Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters










Publication year range
1.
Nat Commun ; 11(1): 1203, 2020 03 05.
Article in English | MEDLINE | ID: mdl-32139702

ABSTRACT

Auxotrophy, the inability to produce an organic compound essential for growth, is widespread among bacteria. Auxotrophic bacteria rely on transporters to acquire these compounds from their environment. Here, we study the expression of both low- and high-affinity transporters of the costly amino acid methionine in an auxotrophic lactic acid bacterium, Lactococcus lactis. We show that the high-affinity transporter (Met-transporter) is heterogeneously expressed at low methionine concentrations, resulting in two isogenic subpopulations that sequester methionine in different ways: one subpopulation primarily relies on the high-affinity transporter (high expression of the Met-transporter) and the other subpopulation primarily relies on the low-affinity transporter (low expression of the Met-transporter). The phenotypic heterogeneity is remarkably stable, inherited for tens of generations, and apparent at the colony level. This heterogeneity results from a T-box riboswitch in the promoter region of the met operon encoding the high-affinity Met-transporter. We hypothesize that T-box riboswitches, which are commonly found in the Lactobacillales, may play as-yet unexplored roles in the predominantly auxotrophic lifestyle of these bacteria.


Subject(s)
Lactococcus lactis/genetics , Riboswitch/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Green Fluorescent Proteins/metabolism , Lactococcus lactis/cytology , Membrane Transport Proteins/metabolism , Models, Biological , Operon/genetics , Phenotype , Single-Cell Analysis , Transcription, Genetic
2.
PLoS One ; 13(9): e0203700, 2018.
Article in English | MEDLINE | ID: mdl-30192869

ABSTRACT

Rotaviruses are the primary cause of acute gastroenteritis in children worldwide. Although the implementation of live attenuated vaccines has reduced the number of rotavirus-associated deaths, variance in their effectiveness has been reported in different countries. This fact, among other concerns, leads to continuous efforts for the development of new generation of vaccines against rotavirus.In this work, we describe the obtention of cell wall-derived particles from a recombinant Lactococcus lactis expressing a cell wall-anchored version of the rotavirus VP6 protein. After confirming by SDS-PAGE, Western blot, flow cytometry and electronic immunomicroscopy that these particles were carrying the VP6 protein, their immunogenic potential was evaluated in adult BALB/c mice. For that, mucosal immunizations (oral or intranasal), with or without the dmLT [(double mutant Escherichia coli heat labile toxin LT(R192G/L211A)] adjuvant were performed. The results showed that these cell wall-derived particles were able to generate anti-rotavirus IgG and IgA antibodies only when administered intranasally, whether the adjuvant was present or not. However, the presence of dmLT was necessary to confer protection against rotavirus infection, which was evidenced by a 79.5 percent viral shedding reduction.In summary, this work describes the production of cell wall-derived particles which were able to induce a protective immune response after intranasal immunization. Further studies are needed to characterize the immune response elicited by these particles as well as to determine their potential as an alternative to the use of live L. lactis for mucosal antigen delivery.


Subject(s)
Antigens, Viral/immunology , Capsid Proteins/immunology , Cell Wall/metabolism , Drug Carriers/metabolism , Lactococcus lactis/cytology , Mucous Membrane/metabolism , Rotavirus Infections/prevention & control , Rotavirus/physiology , Animals , Antibody Specificity , Antigens, Viral/metabolism , Capsid Proteins/metabolism , Disease Models, Animal , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Male , Mice , Mice, Inbred BALB C
3.
Nat Chem Biol ; 14(8): 821-829, 2018 08.
Article in English | MEDLINE | ID: mdl-29942078

ABSTRACT

Designer microbial consortia are an emerging frontier in synthetic biology that enable versatile microbiome engineering. However, the utilization of such consortia is hindered by our limited capacity in rapidly creating ecosystems with desired dynamics. Here we present the development of synthetic communities through social interaction engineering that combines modular pathway reconfiguration with model creation. Specifically, we created six two-strain consortia, each possessing a unique mode of interaction, including commensalism, amensalism, neutralism, cooperation, competition and predation. These consortia follow distinct population dynamics with characteristics determined by the underlying interaction modes. We showed that models derived from two-strain consortia can be used to design three- and four-strain ecosystems with predictable behaviors and further extended to provide insights into community dynamics in space. This work sheds light on the organization of interacting microbial species and provides a systematic framework-social interaction programming-to guide the development of synthetic ecosystems for diverse purposes.


