Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.466
Filter
1.
World J Microbiol Biotechnol ; 40(7): 199, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727988

ABSTRACT

Glucagon-like peptide-1(GLP-1) is an incretin hormone secreted primarily from the intestinal L-cells in response to meals. GLP-1 is a key regulator of energy metabolism and food intake. It has been proven that P9 protein from A. muciniphila could increase GLP-1 release and improve glucose homeostasis in HFD-induced mice. To obtain an engineered Lactococcus lactis which produced P9 protein, mature polypeptide chain of P9 was codon-optimized, fused with N-terminal signal peptide Usp45, and expressed in L. lactis NZ9000. Heterologous secretion of P9 by recombinant L. lactis NZP9 were successfully detected by SDS-PAGE and western blotting. Notably, the supernatant of L. lactis NZP9 stimulated GLP-1 production of NCI-H716 cells. The relative expression level of GLP-1 biosynthesis gene GCG and PCSK1 were upregulated by 1.63 and 1.53 folds, respectively. To our knowledge, this is the first report on the secretory expression of carboxyl-terminal processing protease P9 from A. muciniphila in L. lactis. Our results suggest that genetically engineered L. lactis which expressed P9 may have therapeutic potential for the treatment of diabetes, obesity and other metabolic disorders.


Subject(s)
Akkermansia , Glucagon-Like Peptide 1 , Lactococcus lactis , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 1/genetics , Akkermansia/genetics , Akkermansia/metabolism , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Humans , L Cells , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Animals , Mice , Cell Line , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
2.
Microb Biotechnol ; 17(5): e14421, 2024 May.
Article in English | MEDLINE | ID: mdl-38752994

ABSTRACT

The distinct conjugation machineries encoded by plasmids pNP40 and pUC11B represent the most prevalent plasmid transfer systems among lactococcal strains. In the current study, we identified genetic determinants that underpin pNP40- and pUC11B-mediated, high-frequency mobilisation of other, non-conjugative plasmids. The mobilisation frequencies of the smaller, non-conjugative plasmids and the minimal sequences required for their mobilisation were determined, owing to the determination of the oriT sequences of both pNP40 and pUC11B, which allowed the identification of similar sequences in some of the non-conjugative plasmids that were shown to promote their mobilisation. Furthermore, the auxiliary gene mobC, two distinct functional homologues of which are present in several plasmids harboured by the pNP40- and pUC11B-carrying host strains, was observed to confer a high-frequency mobilisation phenotype. These findings provide mechanistic insights into how lactococcal conjugative plasmids achieve conjugation and promote mobilisation of non-conjugative plasmids. Ultimately, these insights would be harnessed to optimise conjugation and mobilisation strategies for the rapid and predictable development of robust and technologically improved strains.


Subject(s)
Conjugation, Genetic , Gene Transfer, Horizontal , Plasmids , Plasmids/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Lactococcus lactis/genetics
3.
Nat Commun ; 15(1): 3955, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729929

ABSTRACT

Widespread manganese-sensing transcriptional riboswitches effect the dependable gene regulation needed for bacterial manganese homeostasis in changing environments. Riboswitches - like most structured RNAs - are believed to fold co-transcriptionally, subject to both ligand binding and transcription events; yet how these processes are orchestrated for robust regulation is poorly understood. Through a combination of single-molecule and bulk approaches, we discover how a single Mn2+ ion and the transcribing RNA polymerase (RNAP), paused immediately downstream by a DNA template sequence, are coordinated by the bridging switch helix P1.1 in the representative Lactococcus lactis riboswitch. This coordination achieves a heretofore-overlooked semi-docked global conformation of the nascent RNA, P1.1 base pair stabilization, transcription factor NusA ejection, and RNAP pause extension, thereby enforcing transcription readthrough. Our work demonstrates how a central, adaptable RNA helix functions analogous to a molecular fulcrum of a first-class lever system to integrate disparate signals for finely balanced gene expression control.


