Antigen , Immune Checkpoint Inhibitors/therapeutic use , STAT5 Transcription Factor/genetics , Leukemia, Myeloid, Acute/drug therapy , Immunosuppression Therapy , Lactates/therapeutic use , Tumor Microenvironment
14.
Crit Care ; 27(1): 275, 2023 07 09.
Article in English | MEDLINE | ID: mdl-37424026

ABSTRACT

BACKGROUND: The oXiris is a novel filter for continuous renal replacement therapy (CRRT) featuring an adsorption coating to adsorb endotoxins and remove inflammatory mediators. Given that no consensus has been reached on its potential benefits in treating sepsis, a meta-analysis was conducted to assess its impact on the clinical outcomes of this patient population. METHODS: Eleven databases were retrieved to find relevant observational studies and randomized controlled trials. The Newcastle-Ottawa Scale and the Cochrane Risk of Bias Tool were used to assess the quality of the included studies. The Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) process was employed to assess the certainty of evidence. The 28-day mortality was the primary outcome. Secondary outcomes were 7-, 14-, and 90-day mortality, length of intensive care unit (ICU) and hospital stay, ICU and hospital mortality, norepinephrine (NE) dose, interleukin-6 (IL-6) and lactate levels, and Sequential Organ Failure Assessment (SOFA) score. RESULTS: The meta-analysis, pooling data from 14 studies, involving 695 patients, showed significant reductions in 28-day mortality [odds ratio (OR) 0.53; 95% confidence interval (CI) 0.36-0.77, p = 0.001] and length of ICU stay [weighted mean difference (WMD) - 1.91; 95% CI - 2.56 to - 1.26, p < 0.001)] in patients with sepsis using the oXiris filter compared to other filters. Besides, the SOFA score, NE dose, IL-6 and lactate levels, and 7- and 14-day mortalities were lower in the oXiris group. However, the 90-day mortality, ICU and hospital mortality, and length of hospital stay were comparable. The quality assessment of the ten observational studies indicated intermediate to high quality (average Newcastle-Ottawa score: 7.8). However, all four randomized controlled trials (RCTs) had an unclear risk of bias. The evidence for all outcomes had a low or very low level of certainty because the original study design was mainly observational studies and the RCTs included had an unclear risk of bias and a small sample size. CONCLUSION: The treatment with the oXiris filter during CRRT in sepsis patients may be associated with lower 28-, 7-, and 14-day mortalities, lactate levels, SOFA score, NE dose, and shorter length of ICU stay. However, due to the low or very low quality of evidence, the effectiveness of oXiris filters was still uncertain. Besides, no significant difference was observed for the 90-day mortality, ICU and hospital mortality, and length of hospital stay.


Subject(s)
Continuous Renal Replacement Therapy , Sepsis , Humans , Interleukin-6 , Adsorption , Lactates/therapeutic use
15.
Cancer Res ; 83(20): 3414-3427, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37463241

ABSTRACT

Multiple myeloma cells undergo metabolic reprogramming in response to the hypoxic and nutrient-deprived bone marrow microenvironment. Primary oncogenes in recurrent translocations might be able to drive metabolic heterogeneity to survive the microenvironment that can present new vulnerabilities for therapeutic targeting. t(4;14) translocation leads to the universal overexpression of histone methyltransferase NSD2 that promotes plasma cell transformation through a global increase in H3K36me2. Here, we identified PKCα as an epigenetic target that contributes to the oncogenic potential of NSD2. RNA sequencing of t(4;14) multiple myeloma cell lines revealed a significant enrichment in the regulation of metabolic processes by PKCα, and the glycolytic gene, hexokinase 2 (HK2), was transcriptionally regulated by PKCα in a PI3K/Akt-dependent manner. Loss of PKCα displaced mitochondria-bound HK2 and reversed sensitivity to the glycolytic inhibitor 3-bromopyruvate. In addition, the perturbation of glycolytic flux led to a metabolic shift to a less energetic state and decreased ATP production. Metabolomics analysis indicated lactate as a differential metabolite associated with PKCα. As a result, PKCα conferred resistance to the immunomodulatory drugs (IMiD) lenalidomide in a cereblon-independent manner and could be phenocopied by either overexpression of HK2 or direct supplementation of lactate. Clinically, t(4;14) patients had elevated plasma lactate levels and did not benefit from lenalidomide-based regimens. Altogether, this study provides insights into the epigenetic-metabolism cross-talk in multiple myeloma and highlights the opportunity for therapeutic intervention that leverages the distinct metabolic program in t(4;14) myeloma. SIGNIFICANCE: Aberrant glycolysis driven by NSD2-mediated upregulation of PKCα can be therapeutically exploited using metabolic inhibitors with lactate as a biomarker to identify high-risk patients who exhibit poor response towards IMiD-based regimens.