Subject(s)
Lactococcus lactis/metabolism , Microbial Consortia , Microbial Interactions , Synthetic Biology , Lactococcus lactis/cytology , Lactococcus lactis/genetics , Microbial Consortia/genetics , Microbial Interactions/genetics , Microbiota/genetics
4.
PLoS One ; 13(5): e0198014, 2018.
Article in English | MEDLINE | ID: mdl-29791496

ABSTRACT

Lactococcus lactis is an ovoid bacterium that forms filaments during planktonic and biofilm lifestyles by uncoupling cell division from cell elongation. In this work, we investigate the role of the leading peptidoglycan synthase PBP2b that is dedicated to cell elongation in ovococci. We show that the localization of a fluorescent derivative of PBP2b remains associated to the septal region and superimposed with structural changes of FtsZ during both vegetative growth and filamentation indicating that PBP2b remains intimately associated to the division machinery during the whole cell cycle. In addition, we show that PBP2b-negative cells of L. lactis are not only defective in peripheral growth; they are also affected in septum positioning. This septation defect does not simply result from the absence of the protein in the cell growth machinery since it is also observed when PBP2b-deficient cells are complemented by a catalytically inactive variant of PBP2b. Finally, we show that round cells resulting from ß-lactam treatment are not altered in septation, suggesting that shape elongation as such is not a major determinant for selection of the division site. Altogether, we propose that the specific PBP2b transpeptidase activity at the septum plays an important role for tagging future division sites during L. lactis cell cycle.


Subject(s)
Lactococcus lactis/cytology , Lactococcus lactis/enzymology , Penicillin-Binding Proteins/metabolism , Cell Division/drug effects , Cell Wall/drug effects , Cell Wall/metabolism , Lactococcus lactis/drug effects , Lactococcus lactis/growth & development , beta-Lactams/pharmacology
5.
Biol Pharm Bull ; 41(2): 190-197, 2018.
Article in English | MEDLINE | ID: mdl-29386479

ABSTRACT

Application of food-grade Lactococcus lactis (L. lactis) as a safe delivery tool for DNA vaccines and therapeutic proteins has been well investigated. Although some studies showed that eukaryotic expression plasmids were transferred from L. lactis to enterocytes, the precise mechanism of the DNA transfer remains unknown. In this study, we generated an invasive L. lactis strain that expresses "murinized" Internalin A, an invasin of intracellular bacteria Listeria monocytogenes with two amino acid alterations for invasion into murine cells, and confirmed that this L. lactis strain delivered DNA in an invasin-dependent manner into a monolayer of epithelial cells polarized to mimic the gastrointestinal tract environment. Although invasive L. lactis inoculated orally can deliver DNA into enterocytes in the gastrointestinal tract of mice, the efficiency of DNA transfer was similar to that of non-invasive L. lactis strain, suggesting that the in vivo DNA transfer from L. lactis occurs invasin-independently. A ligated-intestinal loop assay, a method for a short-term culturing of the whole intestine filled with materials to evaluate the interaction of the materials with intestinal cells, demonstrated that both non-invasive and invasive L. lactis strains were present in the Peyer's patches of the small intestine. On the other hand, few L. lactis was detected in the non-Peyer's patch epithelial region. Thus, our observations lead us to speculate that DNA transfer from L. lactis occurs predominantly in the Peyer's patches in an invasin-independent manner.


Subject(s)
Bacterial Proteins/metabolism , DNA, Recombinant/metabolism , Drug Delivery Systems , Lactococcus lactis/physiology , Microorganisms, Genetically-Modified/physiology , Peyer's Patches/metabolism , Vaccines, DNA/metabolism , Administration, Oral , Animals , Bacterial Proteins/administration & dosage , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Translocation , Biological Transport , Caco-2 Cells , Cell Line , Cell Polarity , DNA, Recombinant/administration & dosage , Female , Food Microbiology , Humans , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Intestine, Small/cytology , Intestine, Small/metabolism , Intestine, Small/microbiology , Lactococcus lactis/cytology , Lactococcus lactis/genetics , Listeria monocytogenes/cytology , Listeria monocytogenes/genetics , Listeria monocytogenes/physiology , Mice , Mice, Inbred C57BL , Microorganisms, Genetically-Modified/cytology , Microorganisms, Genetically-Modified/genetics , Peyer's Patches/cytology , Peyer's Patches/microbiology , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/metabolism , Vaccines, DNA/administration & dosage
6.
Anal Bioanal Chem ; 410(3): 943-952, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28852794