Subject(s)
DNA-Directed RNA Polymerases , Gene Expression Regulation, Bacterial , Lactococcus lactis , Nucleic Acid Conformation , RNA, Bacterial , Riboswitch , Transcription, Genetic , Riboswitch/genetics , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , DNA-Directed RNA Polymerases/metabolism , DNA-Directed RNA Polymerases/genetics , RNA, Bacterial/metabolism , RNA, Bacterial/genetics , RNA, Bacterial/chemistry , Manganese/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Single Molecule Imaging
4.
Gut Microbes ; 16(1): 2337317, 2024.
Article in English | MEDLINE | ID: mdl-38619316

ABSTRACT

The diet during pregnancy, or antenatal diet, influences the offspring's intestinal health. We previously showed that antenatal butyrate supplementation reduces injury in adult murine offspring with dextran sulfate sodium (DSS)-induced colitis. Potential modulators of butyrate levels in the intestine include a high fiber diet or dietary supplementation with probiotics. To test this, we supplemented the diet of pregnant mice with high fiber, or with the probiotic bacteria Lactococcus lactis subspecies cremoris or Lactobacillus rhamnosus GG. We then induced chronic colitis with DSS in their adult offspring. We demonstrate that a high fiber antenatal diet, or supplementation with Lactococcus lactis subspecies cremoris during pregnancy diminished the injury from DSS-induced colitis in offspring. These data are evidence that antenatal dietary interventions impact offspring gut health and define the antenatal diet as a therapeutic modality to enhance offspring intestinal health.


Subject(s)
Colitis , Gastrointestinal Microbiome , Lactococcus lactis , Lactococcus , Female , Pregnancy , Animals , Mice , Lactococcus lactis/genetics , Dietary Supplements , Butyrates
5.
Fish Shellfish Immunol ; 149: 109572, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636739

ABSTRACT

Streptococcosis outbreaks caused by Streptococcus agalactiae infection in tilapia aquaculture have been consistently reported and associated with high mortality and morbidity leading to significant economic losses. Existing vaccine candidates against Streptococcus spp. are designed for intraperitoneal injections that are not practical and labor-intensive which have prompted farmers to protect aquatic animals with antibiotics, thus encouraging the emergence of multidrug resistant bacteria. In this study, a live recombinant L. lactis vaccine expressing a 1403 bp surface immunogenic protein (SIP) and a 1100 bp truncated SIP (tSIP) gene was developed and evaluated against S. agalactiae infection in tilapia. Both SIP and tSIP sequences were cloned and transformed into L. lactis. The recombinant L.lactis vaccine was orally administered to juvenile tilapia for a month. Detection of SIP-specific serum IgM in vaccinated groups compared to control groups indicated that recombinant proteins expressed from L. lactis could elicit immunogenic reactions in tilapia. Fish immunized with the tSIP vaccine also showed the highest level of protection compared to other test groups, and the mortality rate was significantly reduced compared to both control groups. The relative percentage of survival (RPS) against S. agalactiae for both SIP and tSIP-vaccinated groups was 50 % and 89 %, respectively, at 14 days post-challenge. Significant up-regulation of IgM, IL-1ß, IL-10, TNF-α and IFN-γ were observed at day 34 between the vaccinated and control groups. These results indicated that the recombinant lactococcal tSIP vaccine can elicit both cell-mediated and humoral responses and is recommended as a potential oral vaccine against S. agalactiae infection. Future work will include further in vivo challenge assessments of this vaccine candidate fused with adjuvants to boost immunogenicity levels in tilapia.


Subject(s)
Cichlids , Fish Diseases , Streptococcal Infections , Streptococcus agalactiae , Animals , Streptococcus agalactiae/immunology , Streptococcal Infections/veterinary , Streptococcal Infections/prevention & control , Streptococcal Infections/immunology , Fish Diseases/prevention & control , Fish Diseases/immunology , Cichlids/immunology , Administration, Oral , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Streptococcal Vaccines/immunology , Streptococcal Vaccines/administration & dosage , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage , Lactococcus lactis/genetics , Lactococcus lactis/immunology , Bacterial Proteins/immunology , Bacterial Proteins/genetics
6.
Appl Environ Microbiol ; 90(5): e0041424, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38563750

