Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 953
Filter
1.
Surg Infect (Larchmt) ; 25(4): 332-334, 2024 May.
Article in English | MEDLINE | ID: mdl-38696668

ABSTRACT

Background: Lactococcus species are used to ferment milk to yogurt, cheese, and other products. The gram-positive coccus causes diseases in amphibia and fish and is a rare human pathogen. Patients and Methods: A 51-year-old male underwent laparoscopic cholecystectomy for acute and chronic calculous cholecystitis. Lactococcus lactis was isolated from pus from his gallbladder empyema. Results: Our institutional database was searched for other cases of Lactococcus spp. infections and four patients (2 males, 2 females; aged 51, 64, 78, and 80 years) were identified during a four-year period. The three other patients had positive blood cultures associated with pneumonia, toxic megacolon, and severe gastroenteritis. All isolates were monocultures with Lactococcus lactis (2), Lactococcus garvieae (1) and Lactococcus raffinolactis (1). Two patients died related to their sepsis. We report the second case of cholecystitis involving Lactococcus. Conclusions: Lactococcus is a very rare pathogen mainly causing blood stream infections but needs to be considered to cause serious surgical infections in humans.


Subject(s)
Cholecystitis, Acute , Gram-Positive Bacterial Infections , Lactococcus lactis , Lactococcus , Humans , Male , Middle Aged , Lactococcus lactis/isolation & purification , Lactococcus/isolation & purification , Cholecystitis, Acute/microbiology , Cholecystitis, Acute/surgery , Female , Aged, 80 and over , Aged , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/diagnosis , Cholecystectomy, Laparoscopic
2.
Genes Brain Behav ; 23(3): e12898, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38817102

ABSTRACT

Aquaculturists use polyploid fish to maximize production albeit with some unintended consequences including compromised behaviors and physiological function. Given benefits of probiotic therapies (e.g., improved immune response, growth, and metabolism), we explored probiotic supplementation (mixture of Bifidobacterium, Lactobacillus, and Lactococcus), to overcome drawbacks. We first examined fish gut bacterial community composition using 16S metabarcoding (via principal coordinate analyses and PERMANOVA) and determined probiotics significantly impacted gut bacteria composition (p = 0.001). Secondly, we examined how a genomic disruptor (triploidy) and diet supplements (probiotics) impact gene transcription and behavioral profiles of hatchery-reared Chinook salmon (Oncorhynchus tshawytscha). Juveniles from four treatment groups (diploid-regular feed, diploid-probiotic feed, triploid-regular feed, and triploid-probiotic feed; n = 360) underwent behavioral assays to test activity, exploration, neophobia, predator evasion, aggression/sociality, behavioral sensitivity, and flexibility. In these fish, transcriptional profiles for genes associated with neural functions (neurogenesis/synaptic plasticity) and biomarkers for stress response and development (growth/appetite) were (i) examined across treatments and (ii) used to describe behavioral phenotypes via principal component analyses and general linear mixed models. Triploids exhibited a more active behavioral profile (p = 0.002), and those on a regular diet had greater Neuropeptide Y transcription (p = 0.02). A growth gene (early growth response protein 1, p = 0.02) and long-term neural development genes (neurogenic differentiation factor, p = 0.003 and synaptysomal-associated protein 25-a, p = 0.005) impacted activity and reactionary profiles, respectively. Overall, our probiotic treatment did not compensate for triploidy. Our research highlights novel applications of behavioral transcriptomics for identifying candidate genes and dynamic, mechanistic associations with complex behavioral repertoires.


Subject(s)
Gastrointestinal Microbiome , Lactococcus , Probiotics , Salmon , Transcriptome , Triploidy , Animals , Probiotics/pharmacology , Probiotics/administration & dosage , Salmon/genetics , Salmon/microbiology , Lactococcus/genetics , Lactobacillus/genetics , Behavior, Animal/drug effects
3.
Food Funct ; 15(11): 6015-6027, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38747642

ABSTRACT

Hyperuricemia (HUA) is a widespread metabolic disorder. Probiotics have drawn increasing attention as an adjunctive treatment with fewer side effects. However, thus far the effective strains are limited and the mechanisms for their serum uric acid (SUA)-lowering effect are not well understood. Along this line, we conducted the current study using a hyperuricemia mouse model induced by potassium oxonate and adenine. A novel strain of Lactococcus cremoris named D2022 was identified to have significant SUA-lowering capability. Lactococcus cremoris D2022 significantly reduced SUA levels by inhibiting uric acid synthesis and regulating uric acid transportation. It was also found that Lactococcus cremoris D2022 alleviated HUA-induced renal inflammatory injury involving multiple signaling pathways. By focusing on the expression of NLRP3-related inflammatory genes, we found correlations between the expression levels of these genes and free fatty acid receptors (FFARs). In addition, oral administration of Lactococcus cremoris D2022 increased short-chain fatty acids (SCFAs) in cecal samples, which may be one of the mechanisms by which oral probiotics alleviate renal inflammation. Serum untargeted metabolomics showed changes in a variety of serum metabolites associated with purine metabolism and inflammation after oral administration of Lactococcus cremoris D2022, further confirming its systemic bioactivity. Finally, it was proved that Lactococcus cremoris D2022 improved intestinal barrier function. In conclusion, Lactococcus cremoris D2022 can alleviate HUA and HUA-induced nephropathy by increasing the production of SCFAs in the gut and systemic metabolism.