ABSTRACT

The aim of the study was to neutralize zearalenone by lactic acid bacteria (LAB) such as Lactococcus lactis and Bifidobacterium sp. and investigate the mechanism of zearalenone (ZEA) binding. Neutralization of ZEA by LAB was confirmed by identification of binding kinetics and spectroscopic studies such as Fourier transform infrared spectroscopy (FT-IR) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The obtained results showed that the kinetic process of zearalenone binding to L. lactis is not homogeneous but is expressed with an initial rapid stage with about 90% of ZEA biosorption and with a much slower second step. In case of Bifidobacterium sp., the neutralization process is homogeneous; the main stage can be described with about 88% of ZEA biosorption. MALDI-TOF-MS measurements and FTIR analysis confirmed the uptake of zearalenone molecules by bacterial species. Moreover, the assessment of dead and live lactic acid bacteria cells after zearalenone treatment was performed using fluorescence microscopy. Graphical abstract Microbiology neutralization of zearalenone using Lactococcus lactis and Bifidobacterium sp. was confirmed by identification of binding kinetics and spectroscopic studies such as FT-IR spectroscopy and MALDI-TOF-MS spectrometry. The mechanism of ZEA binding was also investigated.


Subject(s)
Bifidobacterium/metabolism , Lactococcus lactis/metabolism , Zearalenone/metabolism , Adsorption , Bifidobacterium/cytology , Lactococcus lactis/cytology , Microbial Viability , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectroscopy, Fourier Transform Infrared
7.
Appl Microbiol Biotechnol ; 100(13): 5965-76, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27020293

ABSTRACT

In this study, we investigated the influence of three extracellular pH (pHex) values (i.e., 5.5, 6.5, and 7.5) on the growth, viability, cell size, acidification activity in milk, and intracellular pH (pHi) of Lactococcus lactis subsp. lactis DGCC1212 during pH-controlled batch fermentations. A universal parameter (e.g., linked to pHi) for the description or prediction of viability, specific acidification activity, or growth behavior at a given pHex was not identified. We found viability as determined by flow cytometry to remain high during all growth phases and irrespectively of the pH set point. Furthermore, regardless of the pHex, the acidification activity per cell decreased over time which seemed to be linked to cell shrinkage. Flow cytometric pHi determination demonstrated an increase of the averaged pHi level for higher pH set points, while the pH gradient (pHi-pHex) and the extent of pHi heterogeneity decreased. Cells maintained positive pH gradients at a low pHex of 5.5 and even during substrate limitation at the more widely used pHex 6.5. Moreover, the strain proved able to grow despite small negative or even absent pH gradients at a high pHex of 7.5. The larger pHi heterogeneity at pHex 5.5 and 6.5 was associated with more stressful conditions resulting, e.g., from higher concentrations of non-dissociated lactic acid, while the low pHi heterogeneity at pHex 7.5 most probably corresponded to lower concentrations of non-dissociated lactic acid which facilitated the cells to reach the highest maximum active cell counts of the three pH set points.


Subject(s)
Lactococcus lactis/growth & development , Lactococcus lactis/metabolism , Acids/metabolism , Animals , Cattle , Culture Media/chemistry , Culture Media/metabolism , Fermentation , Flow Cytometry , Hydrogen-Ion Concentration , Lactic Acid/metabolism , Lactococcus lactis/cytology , Microbial Viability , Milk/chemistry , Milk/metabolism
8.
PLoS One ; 11(3): e0152053, 2016.
Article in English | MEDLINE | ID: mdl-27010408

ABSTRACT

Pili produced by Lactococcus lactis subsp. lactis are putative linear structures consisting of repetitive subunits of the major pilin PilB that forms the backbone, pilin PilA situated at the distal end of the pilus, and an anchoring pilin PilC that tethers the pilus to the peptidoglycan. We determined the nanomechanical properties of pili using optical-tweezers force spectroscopy. Single pili were exposed to optical forces that yielded force-versus-extension spectra fitted using the Worm-Like Chain model. Native pili subjected to a force of 0-200 pN exhibit an inextensible, but highly flexible ultrastructure, reflected by their short persistence length. We tested a panel of derived strains to understand the functional role of the different pilins. First, we found that both the major pilin PilB and sortase C organize the backbone into a full-length organelle and dictate the nanomechanical properties of the pili. Second, we found that both PilA tip pilin and PilC anchoring pilin were not essential for the nanomechanical properties of pili. However, PilC maintains the pilus on the bacterial surface and may play a crucial role in the adhesion- and biofilm-forming properties of L. lactis.


