Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 347
Filter
1.
Nutrients ; 16(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732635

ABSTRACT

Probiotics may represent a safe and easy-to-use treatment option for depression or its metabolic comorbidities. However, it is not known whether metabolic features can influence the efficacy of probiotics treatments for depression. This trial involved a parallel-group, prospective, randomized, double-blind, controlled design. In total, 116 participants with depression received a probiotic preparation containing Lactobacillus helveticus Rosell®-52 and Bifidobacterium longum Rosell®-175 or placebo over 60 days. The psychometric data were assessed longitudinally at five time-points. Data for blood pressure, body weight, waist circumference, complete blood count, serum levels of C-reactive protein, cholesterol, triglycerides, and fasting glucose were measured at the beginning of the intervention period. There was no advantage of probiotics usage over placebo in the depression score overall (PRO vs. PLC: F(1.92) = 0.58; p = 0.45). However, we found a higher rate of minimum clinically important differences in patients supplemented with probiotics than those allocated to placebo generally (74.5 vs. 53.5%; X2(1,n = 94) = 4.53; p = 0.03; NNT = 4.03), as well as in the antidepressant-treated subgroup. Moreover, we found that the more advanced the pre-intervention metabolic abnormalities (such as overweight, excessive central adipose tissue, and liver steatosis), the lower the improvements in psychometric scores. A higher baseline stress level was correlated with better improvements. The current probiotic formulations may only be used as complementary treatments for depressive disorders. Metabolic abnormalities may require more complex treatments. ClinicalTrials.gov identifier: NCT04756544.


Subject(s)
Depression , Lactobacillus helveticus , Probiotics , Humans , Probiotics/therapeutic use , Male , Female , Double-Blind Method , Middle Aged , Adult , Depression/therapy , Prospective Studies , Treatment Outcome , Bifidobacterium longum
2.
J Bone Miner Metab ; 42(3): 290-301, 2024 May.
Article in English | MEDLINE | ID: mdl-38796648

ABSTRACT

INTRODUCTION: Osteoporosis is a significant health concern characterized by weak and porous bones, particularly affecting menopausal women aged 50 and above, leading to increased risk of hip fractures and associated morbidity and mortality. MATERIALS AND METHODS: We conducted a study to assess the efficacy of single-strain versus mixed-strain probiotic supplementation on bone health using an ovariectomy (OVX) rat model of induced bone loss. The probiotics evaluated were Lactobacillus helveticus (L. helveticus), Bifidobacterium longum (B. longum), and a combination of both. Rats were divided into five groups: SHAM (Control negative), OVX (Control positive), OVX +L. helveticus, OVX + B. longum, and OVX + mixed L. helveticus and B. longum. Daily oral administration of probiotics at 10^8-10^9 CFU/mL began two weeks post-surgery and continued for 16 weeks. RESULTS: Both single-strain and mixed-strain probiotic supplementation upregulated expression of osteoblastic genes (BMP- 2, RUNX-2, OSX), increased serum osteocalcin (OC) levels, and improved bone formation parameters. Serum C-terminal telopeptide (CTX) levels and bone resorption parameters were reduced. However, the single-strain supplementation demonstrated superior efficacy compared to the mixed-strain approach. CONCLUSION: Supplementation with B. longum and L. helveticus significantly reduces bone resorption and improves bone health in OVX rats, with single-strain supplementation showing greater efficacy compared to a mixed-strain combination. These findings highlight the potential of probiotics as a therapeutic intervention for osteoporosis, warranting further investigation in human studies.


Subject(s)
Bone Density , Femur , Lactobacillus helveticus , Osteoblasts , Ovariectomy , Probiotics , RNA, Messenger , Animals , Probiotics/pharmacology , Probiotics/administration & dosage , Female , Rats , Osteoblasts/metabolism , Femur/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , Dietary Supplements , Rats, Sprague-Dawley , Bifidobacterium longum , Osteoporosis/metabolism , Osteocalcin/blood , Osteocalcin/metabolism , Gene Expression Regulation , Core Binding Factor Alpha 1 Subunit/metabolism , Core Binding Factor Alpha 1 Subunit/genetics
3.
Food Microbiol ; 121: 104521, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38637083