Subject(s)
Hyperuricemia , Kidney , Lactococcus , Probiotics , Uric Acid , Animals , Hyperuricemia/drug therapy , Mice , Probiotics/pharmacology , Probiotics/administration & dosage , Male , Uric Acid/blood , Kidney/metabolism , Gastrointestinal Microbiome/drug effects , Inflammation , Disease Models, Animal , Mice, Inbred C57BL
4.
Appl Environ Microbiol ; 90(5): e0234923, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38597602

ABSTRACT

Piscine lactococcosis is a significant threat to cultured and wild fish populations worldwide. The disease typically presents as a per-acute to acute hemorrhagic septicemia causing high morbidity and mortality, recalcitrant to antimicrobial treatment or management interventions. Historically, the disease was attributed to the gram-positive pathogen Lactococcus garvieae. However, recent work has revealed three distinct lactococcosis-causing bacteria (LCB)-L. garvieae, L. petauri, and L. formosensis-which are phenotypically and genetically similar, leading to widespread misidentification. An update on our understanding of lactococcosis and improved methods for identification are urgently needed. To this end, we used representative isolates from each of the three LCB species to compare currently available and recently developed molecular and phenotypic typing assays, including whole-genome sequencing (WGS), end-point and quantitative PCR (qPCR) assays, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), API 20 Strep and Biolog systems, fatty acid methyl ester analysis (FAME), and Sensititre antimicrobial profiling. Apart from WGS, sequencing of the gyrB gene was the only method capable of consistent and accurate identification to the species and strain level. A qPCR assay based on a putative glycosyltransferase gene was also able to distinguish L. petauri from L. garvieae/formosensis. Biochemical tests and MALDI-TOF MS showed some species-specific patterns in sugar and fatty acid metabolism or protein profiles but should be complemented by additional analyses. The LCB demonstrated overlap in host and geographic range, but there were relevant differences in host specificity, regional prevalence, and antimicrobial susceptibility impacting disease treatment and prevention. IMPORTANCE: Lactococcosis affects a broad range of host species, including fish from cold, temperate, and warm freshwater or marine environments, as well as several terrestrial animals, including humans. As such, lactococcosis is a disease of concern for animal and ecosystem health. The disease is endemic in European and Asian aquaculture but is rapidly encroaching on ecologically and economically important fish populations across the Americas. Piscine lactococcosis is difficult to manage, with issues of vaccine escape, ineffective antimicrobial treatment, and the development of carrier fish or biofilms leading to recurrent outbreaks. Our understanding of the disease is also widely outdated. The accepted etiologic agent of lactococcosis is Lactococcus garvieae. However, historical misidentification has masked contributions from two additional species, L. petauri and L. formosensis, which are indistinguishable from L. garvieae by common diagnostic methods. This work is the first comprehensive characterization of all three agents and provides direct recommendations for species-specific diagnosis and management.


Subject(s)
Fish Diseases , Gram-Positive Bacterial Infections , Lactococcus , Lactococcus/genetics , Lactococcus/isolation & purification , Lactococcus/classification , Animals , Fish Diseases/microbiology , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/veterinary , Fishes/microbiology , Whole Genome Sequencing , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
5.
J Microbiol Methods ; 221: 106937, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38648958

ABSTRACT

Lactic Acid Bacteria (LAB) are predominantly probiotic microorganisms and the most are Generally Recognized As Safe (GRAS). LAB inhabit in the human gut ecosystem and are largely found in fermented foods and silage. In the last decades, LAB have also has been found in plant microbiota as a new class of microbes with probiotic activity to plants. For this reason, today the scientific interest in the study and isolation of LAB for agronomic application has increased. However, isolation protocols from complex samples such as plant tissues are scarce and inefficient. In this study, we developed a new protocol (CLI, Complex samples LAB Isolation) which yields purified LAB from plants. The sensitivity of CLI protocol was sufficient to isolate representative microorganisms of LAB genera (i.e. Leuconostoc, Lactococcus and Enterococcus). CLI protocol consists on five steps: i) sample preparation and pre-incubation in 1% sterile peptone at 30 °C for 24-48 h; ii) Sample homogenization in vortex by 10 min; iii) sample serial dilution in quarter-strength Ringer solution, iv) incubation in MRS agar plates with 0.2% of sorbic acid, with 1% of CaCO3, O2 < 15%, at pH 5.8 and 37 °C for 48 h.; v) Selection of single colonies with LAB morphology and CaCO3-solubilization halo. Our scientific contribution is that CLI protocol could be used for several complex samples and represents a useful method for further studies involving native LAB.