Subject(s)
Fimbriae Proteins/metabolism , Fimbriae, Bacterial/metabolism , Lactococcus lactis/cytology , Lactococcus lactis/metabolism , Aminoacyltransferases/metabolism , Bacterial Proteins/metabolism , Biomechanical Phenomena , Cysteine Endopeptidases/metabolism , Models, Biological , Polymerization
9.
Ultrason Sonochem ; 29: 163-71, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26584994

ABSTRACT

X-prolyl dipeptidyl aminopeptidase (PepX) is an intracellular enzyme from the Gram-positive bacterium Lactococcus lactis spp. lactis NRRL B-1821, and it has commercial importance. The objective of this study was to compare the effects of several cell disruption methods on the activity of PepX. Statistical optimization methods were performed for two cavitation methods, hydrodynamic (high-pressure homogenization) and acoustic (sonication), to determine the more appropriate disruption method. Two level factorial design (2FI), with the parameters of number of cycles and pressure, and Box-Behnken design (BBD), with the parameters of cycle, sonication time, and power, were used for the optimization of the high-pressure homogenization and sonication methods, respectively. In addition, disruption methods, consisting of lysozyme, bead milling, heat treatment, freeze-thawing, liquid nitrogen, ethylenediaminetetraacetic acid (EDTA), Triton-X, sodium dodecyl sulfate (SDS), chloroform, and antibiotics, were performed and compared with the high-pressure homogenization and sonication methods. The optimized values of high-pressure homogenization were one cycle at 130 MPa providing activity of 114.47 mU ml(-1), while sonication afforded an activity of 145.09 mU ml(-1) at 28 min with 91% power and three cycles. In conclusion, sonication was the more effective disruption method, and its optimal operation parameters were manifested for the release of intracellular enzyme from a L. lactis spp. lactis strain, which is a Gram-positive bacterium.


Subject(s)
Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Intracellular Space/enzymology , Lactococcus lactis/cytology , Statistics as Topic , Hydrodynamics , Lactococcus lactis/enzymology , Mechanical Phenomena , Pressure , Sonication
10.
Appl Microbiol Biotechnol ; 99(2): 907-18, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25343977

ABSTRACT

This work aimed at characterizing the biochemical and biophysical properties of the membrane of Lactococcus lactis TOMSC161 cells during fermentation at different temperatures, in relation to their freeze-drying and storage resistance. Cells were cultivated at two different temperatures (22 and 30 °C) and were harvested at different growth phases (from the middle exponential phase to the late stationary phase). Bacterial membranes were characterized by determining the fatty acid composition, the lipid phase transition, and the membrane fluidity. Cultivability and acidification activity losses of L. lactis were quantified after freezing, drying, and 3 months of storage. The direct measurement of membrane fluidity by fluorescence anisotropy was linked to lipid composition, and it was established that the cyclopropanation of unsaturated fatty acids with concomitant membrane rigidification during growth led to an increase in the freeze-drying and storage resistance of L. lactis. As expected, cultivating cells at a lower fermentation temperature than the optimum growth temperature induced a homeoviscous adaptation that was demonstrated by a lowered lipid phase transition temperature but that was not related to any improvement in freeze-drying resistance. L. lactis TOMSC161 was therefore able to develop a combined biochemical and biophysical response at the membrane level during fermentation. The ratio of cyclic fatty acids to unsaturated fatty acids (CFA/UFA) appeared to be the most relevant parameter associated with membrane rigidification and cell resistance to freeze-drying and storage. This study increased our knowledge about the physiological mechanisms that explain the resistance of lactic acid bacteria (LAB) to freeze-drying and storage stresses and demonstrated the relevance of complementary methods of membrane characterization.