ABSTRACT

Natural whey starters (NWS) are cultures with undefined multiple-strains species commonly used to speed up the fermentation process of cheeses. The aim of this study was to explore the diversity and the viability of Comté cheese NWS microbiota. Culture-dependent methods, i.e. plate counting and genotypic characterization, and culture-independent methods, i.e. qPCR, viability-qPCR, fluorescence microscopy and DNA metabarcoding, were combined to analyze thirty-six NWS collected in six Comté cheese factories at two seasons. Our results highlighted that NWS were dominated by Streptococcus thermophilus (ST) and thermophilic lactobacilli. These species showed a diversity of strains based on Rep-PCR. The dominance of Lactobacillus helveticus (LH) over Lactobacillus delbrueckii (LD) varied depending on the factory and the season. This highlighted two types of NWS: the type-ST/LD (LD > LH) and the type-ST/LH (LD < LH). The microbial composition varied depending on cheese factory. One factory was distinguished by its level of culturable microbial groups (ST, enterococci and yeast) and its fungi diversity. The approaches used to estimate the viability showed that most NWS cells were viable. Further investigations are needed to understand the microbial diversity of these NWS.


Subject(s)
Cheese , Lactobacillus delbrueckii , Lactobacillus helveticus , Whey , Cheese/microbiology , Food Microbiology , Whey Proteins/analysis , Streptococcus thermophilus/genetics
4.
Nutrients ; 16(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38674818

ABSTRACT

This study investigated the characteristics of Lactobacillus helveticus-derived whey-calcium chelate (LHWCC) and its effect on the calcium absorption and bone health of rats. Fourier-transform infrared spectroscopy showed that carboxyl oxygen atoms, amino nitrogen atoms, and phosphate ions were the major binding sites with calcium in LHWCC, which has a sustained release effect in simulated in vitro digestion. LHWCC had beneficial effects on serum biochemical parameters, bone biomechanics, and the morphological indexes of the bones of calcium-deficient rats when fed at a dose of 40 mg Ca/kg BW for 7 weeks. In contrast to the inorganic calcium supplement, LHWCC significantly upregulated the gene expression of transient receptor potential cation V5 (TRPV5), TRPV6, PepT1, calcium-binding protein-D9k (Calbindin-D9k), and a calcium pump (plasma membrane Ca-ATPase, PMCA1b), leading to promotion of the calcium absorption rate, whereas Ca3(PO4)2 only upregulated the TRPV6 channel in vivo. These findings illustrate the potential of LHWCC as an organic calcium supplement.


Subject(s)
Bone and Bones , Calcium , Lactobacillus helveticus , Animals , Rats , Calcium/metabolism , Bone and Bones/metabolism , Bone and Bones/drug effects , Male , Rats, Sprague-Dawley , Whey/chemistry , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , Calcium, Dietary/pharmacology , Calcium, Dietary/administration & dosage , Dietary Supplements , Calcium Channels/metabolism , Calcium Chelating Agents/pharmacology
5.
Molecules ; 29(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38542894

ABSTRACT

The lactic acid bacteria Streptococcus thermophilus and Lactobacillus helveticus are commonly used as starter cultures in dairy product production. This study aimed to investigate the characteristics of fermented milk using different ratios of these strains and analyze the changes in volatile compounds during fermentation and storage. A 10:1 ratio of Streptococcus thermophilus CICC 6063 to Lactobacillus helveticus CICC 6064 showed optimal fermentation time (4.2 h), viable cell count (9.64 log10 colony-forming units/mL), and sensory evaluation score (79.1 points). In total, 56 volatile compounds were identified and quantified by solid-phase microextraction and gas chromatography-mass spectrometry (SPME-GC-MS), including aldehydes, ketones, acids, alcohols, esters, and others. Among these, according to VIP analysis, 2,3-butanedione, acetoin, 2,3-pentanedione, hexanoic acid, acetic acid, acetaldehyde, and butanoic acid were identified as discriminatory volatile metabolites for distinguishing between different time points. Throughout the fermentation and storage process, the levels of 2,3-pentanedione and acetoin exhibited synergistic dynamics. These findings enhance our understanding of the chemical and molecular characteristics of milk fermented with Streptococcus thermophilus and Lactobacillus helveticus, providing a basis for improving the flavor and odor of dairy products during fermentation and storage.