Subject(s)
Lactobacillales , Lactobacillales/isolation & purification , Lactobacillales/classification , Plants/microbiology , Leuconostoc/isolation & purification , Probiotics/isolation & purification , Lactococcus/isolation & purification , Enterococcus/isolation & purification , Lactic Acid/metabolism
6.
Nucleic Acids Res ; 52(8): 4723-4738, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38587192

ABSTRACT

Bacterial reverse transcriptases (RTs) are a large and diverse enzyme family. AbiA, AbiK and Abi-P2 are abortive infection system (Abi) RTs that mediate defense against bacteriophages. What sets Abi RTs apart from other RT enzymes is their ability to synthesize long DNA products of random sequences in a template- and primer-independent manner. Structures of AbiK and Abi-P2 representatives have recently been determined, but there are no structural data available for AbiA. Here, we report the crystal structure of Lactococcus AbiA polymerase in complex with a single-stranded polymerization product. AbiA comprises three domains: an RT-like domain, a helical domain that is typical for Abi polymerases, and a higher eukaryotes and prokaryotes nucleotide-binding (HEPN) domain that is common for many antiviral proteins. AbiA forms a dimer that distinguishes it from AbiK and Abi-P2, which form trimers/hexamers. We show the DNA polymerase activity of AbiA in an in vitro assay and demonstrate that it requires the presence of the HEPN domain which is enzymatically inactive. We validate our biochemical and structural results in vivo through bacteriophage infection assays. Finally, our in vivo results suggest that AbiA-mediated phage defense may not rely on AbiA-mediated cell death.


Subject(s)
Bacteriophages , Lactococcus , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacteriophages/genetics , Crystallography, X-Ray , Lactococcus/virology , Lactococcus/genetics , Models, Molecular , Protein Domains , Protein Multimerization , RNA-Directed DNA Polymerase/metabolism , RNA-Directed DNA Polymerase/chemistry , RNA-Directed DNA Polymerase/genetics , Structure-Activity Relationship
7.
Dev Comp Immunol ; 157: 105182, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38636700

ABSTRACT

Galectin 8 belongs to the tandem repeat subclass of the galectin superfamily. It possesses two homologous carbohydrate recognition domains linked by a short peptide and preferentially binds to ß-galactoside-containing glycol-conjugates in a calcium-independent manner. This study identified Galectin-8-like isoform X1 (PhGal8X1) from red-lip mullet (Planiliza haematocheilus) and investigated its role in regulating fish immunity. The open reading frame of PhGal8X1 was 918bp, encoding a soluble protein of 305 amino acids. The protein had a theoretical isoelectric (pI) point of 7.7 and an estimated molecular weight of 34.078 kDa. PhGal8X1 was expressed in various tissues of the fish, with prominent levels in the brain, stomach, and intestine. PhGal8X1 expression was significantly (p < 0.05) induced in the blood and spleen upon challenge with different immune stimuli, including polyinosinic:polycytidylic acid, lipopolysaccharide, and Lactococcus garvieae. The recombinant PhGal8X1 protein demonstrated agglutination activity towards various bacterial pathogens at a minimum effective concentration of 50 µg/mL or 100 µg/mL. Subcellular localization observations revealed that PhGal8X1 was primarily localized in the cytoplasm. PhGal8X1 overexpression in fathead minnow cells significantly (p < 0.05) inhibited viral hemorrhagic septicemia virus (VHSV) replication. The expression levels of four proinflammatory cytokines and two chemokines were significantly (p < 0.05) upregulated in PhGal8X1 overexpressing cells in response to VHSV infection. Furthermore, overexpression of PhGal8X1 exhibited protective effects against oxidative stress induced by H2O2 through the upregulation of antioxidant enzymes. Taken together, these findings provide compelling evidence that PhGal8X1 plays a crucial role in enhancing innate immunity and promoting cell survival through effective regulation of antibacterial, antiviral, and antioxidant defense mechanisms in red-lip mullet.