Subject(s)
Cell Membrane/chemistry , Fatty Acids, Unsaturated/chemistry , Freeze Drying/methods , Lactococcus lactis/cytology , Cold Temperature , Desiccation , Fermentation , Membrane Fluidity , Phase Transition , Spectroscopy, Fourier Transform Infrared , Water/chemistry
11.
PLoS One ; 9(12): e114280, 2014.
Article in English | MEDLINE | ID: mdl-25503474

ABSTRACT

Recent evidences highlighted the presence of Lactococcus lactis during late cheese ripening. For this reason, the role of this microorganism, well known as dairy starter, should be reconsidered throughout cheese manufacturing and ripening. Thus, the main objective of this study was to develop a RT-qPCR protocol for the detection, quantification and determination of the viability of L. lactis in ripened cheese samples by direct analysis of microbial nucleic acids. Standard curves were constructed for the specific quantification of L. lactis in cheese matrices and good results in terms of selectivity, correlation coefficient and efficiency were obtained. Thirty-three ripened cheeses were analyzed and, on the basis of RNA analysis, twelve samples showed 106 to 108 CFU of L. lactis per gram of product, thirteen from 103 to 105 CFU/g, and in eight cheeses, L. lactis was not detected. Traditional plating on M17 medium led to loads ranging from 105 to 109 CFU/g, including the cheese samples where no L. lactis was found by RT-qPCR. From these cheeses, none of the colonies isolated on M17 medium was identified as L. lactis species. These data could be interpreted as a lack of selectivity of M17 medium where colony growth is not always related to lactococcal species. At the same time, the absence or low abundance of L. lactis isolates on M17 medium from cheese where L. lactis was detected by RT-qPCR support the hypothesis that L. lactis starter populations are mainly present in viable but not culturable state during ripening and, for this reason, culture-dependent methods have to be supplemented with direct analysis of cheese.


Subject(s)
Cheese/microbiology , Food Analysis , Lactococcus lactis/cytology , Colony Count, Microbial , Lactococcus lactis/genetics , Real-Time Polymerase Chain Reaction
12.
mBio ; 5(4): e01363-14, 2014 Jul 22.
Article in English | MEDLINE | ID: mdl-25053785

ABSTRACT

Microbial cells sense and respond to their environment using their surface constituents. Therefore, understanding the assembly and biophysical properties of cell surface molecules is an important research topic. With its ability to observe living microbial cells at nanometer resolution and to manipulate single-cell surface molecules, atomic force microscopy (AFM) has emerged as a powerful tool in microbiology. Here, we survey major breakthroughs made in cell surface microbiology using AFM techniques, emphasizing the most recent structural and functional insights.


Subject(s)
Microscopy, Atomic Force/methods , Aspergillus fumigatus/cytology , Bacteria/cytology , Candida albicans/cytology , Corynebacterium glutamicum/cytology , Lacticaseibacillus rhamnosus/cytology , Lactococcus lactis/cytology
13.
J Ind Microbiol Biotechnol ; 41(3): 535-43, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24342966

ABSTRACT

The limiting factors in the continuous production of nisin are high amount of biomass loss and low dilution rate application. In this study, a chitin-including continuous nisin fermentation system (CICON-FER) was constructed for high volumetric nisin production using nisin producer L. lactis displaying cell wall chitin-binding domain (ChBD) together with chitin in the reactor. In this respect, the highest binding conditions of relevant L. lactis cells to chitin were determined. Then the chitin flakes carrying nisin-producing L. lactis cells were used within the CICON-FER system at different dilution rates (0.1-0.9 h⁻¹) and initial glucose concentrations (20-60 g l⁻¹). The results revealed that the pH 7 conditions and the use of 100 mM sodium phosphate buffer with 0.1 % Tween 20 and Triton X-100 significantly increased the binding capacity of ChBD displaying L. lactis cells to chitin. The constructed CICON-FER system maintained the presence of the ChBD surface displaying L. lactis cells in the reactor system until 0.9 h⁻¹ dilution rate that resulted in a considerably high level of volumetric nisin production and productivity (10,500 IU ml⁻¹ and 9,450 IU ml⁻¹ h⁻¹, respectively) with the combination of a 0.9-h⁻¹ dilution rate and a 40-g l⁻¹ initial glucose concentration. In conclusion, an innovative nisin fermentation system that yielded the highest nisin production thus far and that was feasible for industrial application was created.