Subject(s)
Lactobacillus delbrueckii , Lactobacillus helveticus , Pentanones , Animals , Milk/chemistry , Streptococcus thermophilus/metabolism , Fermentation , Acetoin/analysis , Lactobacillus delbrueckii/metabolism , Ketones/analysis
6.
J Biosci Bioeng ; 137(5): 388-395, 2024 May.
Article in English | MEDLINE | ID: mdl-38461104

ABSTRACT

Ethyl lactate is the most abundant ester in semi-solid rice baijiu fermentation, affecting the flavor of baijiu to a great extent. The present study aimed to investigate the spatial distribution and formation contributor of ethyl lactate by removing the microorganisms and extracellular enzymes from the upper, middle, and lower fermentation broth during the later fermentation stage. The removal of suspended substances by centrifugation did not affect the ethyl lactate content in the top and middle fermentation broth containing free cells, enzymes, and starch particles. After day 5 of fermentation, only the lower fermentation broth containing granular cells attached to the starch could continue to accumulate lactic acid, thereby increasing the ethyl lactate content. The results showed that the chemical reactions were the main contributor to the increased ethyl lactate content at the anaphase of fermentation rather than enzymatic catalysis or microbial metabolism. Sequencing of granular cells revealed the main lactic acid producers at different fermentation stages. Lactobacillus helveticus showed the highest abundance of 94.45-95.40% on day 5, which decreased to 29.58-30.20% on day 15, while Lactobacillus acetotolerans showed the highest abundance of 47.93-49.72% at day 15. Additionally, the granular cells were recovered and used for supplementary inoculation in the next batch, which significantly increased the ethyl lactate content. This study provided a novel strategy for improving the ethyl lactate content in semi-solid baijiu fermentation.


Subject(s)
Lactates , Lactobacillus helveticus , Oryza , Fermentation , Oryza/metabolism , Lactic Acid/metabolism , Starch/metabolism
7.
Int J Biol Macromol ; 262(Pt 1): 130006, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38331067

ABSTRACT

The processing characteristics of yogurt are closely related to the composition and arrangement of exopolysaccharides (EPS) in lactic acid bacteria (LAB). To fully understand and develop the functional properties of EPS and to study the effect of EPS molecular weight on yogurt and its mechanism, the physicochemical properties of high molecular weight EPS-LH43, medium molecular weight EPS-LH13, and low molecular weight EPS-LH23, as well as the gel properties and protein conformation of yogurt, were determined and analyzed in this experiment. The results indicate that EPS-LH43 and EPS-LH13 are both composed of mannose, rhamnose, galacturonic acid, glucose, and galactose. EPS-LH23 is composed of mannose, galacturonic acid, glucose, and galactose. Their Number-average Molecular Weight is 5.21 × 106 Da, 2.39 × 106 Da and 3.76 × 105 Da, respectively. In addition, all three types of EPS have good thermal stability and can improve the stability of casein. In addition, the analysis of the texture, particle size, potential, water holding capacity, rheology, low field nuclear magnetic resonance, microstructure, and flavor characteristics of yogurt confirmed the relationship between the molecular weight of LAB EPS and the gel properties of yogurt. Fluorescence spectrophotometer and circular dichroism analysis indicate that the different molecular weights of LAB EPS have different effects on protein structure, which is an intrinsic factor leading to significant differences in the gel properties of the three types of fermented milk. These findings provide new references for enhancing the understanding of the structure-activity relationship of EPS and indicate that EPS-LH43 can be used to improve the gel properties of dairy products.


Subject(s)
Hexuronic Acids , Lactobacillus helveticus , Yogurt , Yogurt/microbiology , Polysaccharides, Bacterial/chemistry , Molecular Weight , Galactose/analysis , Mannose , Glucose/analysis , Fermentation
8.
Int. microbiol ; 27(1): 37-47, Feb. 2024. ilus, graf
Article in English | IBECS | ID: ibc-230242

ABSTRACT

To date, there are very limited reports on sequence analysis and structure-based molecular modeling of phosphatases produced by probiotic bacteria. Therefore, a novel protein tyrosine-like phosphatase was characterized from L. helveticus 2126 in this study. The purified bacterial phosphatase was subjected to mass spectrometric analysis, and the identity of constructed sequence was analyzed using peptide mass fingerprint. The 3-D structure of protein was elucidated using homology modeling, while its stability was assessed using Ramachandran plot, VERIFY 3D, and PROCHECK. The bacterium produced an extracellular phosphatase of zone diameter 15 ± 0.8 mm on screening medium within 24 h of incubation. This bacterial phosphatase was highly specific towards sodium phytate as it yielded the lowest Km value of 299.50 ± 4.95 μM compared to other phosphorylated substrates. The activity was effectively stimulated in the presence of zinc, magnesium, and manganese ions thereby showing its PTP-like behavior. The phosphatase showed a molecular mass of 43 kDa, and the corresponding M/Z ratio data yielded 46% query coverage to Bacillus subtilis (3QY7). This showed a 61.1% sequence similarity to Ligilactobacillus ruminis (WP_046923835.1). The final sequence construct based on these bacteria showed a conserved motif “HCHILPGIDD” in their active site. In addition, homology modeling showed a distorted Tim barrel structure with a trinuclear metal center. The final model after energy minimization showed 90.9% of the residues in the favorable region of Ramachandran’s plot. This structural information can be used in genetic engineering for improving the overall stability and catalytic efficiency of probiotic bacterial phosphatases.(AU)