Subject(s)
Antioxidants , Fish Proteins , Galectins , Smegmamorpha , Animals , Fish Proteins/genetics , Fish Proteins/metabolism , Fish Proteins/immunology , Smegmamorpha/immunology , Smegmamorpha/genetics , Galectins/metabolism , Galectins/genetics , Antioxidants/metabolism , Fish Diseases/immunology , Cytokines/metabolism , Immunity, Innate , Poly I-C/immunology , Lactococcus/physiology , Lipopolysaccharides/immunology , Chemokines/metabolism , Chemokines/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Novirhabdovirus/physiology , Novirhabdovirus/immunology , Antiviral Agents/metabolism
8.
Microbiol Spectr ; 12(6): e0054124, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38687062

ABSTRACT

Lactococcus garvieae is a fish pathogen that can cause diseases in humans and cows. Two genetically related species, Lactococcus formosensis and Lactococcus petauri, may be misidentified as L. garvieae. It is unclear if these species differ in host specificity and virulence genes. This study analyzed the genomes of 120 L. petauri, 53 L. formosensis, and 39 L. garvieae isolates from various sources. The genetic diversity and virulence gene content of these isolates were compared. The results showed that 77 isolates previously reported as L. garvieae were actually L. formosensis or L. petauri. The distribution of the three species varied across different collection sources, with L. petauri being predominant in human infections, human fecal sources, and rainbow trout, while L. formosensis was more common in bovine isolates. The genetic diversity of isolates within each species was high and similar. Using a genomic clustering method, L. petauri, L. formosensis, and L. garvieae were divided into 45, 22, and 13 clusters, respectively. Most rainbow trout and human isolates of L. petauri belonged to different clusters, while L. formosensis isolates from bovine and human sources were also segregated into separate clusters. In L. garvieae, most human isolates were grouped into three clusters that also included isolates from food or other sources. Non-metric multidimensional scaling ordination revealed the differential association of 15 virulence genes, including 14 adherence genes and a bile salt hydrolase gene, with bacterial species and certain collection sources. In conclusion, this work provides evidence of host specificity among the three species. IMPORTANCE: Lactococcus formosensis and Lactococcus petauri are two newly discovered bacteria, which are closely related to Lactococcus garvieae, a pathogen that affects farmed rainbow trout, as well as causes cow mastitis and human infections. It is unclear whether the three bacteria differ in their host preference and the presence of genes that contribute to the development of disease. This study shows that L. formosensis and L. petauri were commonly misidentified as L. garvieae. The three bacteria showed different distribution patterns across various sources. L. petauri was predominantly found in human infections and rainbow trout, while L. formosensis was more commonly detected in cow mastitis. Fifteen genes displayed a differential distribution among the three bacteria from certain sources, indicating a genetic basis for the observed host preference. This work indicates the importance of differentiating the three bacteria in diagnostic laboratories for surveillance and outbreak investigation purposes.


Subject(s)
Genetic Variation , Genome, Bacterial , Host Specificity , Lactococcus , Animals , Lactococcus/genetics , Lactococcus/classification , Lactococcus/isolation & purification , Humans , Cattle , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/veterinary , Virulence Factors/genetics , Phylogeny , Oncorhynchus mykiss/microbiology , Genomics , Virulence/genetics , Feces/microbiology
9.
J Aquat Anim Health ; 36(2): 192-202, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38632692

ABSTRACT

OBJECTIVE: Acute mortality with clinical symptoms of streptococcal-like infections was observed in red tilapia Oreochromis sp. cultured in floating cages in Prachin Buri Province, Thailand, during May 2023. Herein, we identified an emerging pathogen, Lactococcus garvieae, as the etiological agent. METHODS: After bacterial isolation from the brain and kidney of diseased fish, identification was performed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and the VITEK 2 system. Sequencing of the 16S ribosomal RNA (rRNA) gene and phylogenetic analysis were applied to confirm bacterial species. Antimicrobial susceptibility testing was conducted. Histopathological findings in the brain, kidney, spleen, liver, and heart were evaluated. RESULT: From 20 fish samples, L. garvieae (n = 18 isolates) and Streptococcus agalactiae (n = 2 isolates) were identified. A phylogenetic tree of the 16S rRNA gene revealed that Thai isolates of either L. garvieae or S. agalactiae clustered with reference piscine isolates from intercontinental locations. Our isolates showed resistance against quinolones while being susceptible to other antimicrobials. Histopathological changes demonstrated severe septicemic conditions, with more invasive lesions-especially in the heart and liver-being apparent in L. garvieae-infected fish compared to S. agalactiae-infected fish. CONCLUSION: This study represents the first reported outbreak of L. garvieae with a concurrent S. agalactiae infection in farmed red tilapia in Thailand.