Subject(s)
Industrial Microbiology , Lactococcus lactis/cytology , Lactococcus lactis/metabolism , Nisin/metabolism , Cell Wall/metabolism , Chitin/metabolism , Fermentation , Hydrogen-Ion Concentration , Octoxynol/metabolism
14.
PLoS One ; 8(8): e72167, 2013.
Article in English | MEDLINE | ID: mdl-23951292

ABSTRACT

Lactococcus lactis expresses the homologous glucosaminidases AcmB, AcmC, AcmA and AcmD. The latter two have three C-terminal LysM repeats for peptidoglycan binding. AcmD has much shorter intervening sequences separating the LysM repeats and a lower iso-electric point (4.3) than AcmA (10.3). Under standard laboratory conditions AcmD was mainly secreted into the culture supernatant. An L. lactis acmAacmD double mutant formed longer chains than the acmA single mutant, indicating that AcmD contributes to cell separation. This phenotype could be complemented by plasmid-encoded expression of AcmD in the double mutant. No clear difference in cellular lysis and protein secretion was observed between both mutants. Nevertheless, overexpression of AcmD resulted in increased autolysis when AcmA was present (as in the wild type strain) or when AcmA was added to the culture medium of an AcmA-minus strain. Possibly, AcmD is mainly active within the cell wall, at places where proper conditions are present for its binding and catalytic activity. Various fusion proteins carrying either the three LysM repeats of AcmA or AcmD were used to study and compare their cell wall binding characteristics. Whereas binding of the LysM domain of AcmA took place at pHs ranging from 4 to 8, LysM domain of AcmD seems to bind strongest at pH 4.


Subject(s)
Bacterial Proteins/metabolism , Glycoside Hydrolases/metabolism , Lactococcus lactis/cytology , Lactococcus lactis/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacteriolysis , Cell Wall/metabolism , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/genetics , Hexosaminidases/chemistry , Hexosaminidases/genetics , Hexosaminidases/metabolism , Lactococcus lactis/chemistry , Lactococcus lactis/genetics , Mutation , Peptidoglycan/metabolism , Protein Binding , Protein Structure, Tertiary
15.
Colloids Surf B Biointerfaces ; 109: 266-72, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23665092

ABSTRACT

This study aimed to entrap bioprotective lactic acid bacteria in a sodium caseinate/sodium alginate aqueous two-phase system. Phase diagram at pH=7 showed that sodium alginate and sodium caseinate were not miscible when their concentrations exceeded 1% (w/w) and 6% (w/w), respectively. The stability of the caseinate/alginate two-phase system was also checked at pH values of 6.0 and 5.5. Lactococcus lactis subsp. lactis LAB3 cells were added in a 4% (w/w) caseinate/1.5% (w/w) alginate two-phase system at pH=7. Fluorescence microscopy allowed to observe that the caseinate-rich phase formed droplets dispersed in a continuous alginate-rich phase. The distribution of bacteria in such a system was observed by epifluorescence microscopy: Lc. lactis LAB3 cells stained with Live/Dead(®) Baclight kit™ were located exclusively in the protein phase. Since zeta-potential measurements indicated that alginate, caseinate and bacterial cells all had an overall negative charge at pH 7, the preferential adhesion of LAB cells was assumed to be driven by hydrophobic effect or by depletion phenomena in such biopolymeric systems. Moreover, LAB cells viability was significantly higher in the ternary mixture obtained in the presence of both caseinate and alginate than in single alginate solution. Caseinate/alginate phase separated systems appeared thus well suited for Lc. lactis LAB3 cells entrapment.


Subject(s)
Alginates/chemistry , Caseins/chemistry , Cell Separation/methods , Lactococcus lactis/cytology , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Hydrogen-Ion Concentration
16.
J Nanobiotechnology ; 11: 12, 2013 Apr 10.
Article in English | MEDLINE | ID: mdl-23575419