Subject(s)
Humans , Phosphoric Monoester Hydrolases , Metals , Amino Acid Sequence , Lactobacillus helveticus/genetics , Protein Tyrosine Phosphatases/metabolism , Microbiology , Microbiological Techniques , Protein Tyrosine Phosphatases/chemistry , Protein Tyrosine Phosphatases/genetics , Catalytic Domain
9.
NPJ Biofilms Microbiomes ; 10(1): 4, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38238339

ABSTRACT

Omega-3 (n-3) polyunsaturated fatty acids (PUFAs), particularly docosahexaenoic acid (DHA), are required for the structure and function of the retina. Several observational studies indicate that consumption of a diet with relatively high levels of n-3 PUFAs, such as those provided by fish oils, has a protective effect against the development of age-related macular degeneration. Given the accumulating evidence showing the role of gut microbiota in regulating retinal physiology and host lipid metabolism, we evaluated the potential of long-term dietary supplementation with the Gram-positive bacterium Lactobacillus helveticus strain VEL12193 to modulate the retinal n-3 PUFA content. A set of complementary approaches was used to study the impact of such a supplementation on the gut microbiota and host lipid/fatty acid (FA) metabolism. L. helveticus-supplementation was associated with a decrease in retinal saturated FAs (SFAs) and monounsaturated FAs (MUFAs) as well as an increase in retinal n-3 and omega-6 (n-6) PUFAs. Interestingly, supplementation with L. helveticus enriched the retina in C22:5n-3 (docosapentaenoic acid, DPA), C22:6n-3 (DHA), C18:2n-6 (linoleic acid, LA) and C20:3n-6 (dihomo gamma-linolenic acid, DGLA). Long-term consumption of L. helveticus also modulated gut microbiota composition and some changes in OTUs abundance correlated with the retinal FA content. This study provides a proof of concept that targeting the gut microbiota could be an effective strategy to modulate the retinal FA content, including that of protective n-3 PUFAs, thus opening paths for the design of novel preventive and/or therapeutical strategies for retinopathies.


Subject(s)
Fatty Acids, Omega-3 , Lactobacillus helveticus , Animals , Mice , Fatty Acids, Omega-3/analysis , Fatty Acids, Omega-3/metabolism , Lactobacillus helveticus/metabolism , Biological Availability , Diet , Retina/chemistry , Retina/metabolism
10.
Int J Biol Macromol ; 260(Pt 1): 129480, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38237823

ABSTRACT

Exopolysaccharides (EPS) yield and added concentration of lactic acid bacteria can greatly affect the processing characteristics of fermented milk. In order to investigate the effects and mechanisms of EPS yield and added concentration on fermented milk, researchers extracted EPS from 50 strains of Lactobacillus helvedicus (L. helvedicus) and selected the two strains with the largest difference in EPS yield (L. helvedicus LH18 and L. helvetigus LH33) for subsequent experiments. The physicochemical properties of EPS-LH18 and EPS-LH33 were analyzed. The gel characteristics and protein conformation of fermented milk were studied by means of texture analyzer, rheometer, scanning electron microscopy, nuclear magnetic resonance machine, fluorescence spectrophotometer and circular dichroism. The results indicate that the monosaccharide compositions of EPS-LH18 and EPS-LH33 are the same and have good thermal stability. The texture and rheological properties of L. helveticus LH18 fermented milk are significantly superior to other fermented milk. The reason is that L. helveticus LH18 EPS has the highest yield, which leads to a denser gel structure, lower surface hydrophobicity and free sulfhydryl content of its fermented milk. According to circular dichroism analysis, ß- sheet and random coil are the internal factors leading to the difference in fermented milk gel. In addition, the fermented milk improved even more favorably as the concentration of the two EPS additions increased. As described above, L. helveticus LH18 has the potential to be an excellent yogurt starter, and both of the above EPS can be used as probiotic stabilizer alternatives for fermented dairy products.