Subject(s)
Fish Diseases , Gram-Positive Bacterial Infections , Lactococcus , Phylogeny , Streptococcal Infections , Streptococcus agalactiae , Animals , Streptococcus agalactiae/isolation & purification , Streptococcus agalactiae/drug effects , Streptococcus agalactiae/genetics , Fish Diseases/microbiology , Fish Diseases/epidemiology , Thailand/epidemiology , Lactococcus/isolation & purification , Lactococcus/classification , Lactococcus/genetics , Streptococcal Infections/veterinary , Streptococcal Infections/microbiology , Streptococcal Infections/epidemiology , Gram-Positive Bacterial Infections/veterinary , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/epidemiology , Tilapia/microbiology , Cichlids , RNA, Ribosomal, 16S/genetics
10.
Molecules ; 29(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38611811

ABSTRACT

Lactic acid bacteria (LAB) play an important role in the ripening of cheeses and contribute to the development of the desired profile of aroma and flavor compounds. Therefore, it is very important to monitor the dynamics of bacterial proliferation in order to obtain an accurate and reliable number of their cells at each stage of cheese ripening. This work aimed to identify and conduct a quantitative assessment of the selected species of autochthonous lactic acid bacteria from raw cow's milk cheese by the development of primers and probe pairs based on the uniqueness of the genetic determinants with which the target microorganisms can be identified. For that purpose, we applied real-time quantitative PCR (qPCR) protocols to quantify Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, and Lactococcus lactis subsp. cremoris cells in cheese directly after production and over three-month and six-month ripening periods. While L. lactis subsp. cremoris shows good acidification ability and the ability to produce antimicrobial compounds, L. delbrueckii subsp. bulgaricus has good proteolytic ability and produces exo-polysaccharides, and S. thermophilus takes part in the formation of the diacetyl flavor compound by metabolizing citrate to develop aroma, they all play an important role in the cheese ripening. The proposed qPCR protocols are very sensitive and reliable methods for a precise enumeration of L. delbrueckii subsp. bulgaricus, S. thermophilus, and L. lactis subsp. cremoris in cheese samples.


Subject(s)
Cheese , Lactobacillales , Lactobacillus delbrueckii , Lactococcus lactis , Lactococcus , Animals , Cattle , Female , Lactobacillales/genetics , Milk , Real-Time Polymerase Chain Reaction , Lactobacillus delbrueckii/genetics , Lactococcus lactis/genetics
11.
Gut Microbes ; 16(1): 2337317, 2024.
Article in English | MEDLINE | ID: mdl-38619316

ABSTRACT

The diet during pregnancy, or antenatal diet, influences the offspring's intestinal health. We previously showed that antenatal butyrate supplementation reduces injury in adult murine offspring with dextran sulfate sodium (DSS)-induced colitis. Potential modulators of butyrate levels in the intestine include a high fiber diet or dietary supplementation with probiotics. To test this, we supplemented the diet of pregnant mice with high fiber, or with the probiotic bacteria Lactococcus lactis subspecies cremoris or Lactobacillus rhamnosus GG. We then induced chronic colitis with DSS in their adult offspring. We demonstrate that a high fiber antenatal diet, or supplementation with Lactococcus lactis subspecies cremoris during pregnancy diminished the injury from DSS-induced colitis in offspring. These data are evidence that antenatal dietary interventions impact offspring gut health and define the antenatal diet as a therapeutic modality to enhance offspring intestinal health.


Subject(s)
Colitis , Gastrointestinal Microbiome , Lactococcus lactis , Lactococcus , Female , Pregnancy , Animals , Mice , Lactococcus lactis/genetics , Dietary Supplements , Butyrates
12.
ACS Synth Biol ; 13(4): 1365-1372, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38518262

ABSTRACT

Lactococcus cremoris (homotypic synonym: Lactococcus lactis) is receiving increasing attention as a prominent vehicle for the delivery of live vaccines. This can hardly be achieved without developing tools for the genetic manipulation of L. cremoris, and the paucity of studies on L. cremoris endogenous promoters has attracted our attention. Here, we report the discovery and characterization of 29 candidate promoters identified from L. cremoris subsp. cremoris NZ9000 by RNA sequencing analysis. Furthermore, 18 possible constitutive promoters were obtained by RT-qPCR screening from these 29 candidate promoters. Then, these 18 promoters were cloned and characterized by a reporter gene, gusA, encoding ß-glucuronidase. Eventually, eight endogenous constitutive promoters of L. cremoris were obtained, which can be applied to genetic manipulation of lactic acid bacteria.