ABSTRACT

BACKGROUND: Controlled restriction of cellular movement using microfluidics allows one to study individual cells to gain insight into aspects of their physiology and behaviour. For example, the use of micron-sized growth channels that confine individual Escherichia coli has yielded novel insights into cell growth and death. To extend this approach to other species of bacteria, many of whom have dimensions in the sub-micron range, or to a larger range of growth conditions, a readily-fabricated device containing sub-micron features is required. RESULTS: Here we detail the fabrication of a versatile device with growth channels whose widths range from 0.3 µm to 0.8 µm. The device is fabricated using electron beam lithography, which provides excellent control over the shape and size of different growth channels and facilitates the rapid-prototyping of new designs. Features are successfully transferred first into silicon, and subsequently into the polydimethylsiloxane that forms the basis of the working microfluidic device. We demonstrate that the growth of sub-micron scale bacteria such as Lactococcus lactis or Escherichia coli cultured in minimal medium can be followed in such a device over several generations. CONCLUSIONS: We have presented a detailed protocol based on electron beam fabrication together with specific dry etching procedures for the fabrication of a microfluidic device suited to study submicron-sized bacteria. We have demonstrated that both Gram-positive and Gram-negative bacteria can be successfully loaded and imaged over a number of generations in this device. Similar devices could potentially be used to study other submicron-sized organisms under conditions in which the height and shape of the growth channels are crucial to the experimental design.


Subject(s)
Electrons , Escherichia coli/cytology , Lactococcus lactis/cytology , Microfluidic Analytical Techniques/instrumentation , Microtechnology/instrumentation , Dimethylpolysiloxanes , Escherichia coli/growth & development , Fluorescent Dyes/metabolism , Gold , Kymography , Lactococcus lactis/growth & development , Microscopy, Electron, Scanning , Silicon , Time Factors
17.
Bioprocess Biosyst Eng ; 36(4): 489-97, 2013 Apr.
Article in English | MEDLINE | ID: mdl-22903573

ABSTRACT

Bifidobacterium longum NRRL B-41409 L-arabinose isomerase (L-AI) was overexpressed in Lactococcus lactis using a phosphate depletion inducible expression system. The resting L. lactis cells harboring the B. longum L-AI were used for production of D-tagatose from D-galactose in the presence of borate buffer. Multivariable analysis suggested that high pH, temperature and borate concentration favoured the conversion of D-galactose to D-tagatose. Almost quantitative conversion (92 %) was achieved at 20 g L⁻¹ substrate and at 37.5 °C after 5 days. The D-tagatose production rate of 185 g L⁻¹ day ⁻¹ was obtained at 300 g L⁻¹ galactose, at 1.15 M borate, and at 41 °C during 10 days when the production medium was changed every 24 h. There was no significant loss in productivity during ten sequential 24 h batches. The initial D-tagatose production rate was 290 g L⁻¹ day⁻¹ under these conditions.


Subject(s)
Aldose-Ketose Isomerases/metabolism , Bifidobacterium/enzymology , Hexoses/biosynthesis , Lactococcus lactis/metabolism , Aldose-Ketose Isomerases/genetics , Bifidobacterium/genetics , Bioreactors/microbiology , Biotechnology , Borates , Buffers , Enzymes, Immobilized/genetics , Enzymes, Immobilized/metabolism , Galactose/metabolism , Genes, Bacterial , Kinetics , Lactococcus lactis/cytology , Lactococcus lactis/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Resting Phase, Cell Cycle
18.
Chembiochem ; 13(16): 2433-8, 2012 Nov 05.
Article in English | MEDLINE | ID: mdl-23070977

ABSTRACT

The nisin leader is believed to be crucial for nisin biosynthesis. Here, by using a construct completely lacking the leader peptide, we show that an up to fivefold-dehydrated leaderless prenisin can be obtained, as judged by MALDI-TOF MS, and that some of these species are biologically active, thus suggesting that at least three lanthionine rings are present. Notably, by expressing the leader peptide in trans together with the leaderless prenisin, we were able to increase the dehydration/cyclization efficiency of both NisB and NisC, but still with limited efficiency until the fifth dehydratable residue (Thr13) was processed, thereby enabling three rings to form. This, for the first time, demonstrates that 1) the leader is not absolutely necessary for the dehydration reaction of class I lantibiotics to occur in vivo; 2) the leader acts in trans in vivo; 3) the leader increases the efficiency of modification. Based on previous work and our current study, a model for the interactions of NisB and NisC with prenisin is proposed, in which the leader induces a more active conformation and/or productive complex formation of the biosynthetic machinery, and, when covalently bound, is involved in increasing the efficiency of dehydration to the C-terminal end of the prenisin substrate molecule.