Subject(s)
Multiple Myeloma , Humans , Histone Methyltransferases , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Lactates/therapeutic use , Lenalidomide/pharmacology , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Multiple Myeloma/metabolism , Phosphatidylinositol 3-Kinases , Protein Kinase C-alpha/genetics , Tumor Microenvironment
16.
Respirology ; 28(9): 860-868, 2023 09.
Article in English | MEDLINE | ID: mdl-37400102

ABSTRACT

BACKGROUND AND OBJECTIVE: Raised blood lactate secondary to high dose ß2 -agonist treatment has been reported in asthma exacerbations but has not been investigated during acute exacerbations of COPD (AECOPD). We explored associations of blood lactate measurements with disease outcomes and ß2 -agonist treatments during AECOPD. METHODS: Retrospective (n = 199) and prospective studies (n = 142) of patients hospitalized with AECOPD were conducted. The retrospective cohort was identified via medical records and the prospective cohort was recruited during hospitalization for AECOPD. Baseline demographics, comorbidities, ß2 -agonist treatment, biochemical measurements and clinical outcomes were compared between patients with normal (≤2.0 mmol/L) versus elevated lactate (>2.0 mmol/L). Regression analyses examined associations of lactate measurements with ß2 -agonist dosages. RESULTS: Demographic data and comorbidities were similar between high versus normal lactate groups in both cohorts. The populations were elderly (mean >70 years), predominantly male (>60%) with reduced FEV1 (%) 48.2 ± 19 (prospective cohort). Lactate was elevated in approximately 50% of patients during AECOPD and not related to evidence of sepsis. In the prospective cohort, patients with high lactate had more tachypnoea, tachycardia, acidosis and hyperglycaemia (p < 0.05) and received more non-invasive ventilation (37% vs. 9.7%, p < 0.001, prospective cohort). There was a trend to longer hospitalization (6 vs. 5 days, p = 0.06, prospective cohort). Higher cumulative ß2 -agonist dosages were linked to elevated lactate levels (OR 1.04, p = 0.01). CONCLUSION: Elevated lactate during AECOPD was common, unrelated to sepsis and correlated with high cumulative doses of ß2 -agonists. Raised lactate may indicate excessive ß2 -agonist treatment and should now be investigated as a possible biomarker.


Subject(s)
Adrenergic beta-2 Receptor Agonists , Pulmonary Disease, Chronic Obstructive , Humans , Male , Aged , Female , Adrenergic beta-2 Receptor Agonists/adverse effects , Prospective Studies , Retrospective Studies , Pulmonary Disease, Chronic Obstructive/drug therapy , Lactates/therapeutic use
17.
Adv Biol (Weinh) ; 7(7): e2300080, 2023 07.
Article in English | MEDLINE | ID: mdl-37303292