ABSTRACT

Lactococcus lactis, a lactic acid bacterium used in food fermentations and commonly found in the human gut, is known to possess a fermentative metabolism. L. lactis, however, has been demonstrated to transfer metabolically generated electrons to external electron acceptors, a process termed extracellular electron transfer (EET). Here, we investigated an L. lactis mutant with an unusually high capacity for EET that was obtained in an adaptive laboratory evolution (ALE) experiment. First, we investigated how global gene expression had changed, and found that amino acid metabolism and nucleotide metabolism had been affected significantly. One of the most significantly upregulated genes encoded the NADH dehydrogenase NoxB. We found that this upregulation was due to a mutation in the promoter region of NoxB, which abolished carbon catabolite repression. A unique role of NoxB in EET could be attributed and it was directly verified, for the first time, that NoxB could support respiration in L. lactis. NoxB, was shown to be a novel type-II NADH dehydrogenase that is widely distributed among gut microorganisms. This work expands our understanding of EET in Gram-positive electroactive microorganisms and the special significance of a novel type-II NADH dehydrogenase in EET.IMPORTANCEElectroactive microorganisms with extracellular electron transfer (EET) ability play important roles in biotechnology and ecosystems. To date, there have been many investigations aiming at elucidating the mechanisms behind EET, and determining the relevance of EET for microorganisms in different niches. However, how EET can be enhanced and harnessed for biotechnological applications has been less explored. Here, we compare the transcriptomes of an EET-enhanced L. lactis mutant with its parent and elucidate the underlying reason for its superior performance. We find that one of the most significantly upregulated genes is the gene encoding the NADH dehydrogenase NoxB, and that upregulation is due to a mutation in the catabolite-responsive element that abolishes carbon catabolite repression. We demonstrate that NoxB has a special role in EET, and furthermore show that it supports respiration to oxygen, which has never been done previously. In addition, a search reveals that this novel NoxB-type NADH dehydrogenase is widely distributed among gut microorganisms.


Subject(s)
Bacterial Proteins , Lactococcus lactis , NADH Dehydrogenase , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Lactococcus lactis/enzymology , Electron Transport , NADH Dehydrogenase/metabolism , NADH Dehydrogenase/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Mutation , Gene Expression Regulation, Bacterial , Fermentation
7.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38618721

ABSTRACT

The gut microbiota of insects has been shown to regulate host detoxification enzymes. However, the potential regulatory mechanisms involved remain unknown. Here, we report that gut bacteria increase insecticide resistance by activating the cap "n" collar isoform-C (CncC) pathway through enzymatically generated reactive oxygen species (ROS) in Bactrocera dorsalis. We demonstrated that Enterococcus casseliflavus and Lactococcus lactis, two lactic acid-producing bacteria, increase the resistance of B. dorsalis to ß-cypermethrin by regulating cytochrome P450 (P450) enzymes and α-glutathione S-transferase (GST) activities. These gut symbionts also induced the expression of CncC and muscle aponeurosis fibromatosis. BdCncC knockdown led to a decrease in resistance caused by gut bacteria. Ingestion of the ROS scavenger vitamin C in resistant strain affected the expression of BdCncC/BdKeap1/BdMafK, resulting in reduced P450 and GST activity. Furthermore, feeding with E. casseliflavus or L. lactis showed that BdNOX5 increased ROS production, and BdNOX5 knockdown affected the expression of the BdCncC/BdMafK pathway and detoxification genes. Moreover, lactic acid feeding activated the ROS-associated regulation of P450 and GST activity. Collectively, our findings indicate that symbiotic gut bacteria modulate intestinal detoxification pathways by affecting physiological biochemistry, thus providing new insights into the involvement of insect gut microbes in the development of insecticide resistance.


Subject(s)
Gastrointestinal Microbiome , Insecticide Resistance , Pyrethrins , Reactive Oxygen Species , Tephritidae , Animals , Reactive Oxygen Species/metabolism , Pyrethrins/pharmacology , Pyrethrins/metabolism , Insecticide Resistance/genetics , Tephritidae/microbiology , Tephritidae/genetics , Insecticides/pharmacology , Insecticides/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Lactobacillales/genetics , Lactobacillales/metabolism , Lactobacillales/drug effects , Lactobacillales/physiology , Insect Proteins/genetics , Insect Proteins/metabolism , Enterococcus/genetics , Enterococcus/metabolism , Enterococcus/drug effects , Glutathione Transferase/genetics , Glutathione Transferase/metabolism
8.
PLoS One ; 19(4): e0298680, 2024.
Article in English | MEDLINE | ID: mdl-38557757