Subject(s)
Lactococcus lactis , Lactococcus , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Promoter Regions, Genetic/genetics , Genes, Reporter/genetics , Gene Expression
13.
Vet Microbiol ; 292: 110048, 2024 May.
Article in English | MEDLINE | ID: mdl-38479301

ABSTRACT

The optrA gene encodes an ABC-F protein which confers cross-resistance to oxazolidinones and phenicols. Insertion sequence ISVlu1, a novel ISL3-family member, was recently reported to be involved in the transmission of optrA in Vagococcus lutrae. However, the role of ISVlu1 in mobilizing resistance genes has not yet fully explored. In this study, two complete and three truncated copies of ISVlu1 were found on plasmid pBN62-optrA from Lactococcus garvieae. Analysis of the genetic context showed that both optrA and the phenicols resistance gene fexA were flanked by the complete or truncated ISVlu1 copies. Moreover, three different-sized ISVlu1-based translocatable units (TUs) carrying optrA and/or fexA, were detected from pBN62-optrA. Sequence analysis revealed that the TU-optrA was generated by homologous recombination while TU-fexA and TU-optrA+fexA were the products of illegitimate recombinations. Importantly, conjugation assays confirmed that pBN62-optrA was able to successfully transfer into the recipient Enterococcus faecalis JH2-2. To our knowledge, this is the first report about an optrA-carrying plasmid in L. garvieae which could horizontally transfer into other species. More importantly, the ISVlu1-flanked genetic structures containing optrA and/or fexA were also observed in bacteria of different species, which underlines that ISVlu1 is highly active and plays a vital role in the transfer of some important resistance genes, such as optrA and fexA.


Subject(s)
Anti-Bacterial Agents , Oxazolidinones , Animals , Swine , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Lactococcus/genetics , Enterococcus faecalis , Genes, Bacterial/genetics , Microbial Sensitivity Tests/veterinary
14.
J Hazard Mater ; 469: 134059, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38503209

ABSTRACT

Heavy metal exposure is closely associated with gut microbe function and tolerance. However, intestinal microbe responses in children to different copper ion (Cu2+) concentrations have not yet been clarified. Here, in vitro cultivation systems were established for fecal microbe control and Cu2+-treated groups in healthy children. 16S rDNA high-throughput sequencing, meta-transcriptomics and metabolomics were used here to identify toxicity resistance mechanisms at microbiome levels. The results showed that Lactobacillus sp. and Lactococcus sp. exerted protective effects against Cu2+ toxicity, but these effects were limited by Cu2+ concentration. When the Cu2+ concentration was ≥ 4 mg/L, the abundance of Lactobacillus sp. and Lactococcus sp. significantly decreased, and the pathways of antioxidant activity and detoxification processes were enriched at 2 mg/L Cu2+, and beneficial metabolites accumulated. However, at high concentrations of Cu2+ (≥4 mg/L), the abundance of potential pathogen increased, and was accompanied by a downregulation of genes in metabolism and detoxification pathways, which meant that the balance of gut microbiota was disrupted and toxicity resistance decreased. From these observations, we identified some probiotics that are tolerant to heavy metal Cu2+, and warn that only when the concentration limit of Cu2+ in food is 2 mg/L, then a balanced gut microbiota can be guaranteed in children, thereby providing protection for their health.


Subject(s)
Lactobacillus , Microbiota , Child , Humans , Lactobacillus/genetics , Copper/toxicity , Lactococcus , Ions
15.
Microbiol Spectr ; 12(4): e0398923, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38451091

ABSTRACT

Bacteria have evolved diverse defense mechanisms to counter bacteriophage attacks. Genetic programs activated upon infection characterize phage-host molecular interactions and ultimately determine the outcome of the infection. In this study, we applied ribosome profiling to monitor protein synthesis during the early stages of sk1 bacteriophage infection in Lactococcus cremoris. Our analysis revealed major changes in gene expression within 5 minutes of sk1 infection. Notably, we observed a specific and severe downregulation of several pyr operons which encode enzymes required for uridine monophosphate biosynthesis. Consistent with previous findings, this is likely an attempt of the host to starve the phage of nucleotides it requires for propagation. We also observed a gene expression response that we expect to benefit the phage. This included the upregulation of 40 ribosome proteins that likely increased the host's translational capacity, concurrent with a downregulation of genes that promote translational fidelity (lepA and raiA). In addition to the characterization of host-phage gene expression responses, the obtained ribosome profiling data enabled us to identify two putative recoding events as well as dozens of loci currently annotated as pseudogenes that are actively translated. Furthermore, our study elucidated alterations in the dynamics of the translation process, as indicated by time-dependent changes in the metagene profile, suggesting global shifts in translation rates upon infection. Additionally, we observed consistent modifications in the ribosome profiles of individual genes, which were apparent as early as 2 minutes post-infection. The study emphasizes our ability to capture rapid alterations of gene expression during phage infection through ribosome profiling. IMPORTANCE: The ribosome profiling technology has provided invaluable insights for understanding cellular translation and eukaryotic viral infections. However, its potential for investigating host-phage interactions remains largely untapped. Here, we applied ribosome profiling to Lactococcus cremoris cultures infected with sk1, a major infectious agent in dairy fermentation processes. This revealed a profound downregulation of genes involved in pyrimidine nucleotide synthesis at an early stage of phage infection, suggesting an anti-phage program aimed at restricting nucleotide availability and, consequently, phage propagation. This is consistent with recent findings and contributes to our growing appreciation for the role of nucleotide limitation as an anti-viral strategy. In addition to capturing rapid alterations in gene expression levels, we identified translation occurring outside annotated regions, as well as signatures of non-standard translation mechanisms. The gene profiles revealed specific changes in ribosomal densities upon infection, reflecting alterations in the dynamics of the translation process.