ABSTRACT

Lung cancer is one of the most fatal cancers worldwide. Resistance to conventional therapies remains a hindrance to patient treatment. Therefore, the development of more effective anti-cancer therapeutic strategies is imperative. Solid tumors exhibit a hyperglycolytic phenotype, leading to enhanced lactate production; and, consequently, its extrusion to the tumor microenvironment. Previous data reveals that inhibition of CD147, the chaperone of lactate transporters (MCTs), decreases lactate export in lung cancer cells and sensitizes them to phenformin, leading to a drastic decrease in cell growth. In this study, the development of anti-CD147 targeted liposomes (LUVs) carrying phenformin is envisioned, and their efficacy is evaluated to eliminate lung cancer cells. Herein, the therapeutic effect of free phenformin and anti-CD147 antibody, as well as the efficacy of anti-CD147 LUVs carrying phenformin on A549, H292, and PC-9 cell growth, metabolism, and invasion, are evaluated. Data reveals that phenformin decreases 2D and 3D-cancer cell growth and that the anti-CD147 antibody reduces cell invasion. Importantly, anti-CD147 LUVs carrying phenformin are internalized by cancer cells and impaired lung cancer cell growth in vitro and in vivo. Overall, these results provide evidence for the effectiveness of anti-CD147 LUVs carrying phenformin in compromising lung cancer cell aggressiveness.


Subject(s)
Lung Neoplasms , Phenformin , Humans , Phenformin/pharmacology , Phenformin/therapeutic use , Lung Neoplasms/drug therapy , Cell Proliferation , Lactates/pharmacology , Lactates/therapeutic use , Tumor Microenvironment
18.
Cancer Cell ; 41(7): 1363-1380.e7, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37327788

ABSTRACT

Inactivating STK11/LKB1 mutations are genomic drivers of primary resistance to immunotherapy in KRAS-mutated lung adenocarcinoma (LUAD), although the underlying mechanisms remain unelucidated. We find that LKB1 loss results in enhanced lactate production and secretion via the MCT4 transporter. Single-cell RNA profiling of murine models indicates that LKB1-deficient tumors have increased M2 macrophage polarization and hypofunctional T cells, effects that could be recapitulated by the addition of exogenous lactate and abrogated by MCT4 knockdown or therapeutic blockade of the lactate receptor GPR81 expressed on immune cells. Furthermore, MCT4 knockout reverses the resistance to PD-1 blockade induced by LKB1 loss in syngeneic murine models. Finally, tumors from STK11/LKB1 mutant LUAD patients demonstrate a similar phenotype of enhanced M2-macrophages polarization and hypofunctional T cells. These data provide evidence that lactate suppresses antitumor immunity and therapeutic targeting of this pathway is a promising strategy to reversing immunotherapy resistance in STK11/LKB1 mutant LUAD.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Animals , Mice , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/therapy , Adenocarcinoma of Lung/metabolism , Lactates/metabolism , Lactates/pharmacology , Lactates/therapeutic use , Lung Neoplasms/therapy , Lung Neoplasms/drug therapy , Macrophages , Mutation , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
19.
J Spec Oper Med ; 23(3): 50-57, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37224392

ABSTRACT

BACKGROUND: Our objective was to optimize a novel damage control resuscitation (DCR) cocktail composed of hydroxyethyl starch, vasopressin, and fibrinogen concentrate for the polytraumatized casualty. We hypothesized that slow intravenous infusion of the DCR cocktail in a pig polytrauma model would decrease internal hemorrhage and improve survival compared with bolus administration. METHODS: We induced polytrauma, including traumatic brain injury (TBI), femoral fracture, hemorrhagic shock, and free bleeding from aortic tear injury, in 18 farm pigs. The DCR cocktail consisted of 6% hydroxyethyl starch in Ringer's lactate solution (14mL/kg), vasopressin (0.8U/kg), and fibrinogen concentrate (100mg/kg) in a total fluid volume of 20mL/kg that was either divided in half and given as two boluses separated by 30 minutes as control or given as a continuous slow infusion over 60 minutes. Nine animals were studied per group and monitored for up to 3 hours. Outcomes included internal blood loss, survival, hemodynamics, lactate concentration, and organ blood flow obtained by colored microsphere injection. RESULTS: Mean internal blood loss was significantly decreased by 11.1mL/kg with infusion compared with the bolus group (p = .038). Survival to 3 hours was 80% with infusion and 40% with bolus, which was not statistically different (Kaplan Meier log-rank test, p = .17). Overall blood pressure was increased (p < .001), and blood lactate concentration was decreased (p < .001) with infusion compared with bolus. There were no differences in organ blood flow (p > .09). CONCLUSION: Controlled infusion of a novel DCR cocktail decreased hemorrhage and improved resuscitation in this polytrauma model compared with bolus. The rate of infusion of intravenous fluids should be considered as an important aspect of DCR.