Subject(s)
Cultured Milk Products , Lactobacillus helveticus , Probiotics , Animals , Milk/chemistry , Lactobacillus helveticus/metabolism , Fermentation , Cultured Milk Products/microbiology , Yogurt/microbiology
11.
Int Microbiol ; 27(1): 37-47, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37365352

ABSTRACT

To date, there are very limited reports on sequence analysis and structure-based molecular modeling of phosphatases produced by probiotic bacteria. Therefore, a novel protein tyrosine-like phosphatase was characterized from L. helveticus 2126 in this study. The purified bacterial phosphatase was subjected to mass spectrometric analysis, and the identity of constructed sequence was analyzed using peptide mass fingerprint. The 3-D structure of protein was elucidated using homology modeling, while its stability was assessed using Ramachandran plot, VERIFY 3D, and PROCHECK. The bacterium produced an extracellular phosphatase of zone diameter 15 ± 0.8 mm on screening medium within 24 h of incubation. This bacterial phosphatase was highly specific towards sodium phytate as it yielded the lowest Km value of 299.50 ± 4.95 µM compared to other phosphorylated substrates. The activity was effectively stimulated in the presence of zinc, magnesium, and manganese ions thereby showing its PTP-like behavior. The phosphatase showed a molecular mass of 43 kDa, and the corresponding M/Z ratio data yielded 46% query coverage to Bacillus subtilis (3QY7). This showed a 61.1% sequence similarity to Ligilactobacillus ruminis (WP_046923835.1). The final sequence construct based on these bacteria showed a conserved motif "HCHILPGIDD" in their active site. In addition, homology modeling showed a distorted Tim barrel structure with a trinuclear metal center. The final model after energy minimization showed 90.9% of the residues in the favorable region of Ramachandran's plot. This structural information can be used in genetic engineering for improving the overall stability and catalytic efficiency of probiotic bacterial phosphatases.


Subject(s)
Lactobacillus helveticus , Protein Tyrosine Phosphatases , Protein Tyrosine Phosphatases/chemistry , Protein Tyrosine Phosphatases/genetics , Protein Tyrosine Phosphatases/metabolism , Amino Acid Sequence , Lactobacillus helveticus/genetics , Catalytic Domain , Phosphorylation , Metals
12.
Psychopharmacology (Berl) ; 241(2): 327-340, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37966492

ABSTRACT

OBJECTIVE: Both animal and human studies, though limited, showed that multi-strain probiotic supplementation may reduce the number of seizures and/or seizure severity. Here, we evaluated the effect of a single strain probiotic supplementation on seizure susceptibility, antiseizure efficacy of sodium valproate, and several behavioral parameters in mice. METHODS: Lactobacillus helveticus R0052 was given orally for 28 days. Its influence on seizure thresholds was evaluated in the ivPTZ- and electrically-induced seizure tests. The effect on the antiseizure potency of valproate was assessed in the scPTZ test. We also investigated the effects of probiotic supplementation on anxiety-related behavior (in the elevated plus maze and light/dark box tests), motor coordination (in the accelerating rotarod test), neuromuscular strength (in the grip-strength test), and spontaneous locomotor activity. Serum and brain concentrations of valproate as well as cecal contents of SCFAs and lactate were determined using HPLC method. RESULTS: L. helveticus R0052 significantly increased the threshold for the 6 Hz-induced psychomotor seizure. There was also a slight increase in the threshold for myoclonic and clonic seizure in the ivPTZ test. L. helveticus R0052 did not affect the threshold for tonic seizures both in the maximal electroshock- and ivPTZ-induced seizure tests. No changes in the antiseizure potency of valproate against the PTZ-induced seizures were reported. Interestingly, L. helveticus R0052 increased valproate concentration in serum, but not in the brain. Moreover, L. helveticus R0052 did not produce any significant effects on anxiety-related behavior, motor coordination, neuromuscular strength, and locomotor activity. L. helveticus R0052 supplementation resulted in increased concentrations of total SCFAs, acetate, and butyrate. CONCLUSIONS: Altogether, this study shows that a single-strain probiotic - L. helveticus R0052 may decrease seizure susceptibility and this effect can be mediated, at least in part, by increased production of SCFAs. In addition, L. helveticus R0052 may affect bioavailability of valproate, which warrants further investigations.