Subject(s)
Nisin/biosynthesis , Lactococcus lactis/chemistry , Lactococcus lactis/cytology , Lactococcus lactis/metabolism , Nisin/chemistry , Nisin/isolation & purification , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
19.
ACS Chem Biol ; 7(11): 1791-5, 2012 Nov 16.
Article in English | MEDLINE | ID: mdl-22920239

ABSTRACT

Lantibiotics are ribosomally synthesized and post-translationally modified peptide natural products that contain the thioether structures lanthionine and methyllanthionine and exert potent antimicrobial activity against Gram-positive bacteria. At present, detailed modes-of-action are only known for a small subset of family members. Lacticin 481, a tricyclic lantibiotic, contains a lipid II binding motif present in related compounds such as mersacidin and nukacin ISK-1. Here, we show that lacticin 481 inhibits PBP1b-catalyzed peptidoglycan formation. Furthermore, we show that changes in potency of analogues of lacticin 481 containing non-proteinogenic amino acids correlate positively with the potency of inhibition of the transglycosylase activity of PBP1b. Thus, lipid II is the likely target of lacticin 481, and use of non-proteinogenic amino acids resulted in stronger inhibition of the target. Additionally, we demonstrate that lacticin 481 does not form pores in the membranes of susceptible bacteria, a common mode-of-action of other lantibiotics.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteriocins/pharmacology , Escherichia coli Proteins/metabolism , Escherichia coli/drug effects , Penicillin-Binding Proteins/metabolism , Peptidoglycan Glycosyltransferase/metabolism , Peptidoglycan/metabolism , Serine-Type D-Ala-D-Ala Carboxypeptidase/metabolism , Amino Acid Sequence , Anti-Bacterial Agents/chemistry , Bacillus subtilis/cytology , Bacillus subtilis/drug effects , Bacteriocins/chemistry , Escherichia coli/metabolism , Escherichia coli Infections/drug therapy , Glycosylation/drug effects , Humans , Lactococcus lactis/chemistry , Lactococcus lactis/cytology , Lactococcus lactis/drug effects , Molecular Sequence Data , Permeability/drug effects
20.
PLoS One ; 7(4): e36296, 2012.
Article in English | MEDLINE | ID: mdl-22558426

ABSTRACT

Lactococcus lactis is a well-studied bacterium widely used in dairy fermentation and capable of producing metabolites with organoleptic and nutritional characteristics. For fine tuning of the distribution of glycolytic flux at the pyruvate branch from lactate to diacetyl and balancing the production of the two metabolites under aerobic conditions, a constitutive promoter library was constructed by randomizing the promoter sequence of the H(2)O-forming NADH oxidase gene in L. lactis. The library consisted of 30 promoters covering a wide range of activities from 7,000 to 380,000 relative fluorescence units using a green fluorescent protein as reporter. Eleven typical promoters of the library were selected for the constitutive expression of the H(2)O-forming NADH oxidase gene in L. lactis, and the NADH oxidase activity increased from 9.43 to 58.17-fold of the wild-type strain in small steps of activity change under aerobic conditions. Meanwhile, the lactate yield decreased from 21.15 ± 0.08 mM to 9.94 ± 0.07 mM, and the corresponding diacetyl production increased from 1.07 ± 0.03 mM to 4.16 ± 0.06 mM with the intracellular NADH/NAD(+) ratios varying from 0.711 ± 0.005 to 0.383 ± 0.003. The results indicated that the reduced pyruvate to lactate flux was rerouted to the diacetyl with an almost linear flux variation via altered NADH/NAD(+) ratios. Therefore, we provided a novel strategy to precisely control the pyruvate distribution for fine tuning of the lactate and diacetyl production through promoter engineering in L. lactis. Interestingly, the increased H(2)O-forming NADH oxidase activity led to 76.95% lower H(2)O(2) concentration in the recombinant strain than that of the wild-type strain after 24 h of aerated cultivation. The viable cells were significantly elevated by four orders of magnitude within 28 days of storage at 4°C, suggesting that the increased enzyme activity could eliminate H(2)O(2) accumulation and prolong cell survival.


Subject(s)
Diacetyl/metabolism , Genetic Engineering/methods , Lactic Acid/biosynthesis , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Promoter Regions, Genetic/genetics , Base Sequence , Cell Survival , Hydrogen Peroxide/metabolism , Intracellular Space/metabolism , Lactococcus lactis/cytology , Molecular Sequence Data , Multienzyme Complexes/genetics , Multienzyme Complexes/metabolism , NAD/metabolism , NADH, NADPH Oxidoreductases/genetics , NADH, NADPH Oxidoreductases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...