Subject(s)
Hemostatics , Multiple Trauma , Shock, Hemorrhagic , Swine , Animals , Infusions, Intravenous , Hemorrhage/therapy , Shock, Hemorrhagic/drug therapy , Hemodynamics/physiology , Multiple Trauma/complications , Multiple Trauma/therapy , Vasopressins/pharmacology , Vasopressins/therapeutic use , Hemostatics/therapeutic use , Fibrinogen/pharmacology , Fibrinogen/therapeutic use , Hydroxyethyl Starch Derivatives/therapeutic use , Hydroxyethyl Starch Derivatives/pharmacology , Fluid Therapy/methods , Lactates/pharmacology , Lactates/therapeutic use , Resuscitation/methods , Isotonic Solutions/pharmacology , Isotonic Solutions/therapeutic use , Disease Models, Animal
20.
Crit Care Med ; 51(8): e157-e168, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37255347

ABSTRACT

OBJECTIVES: To investigate the effects of immediate start of norepinephrine versus initial fluid loading followed by norepinephrine on macro hemodynamics, regional splanchnic and intestinal microcirculatory flows in endotoxic shock. DESIGN: Animal experimental study. SETTING: University translational research laboratory. SUBJECTS: Fifteen Landrace pigs. INTERVENTIONS: Shock was induced by escalating dose of lipopolysaccharide. Animals were allocated to immediate start of norepinephrine (i-NE) ( n = 6) versus mandatory 1-hour fluid loading (30 mL/kg) followed by norepinephrine (i-FL) ( n = 6). Once mean arterial pressure greater than or equal to 75 mm Hg was, respectively, achieved, successive mini-fluid boluses of 4 mL/kg of Ringer Lactate were given whenever: a) arterial lactate greater than 2.0 mmol/L or decrease less than 10% per 30 min and b) fluid responsiveness was judged to be positive. Three additional animals were used as controls (Sham) ( n = 3). Time × group interactions were evaluated by repeated-measures analysis of variance. MEASUREMENTS AND MAIN RESULTS: Hypotension was significantly shorter in i-NE group (7.5 min [5.5-22.0 min] vs 49.3 min [29.5-60.0 min]; p < 0.001). Regional mesenteric and microcirculatory flows at jejunal mucosa and serosa were significantly higher in i-NE group at 4 and 6 hours after initiation of therapy ( p = 0.011, p = 0.032, and p = 0.017, respectively). Misdistribution of intestinal microcirculatory blood flow at the onset of shock was significantly reversed in i-NE group ( p < 0.001), which agreed with dynamic changes in mesenteric-lactate levels ( p = 0.01) and venous-to-arterial carbon dioxide differences ( p = 0.001). Animals allocated to i-NE showed significantly higher global end-diastolic volumes ( p = 0.015) and required significantly less resuscitation fluids ( p < 0.001) and lower doses of norepinephrine ( p = 0.001) at the end of the experiment. Pulmonary vascular permeability and extravascular lung water indexes were significantly lower in i-NE group ( p = 0.021 and p = 0.004, respectively). CONCLUSIONS: In endotoxemic shock, immediate start of norepinephrine significantly improved regional splanchnic and intestinal microcirculatory flows when compared with mandatory fixed-dose fluid loading preceding norepinephrine. Immediate norepinephrine strategy was related with less resuscitation fluids and lower vasopressor doses at the end of the experiment.


Subject(s)
Norepinephrine , Shock, Septic , Animals , Swine , Norepinephrine/therapeutic use , Microcirculation , Splanchnic Circulation , Vasoconstrictor Agents/pharmacology , Vasoconstrictor Agents/therapeutic use , Shock, Septic/drug therapy , Hemodynamics , Lactates/pharmacology , Lactates/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...