Subject(s)
Bacteriophages , Lactococcus , Protein Biosynthesis , Ribosome Profiling , Down-Regulation , Bacteriophages/genetics , Bacteriophages/metabolism , RNA, Messenger/metabolism , Nucleotides/metabolism , Uridine Monophosphate/metabolism
16.
J Vet Diagn Invest ; 36(3): 477-480, 2024 May.
Article in English | MEDLINE | ID: mdl-38516722

ABSTRACT

Lactococcus garvieae is the causative agent of lactococcosis in fish and an emerging zoonotic pathogen with high levels of antimicrobial resistance. We report a case of L. garvieae-associated septicemia in a central bearded dragon (Pogona vitticeps) confirmed via whole-blood PCR and direct sequencing. Following a 30-d course of ceftazidime (20 mg/kg IM q72h), the animal's clinical condition had not resolved; leukopenia persisted, with heterophil toxic change. Coelomic ultrasound findings were consistent with preovulatory follicular stasis, folliculitis, and coelomitis. Following surgical ovariectomy and an additional 30-d course of ceftazidime, the animal's behavior and appetite returned to normal, the animal tested negative via whole-blood PCR assay, and the CBC was unremarkable. To our knowledge, L. garvieae with L. garvieae-associated clinical disease has not been reported previously in a bearded dragon. We conclude that L. garvieae should be considered as a possible etiologic agent in cases of septicemia in bearded dragons, with the potential for zoonotic transmission warranting further investigation.


Subject(s)
Gram-Positive Bacterial Infections , Lactococcus , Lizards , Sepsis , Animals , Anti-Bacterial Agents/therapeutic use , Gram-Positive Bacterial Infections/veterinary , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/diagnosis , Lactococcus/isolation & purification , Lizards/microbiology , Sepsis/veterinary , Sepsis/microbiology
17.
World J Microbiol Biotechnol ; 40(4): 132, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38470533

ABSTRACT

Lactococcus garvieae (L. garvieae) is a pathogenic bacterium that is Gram-positive and catalase-negative (GPCN), and it is capable of growing in a wide range of environmental conditions. This bacterium is associated with significant mortality and losses in fisheries, and there are concerns regarding its potential as a zoonotic pathogen, given its presence in cattle and dairy products. While we have identified and characterized virulent strains of L. garvieae through phenotyping and molecular typing studies, their impact on mammary tissue remains unknown. This study aims to investigate the pathogenicity of strong and weak virulent strains of L. garvieae using in vivo mouse models. We aim to establish MAC-T cell model to examine potential injury caused by the strong virulent strain LG41 through the TLR2/NLRP3/NF-kB pathway. Furthermore, we assess the involvement of NLRP3 inflammasome-mediated pyroptosis in dairy mastitis by silencing NLRP3. The outcomes of this study will yield crucial theoretical insights into the potential mechanisms involved in mastitis in cows caused by the L. garvieae-induced inflammatory response in MAC-T cells.


Subject(s)
Inflammasomes , Mastitis , Humans , Female , Animals , Cattle , Mice , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis , T-Lymphocytes/metabolism , Lactococcus/metabolism , Mastitis/microbiology , Mastitis/veterinary , Inflammation
18.
Microb Cell Fact ; 23(1): 40, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38321474