Subject(s)
Lactobacillus helveticus , Valproic Acid , Humans , Mice , Animals , Valproic Acid/pharmacology , Valproic Acid/therapeutic use , Seizures/drug therapy , Brain , Dietary Supplements , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Electroshock
13.
Lett Appl Microbiol ; 76(12)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38049374

ABSTRACT

The adult worker bees were fed sucrose syrup or sucrose syrup supplemented with Lactobacillus helveticus KM7, prebiotic isomalto-oligosaccharide (IMO), or L. helveticus KM7 combined with IMO. Survival rate, gut microbiota, and gene expression of gut antimicrobial peptides in worker honey bees were determined. Administration of L. helveticus KM7 and IMO significantly increased the survival rate in worker bees relative to bees fed sucrose only. Then, higher concentration of both lactic acid bacteria and Bifidobacterium in the gut and lower counts of gut fungi, Enterococcus, and Bacteroides-Porphyromonas-Prevotella were observed in bees fed the combination of KM7 and IMO compared with control bees. The combination of L. helveticus KM7 with IMO showed a greater or comparable modulating effect on those bacteria relative to either KM7 or IMO alone. Furthermore, the combination treatment of L. helveticus KM7 and IMO enhanced mRNA expression of antimicrobial peptide genes, including Abaecin, Defensin, and the gene encoding prophenoloxidase (PPO) in the gut compared with both control bees and those either L. helveticus KM7 or IMO alone. These results suggest that the combination of L. helveticus KM7 and IMO synergistically modifies the gut microbiota and immunity and consequently improves the survival rate of Apis cerana adult workers.


Subject(s)
Gastrointestinal Microbiome , Lactobacillus helveticus , Bees , Animals , Gastrointestinal Microbiome/genetics , Bacteria , Sucrose , Immunity
14.
Food Res Int ; 174(Pt 1): 113644, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37986486

ABSTRACT

Hard cheeses may occasionally show a brown discolouration during ripening due to multifactorial phenomena that involve bacteria and give rise to pyrazines arising from methylglyoxal. The present work aimed at developing a novel approach to investigate the role of natural starters in browning. To this object, 11 strains of L. helveticus were incubated in a medium containing 10 % rennet casein dissolved in whey, and then growth was monitored by measuring pH and number of genomes/mL. Browning was assessed through CIELab analysis, methylglyoxal production was determined by targeted mass spectrometry, and untargeted metabolomics was used to extrapolate marker compounds associated with browning discoloration. The medium allowed the growth of all the strains tested and differences in colour were observed, especially for strain A7 (ΔE* value 15.92 ± 0.27). Noteworthy, this strain was also the higher producer of methylglyoxal (2.44 µg/mL). Metabolomics highlighted pyrazines and ß-carboline compounds as markers of browning at 42 °C and 16 °C, respectively. Moreover, multivariate statistics pointed out differences in free amino acids and oligopeptides linked to proteolysis, while 1,2-propanediol and S-Lactoylglutathione suggested specific detoxification route in methylglyoxal-producing strains. Our model allowed detecting differences in browning amid strains, paving the way towards the study of individual L. helveticus strains to identify the variables leading to discoloration or to study the interaction between different strains in natural whey starters.


Subject(s)
Lactobacillus helveticus , Lactobacillus helveticus/metabolism , Whey/metabolism , Pyruvaldehyde/metabolism , Whey Proteins , Pyrazines
15.
Poult Sci ; 102(12): 103095, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37832187

ABSTRACT

This study aimed to assess the effects of a Lactobacillus helveticus ATCC 15009-derived postbiotic in mitigating experimental Salmonella Gallinarum infection. For this purpose, a sample of Lactobacillus sp. was inoculated in 2 different media, each containing different postbiotics (sensitized and nonsensitized). Both inocula had their antagonistic effect over S. Gallinarum tested through the spot-on-the-lawn method. It revealed that the sensitized postbiotic had a higher action potential over Lactobacillus sp. than the nonsensitized one (P < 0.05). Then, 48 day of hatch chicks were divided into 4 groups: A = Lactobacillus sp. (109 CFU/mL) inoculum on the 18th day; B = Lactobacillus sp. (109 CFU/mL) inoculum on the 18th day and postbiotic inoculum on the 19th day; C = postbiotic inoculum on the 19th day; and D = sterile saline inoculum on 18th and 19th days. On the 21st day, all chicks were infected with S. Gallinarum (109 CFU/mL). On the 23rd day, the animals were euthanized by cervical dislocation, and the ceca and liver were aseptically removed. Bacterial count of S. Gallinarum with serial decimal dilution was performed with these organs. It revealed that the prophylactic treatment with the postbiotic that modulates the intestinal microbiota was as efficient as the probiotic administration in reducing S. Gallinarum in the cecum and liver of chicks (P < 0.05). These data point to a new range of alternatives for preventing S. Gallinarum, which might help the poultry industry produce safer food for human consumption.