ABSTRACT

BACKGROUND: In recent years, biosafety and green food safety standards have increased the demand for immune enhancers and adjuvants. In the present study, recombinant food-grade Lactococcus lactis (r-L. lactis-Tα1-IFN) expressing thymosin Tα1 and chicken interferon fusion protein was constructed. RESULTS: The in vitro interactions with macrophages revealed a mixture of recombinant r-L. lactis-Tα1-IFN could significantly activate both macrophage J774-Dual™ NF-κB and interferon regulator (IRF) signaling pathways. In vitro interactions with chicken peripheral blood mononuclear cells (PBMCs) demonstrated that a mixture of recombinant r-L. lactis-Tα1-IFN significantly enhanced the expression levels of interferon (IFN)-γ, interleukin (IL)-10, CD80, and CD86 proteins in chicken PBMCs. Animal experiments displayed that injecting a lysis mixture of recombinant r-L. lactis-Tα1-IFN could significantly activate the proliferation of T cells and antigen-presenting cells in chicken PBMCs. Moreover, 16S analysis of intestinal microbiota demonstrated that injection of the lysis mixture of recombinant r-L. lactis-Tα1-IFN could significantly improve the structure and composition of chicken intestinal microbiota, with a significant increase in probiotic genera, such as Lactobacillus spp. Results of animal experiments using the lysis mixture of recombinant r-L. lactis-Tα1-IFN as an immune adjuvant for inactivated chicken Newcastle disease vaccine showed that the serum antibody titers of the experimental group were significantly higher than those of the vaccine control group, and the expression levels of cytokines IFN-γ and IL-2 were significantly higher than those of the vaccine control group. CONCLUSION: These results indicate that food-safe recombinant r-L. lactis-Tα1-IFN has potential as a vaccine immune booster and immune adjuvant. This study lays the foundation for the development of natural green novel animal immune booster or immune adjuvant.


Subject(s)
Lactococcus lactis , Thymosin , Vaccines , Animals , Interferons/metabolism , Lactococcus , Leukocytes, Mononuclear , Adjuvants, Immunologic/metabolism , Recombinant Proteins/metabolism , Thymosin/metabolism , Vaccines/metabolism , Chickens , Lactococcus lactis/metabolism
19.
Microbiol Spectr ; 12(1): e0133423, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38019021

ABSTRACT

IMPORTANCE: Weaning is a crucial step in piglet management to improve pork production. During the weaning phase, disruption of epithelial barrier function and intestinal inflammation can lead to decreased absorption of nutrients and diarrhea. Therefore, maintaining a healthy intestine, epithelial barrier function, and gut microbiota composition in this crucial phase is strategic for optimal weaning in pigs. We isolated a lysate of Lactococcus petauri GB97 (LPL97) from healthy porcine feces and evaluated its anti-inflammatory activities, barrier integrity, and gut microbial changes in LPS-induced murine macrophages and DSS-induced colitis mice. We found that LPL97 regulated the immune response by downregulating the TLR4/NF-κB/MAPK signaling pathway both in vitro and in vivo. Furthermore, LPL97 alleviated the disruption of intestinal epithelial integrity and gut microbiota dysbiosis in colitis mice. This study indicates that LPL97 has the potential to be developed as an alternative feed additive to antibiotics for the swine industry.


Subject(s)
Colitis , Gastrointestinal Microbiome , Lactococcus , Swine , Animals , Mice , Intestinal Barrier Function , Inflammation , Colitis/chemically induced , Feces , Disease Models, Animal
20.
J Biol Chem ; 300(1): 105578, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38110036

ABSTRACT

In Gram-positive bacteria, cell wall polysaccharides (CWPS) play critical roles in bacterial cell wall homeostasis and bacterial interactions with their immediate surroundings. In lactococci, CWPS consist of two components: a conserved rhamnan embedded in the peptidoglycan layer and a surface-exposed polysaccharide pellicle (PSP), which are linked together to form a large rhamnose-rich CWPS (Rha-CWPS). PSP, whose structure varies from strain to strain, is a receptor for many bacteriophages infecting lactococci. Here, we examined the first two steps of PSP biosynthesis, using in vitro enzymatic tests with lipid acceptor substrates combined with LC-MS analysis, AlfaFold2 modeling of protein 3D-structure, complementation experiments, and phage assays. We show that the PSP repeat unit is assembled on an undecaprenyl-monophosphate (C55P) lipid intermediate. Synthesis is initiated by the WpsA/WpsB complex with GlcNAc-P-C55 synthase activity and the PSP precursor GlcNAc-P-C55 is then elongated by specific glycosyltransferases that vary among lactococcal strains, resulting in PSPs with diverse structures. Also, we engineered the PSP biosynthesis pathway in lactococci to obtain a chimeric PSP structure, confirming the predicted glycosyltransferase specificities. This enabled us to highlight the importance of a single sugar residue of the PSP repeat unit in phage recognition. In conclusion, our results support a novel pathway for PSP biosynthesis on a lipid-monophosphate intermediate as an extracellular modification of rhamnan, unveiling an assembly machinery for complex Rha-CWPS with structural diversity in lactococci.


Subject(s)
Cell Wall , Lactococcus , Polysaccharides, Bacterial , Rhamnose , Bacterial Proteins/metabolism , Cell Wall/chemistry , Cell Wall/metabolism , Glycosyltransferases/metabolism , Lactococcus/classification , Lactococcus/cytology , Lactococcus/metabolism , Lactococcus/virology , Lipids , Peptidoglycan/metabolism , Polysaccharides, Bacterial/metabolism , Protein Conformation , Rhamnose/metabolism , Substrate Specificity , Bacteriophages/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...