Subject(s)
Lactobacillus helveticus , Poultry Diseases , Salmonella Infections, Animal , Humans , Animals , Chickens/microbiology , Salmonella , Cecum/microbiology , Salmonella Infections, Animal/prevention & control , Salmonella Infections, Animal/microbiology , Poultry Diseases/prevention & control , Poultry Diseases/microbiology
16.
Food Microbiol ; 116: 104369, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37689420

ABSTRACT

In this study, two strains of lactic acid bacteria (Lacticaseibacillus paracasei GL1 and Lactobacillus helveticus SNA12) and one yeast strain of Kluyveromyces marxianus G-Y4 (G-Y4) isolated from Tibetan kefir grains were co-cultured. It was found that the addition of G-Y4 could not only promote the growth of lactic acid bacteria, but also increase the release of metabolites (lactic acid, ethanol, and amino nitrogen). Furthermore, the addition of live cells and cell-free fermentation supernatant (CFS) of G-Y4 could increase the ability of biofilm formation. Morever, the surface characteristics results showed that the addition of G-Y4 live cells could enhance the aggregation ability and hydrophobicity of LAB. Meanwhile, adding live cells and CFS of G-Y4 could promote the release of signaling molecule AI-2 and enhance the expression of the LuxS gene related to biofilm formation. In addition, Fourier-transform infrared spectroscopy and chemical composition analysis were used to investigate the composition of the biofilm, and the results indicated that the biofilm was mainly composed of a small amount of protein but it was rich in polysaccharides including glucose, galactose, and mannose with different ratios. Finally, the formation of biofilm could delay the decline of the number of viable bacteria in storage fermented milk.


Subject(s)
Kluyveromyces , Lacticaseibacillus paracasei , Lactobacillus helveticus , Lacticaseibacillus , Lactobacillus helveticus/genetics , Kluyveromyces/genetics , Biofilms
17.
FEBS Lett ; 597(23): 2946-2962, 2023 12.
Article in English | MEDLINE | ID: mdl-37698360

ABSTRACT

Chlorogenic acid esterases (ChlEs) are a useful class of enzymes that hydrolyze chlorogenic acid (CGA) into caffeic and quinic acids. ChlEs can break down CGA in foods to improve their sensory properties and release caffeic acid in the digestive system to improve the absorption of bioactive compounds. This work presents the structure, molecular dynamics, and biochemical characterization of a ChlE from Lactobacillus helveticus (Lh). Molecular dynamics simulations suggest that substrate access to the active site of LhChlE is modulated by two hairpin loops above the active site. Docking simulations and mutational analysis suggest that two residues within the loops, Gln145 and Lys164 , are important for CGA binding. Lys164 provides a slight substrate preference for CGA, whereas Gln145 is required for efficient turnover. This work is the first to examine the dynamics of a bacterial ChlE and provides insights on substrate binding preference and turnover in this type of enzyme.


Subject(s)
Lactobacillus helveticus , Lactobacillus helveticus/genetics , Lactobacillus helveticus/metabolism , Chlorogenic Acid/metabolism , Carboxylic Ester Hydrolases/chemistry , Bacteria/metabolism
18.
Nutrients ; 15(17)2023 Sep 03.
Article in English | MEDLINE | ID: mdl-37686884

ABSTRACT

A gradual decline in cognitive function occurs with age. Accumulating evidence suggests that certain probiotic strains exert beneficial effects on age-related cognitive decline. Our previous study revealed that Lactobacillus helveticus WHH1889 attenuated symptoms of anxiety and depression in depressed mice via shaping the 5-hydroxytryptamine (5-HT) and 5-hydroxytryptophan (5-HTP) metabolism and gut microbial community, indicating the psychobiotic potential of WHH1889. In the present study, the effects of WHH1889 on age-related cognitive decline were investigated. WHH1889 was orally administrated (1 × 109 CFU/day) for twelve weeks in aged mice, and their cognitive behaviors, neurochemical factors, cognitive-related gene expressions, neuroinflammation, and serum tryptophan pathway-targeted metabolic profiling, as well as gut microbiome composition were assessed. WHH1889 demonstrated improvement of the cognitive behaviors via the novel object recognition test (NORT), the active shuttle avoidance test (ASAT), the Y-maze test, and the passive avoidance test (PAT). The hippocampal neuronal loss; the declined concentrations of BDNF, 5-HT, and 5-HTP; the decreased gene expressions of neurodegeneration biomarkers; and the increased production of hippocampal inflammatory cytokines in aged mice were restored by WHH1889. In addition, WHH1889 increased the 5-HT/5HTP levels and decreased the serum levels of tryptophan-derived metabolites (e.g., kynurenine, xanthurenic acid, 3-hydroxykynurenine, and 3-hydroxyanthranilic acid). Furthermore, WHH1889 was revealed to shape the gut microbiota community by reversing the relative abundances of Bacteroidota and Firmicutes. The present findings suggest that L. helveticus WHH1889 exerted cognitive improving effects on aged mice, which was associated with the modulation of 5-HT and 5-HTP metabolism and gut microbial composition. The supplementation of WHH1889 may therefore be a promising therapeutic agent for age-related cognitive deficits.


Subject(s)
Cognitive Dysfunction , Lactobacillus helveticus , Animals , Mice , 5-Hydroxytryptophan , Serotonin , Tryptophan , Cognitive Dysfunction/prevention & control
19.
J Agric Food Chem ; 71(26): 10144-10154, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37339085

ABSTRACT

Fermentation techniques may induce alterations in fish allergen immunoreactivity. In this study, the influence of fermentation with three different strains of Lactobacillus helveticus (Lh187926, Lh191404, and Lh187926) on the immunoreactivity of Atlantic cod allergens was investigated via several methods. Gradually reduced protein composition and band intensity due to the fermentation by strain Lh191404 were found in SDS-PAGE analysis, and decreased immunoreactivity of fish allergens was confirmed by Western blotting and ELISA analysis due to the fermentation of strain Lh191404. Additionally, results from nLC-MS/MS and immunoinformatics tools analysis demonstrated that the protein polypeptide and allergen composition of Atlantic cod showed evident alterations after fermentation, with the epitopes of the main fish allergens being heavily exposed and destroyed. These results indicated that the fermentation of L. helveticus Lh191404 could destroy the structure and linear epitopes of the allergens from Atlantic cod and may have considerable potential in mitigating the allergenicity of fish.


Subject(s)
Gadus morhua , Lactobacillus helveticus , Animals , Allergens/chemistry , Gadus morhua/metabolism , Fermentation , Tandem Mass Spectrometry , Epitopes/chemistry , Fishes/metabolism
20.
Int J Biol Macromol ; 244: 125146, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37271267

ABSTRACT

Probiotic surface layer proteins (Slps) have multiple functions and bacterial adhesion to host cells is one of them. The precise role of Slps in cellular adhesion is not well understood due to its low native protein yield and self-aggregative nature. Here, we report the recombinant expression and purification of biologically active Slp of Lactobacillus helveticus NCDC 288 (SlpH) in high yield. SlpH is a highly basic protein (pI = 9.4), having a molecular weight of 45 kDa. Circular Dichroism showed a prevalence of beta-strands in SlpH structure and resistance to low pH. SlpH showed binding to human intestinal tissue, enteric Caco-2 cell line, and porcine gastric mucin, but not with fibronectin, collagen type IV and laminin. SlpH inhibited the binding of the enterotoxigenic E. coli by 70 % and 76 % and that of Salmonella Typhimurium SL1344 by 71 % and 75 % to enteric Caco-2 cell line in the exclusion and competition assays, respectively. The pathogen exclusion and competition activity and tolerance to harsh gastrointestinal conditions show the potential for developing SlpH as a prophylactic or therapeutic agent against enteric pathogens.


Subject(s)
Lactobacillus helveticus , Probiotics , Animals , Humans , Swine , Membrane Proteins , Lactobacillus helveticus/genetics , Escherichia coli , Caco-2 Cells , Host Microbial Interactions , Bacterial Adhesion , Probiotics/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...