ABSTRACT

In the dairy industry bacteriophage (phage) contamination significantly impairs the production and quality of products like yogurt and cheese. To combat this issue, the strains of bacteria used as starter cultures possess mechanisms that make them resistant to phage infection, such as envelope resistance, or processes that render them immune to phage infection, such as restriction-modification and CRISPR-Cas. Lactococcus lactis, used to manufacture cheese and other dairy products, can also block the reproduction of infecting phages by abortive infection (Abi), a process in which phage-infected cells die before the phage replicate. We employ mathematical-computer simulation models and experiments with two Lactococcus lactis strains and two lytic phages to investigate the conditions under which Abi can limit the proliferation of phages in L. lactis populations and prevent the extinction of their populations by these viruses. According to our model, if Abi is almost perfect and there are no other populations of bacteria capable of supporting the replication of the L. lactis phages, Abi can protect bacterial populations from succumbing to infections with these viruses. This prediction is supported by the results of our experiment, which indicate that Abi can help protect L. lactis populations from extinction by lytic phage infections. However, our results also predict abortive infection is only one element of L. lactis defenses against phage infection. Mutant phages that can circumvent the Abi systems of these bacteria emerge. The survival of L. lactis populations then depends on the evolution of envelope mutants that are resistant to the evolved host-range phage.


Subject(s)
Bacteriophages , Lactococcus lactis , Bacteriophages/genetics , Lactococcus lactis/genetics , Computer Simulation , Bacterial Proteins , Bacteria
9.
Food Microbiol ; 121: 104514, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38637076

ABSTRACT

The enzymatic repertoire of starter cultures belonging to the Lactococcus genus determines various important characteristics of fermented dairy products but might change in response to the substantial environmental changes in the manufacturing process. Assessing bacterial proteome adaptation in dairy and other food environments is challenging due to the high matrix-protein concentration and is even further complicated in particularly cheese by the high fat concentrations, the semi-solid state of that matrix, and the non-growing state of the bacteria. Here, we present bacterial harvesting and processing procedures that enable reproducible, high-resolution proteome determination in lactococcal cultures harvested from laboratory media, milk, and miniature Gouda cheese. Comparative proteome analysis of Lactococcus cremoris NCDO712 grown in laboratory medium and milk revealed proteome adaptations that predominantly reflect the differential (micro-)nutrient availability in these two environments. Additionally, the drastic environmental changes during cheese manufacturing only elicited subtle changes in the L. cremoris NCDO712 proteome, including modified expression levels of enzymes involved in flavour formation. The technical advances we describe offer novel opportunities to evaluate bacterial proteomes in relation to their performance in complex, protein- and/or fat-rich food matrices and highlight the potential of steering starter culture performance by preculture condition adjustments.


Subject(s)
Cheese , Cultured Milk Products , Lactococcus lactis , Animals , Proteome/metabolism , Fermentation , Cheese/microbiology , Milk/microbiology , Lactococcus lactis/genetics , Lactococcus lactis/metabolism
10.
Molecules ; 29(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38611811

ABSTRACT

Lactic acid bacteria (LAB) play an important role in the ripening of cheeses and contribute to the development of the desired profile of aroma and flavor compounds. Therefore, it is very important to monitor the dynamics of bacterial proliferation in order to obtain an accurate and reliable number of their cells at each stage of cheese ripening. This work aimed to identify and conduct a quantitative assessment of the selected species of autochthonous lactic acid bacteria from raw cow's milk cheese by the development of primers and probe pairs based on the uniqueness of the genetic determinants with which the target microorganisms can be identified. For that purpose, we applied real-time quantitative PCR (qPCR) protocols to quantify Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, and Lactococcus lactis subsp. cremoris cells in cheese directly after production and over three-month and six-month ripening periods. While L. lactis subsp. cremoris shows good acidification ability and the ability to produce antimicrobial compounds, L. delbrueckii subsp. bulgaricus has good proteolytic ability and produces exo-polysaccharides, and S. thermophilus takes part in the formation of the diacetyl flavor compound by metabolizing citrate to develop aroma, they all play an important role in the cheese ripening. The proposed qPCR protocols are very sensitive and reliable methods for a precise enumeration of L. delbrueckii subsp. bulgaricus, S. thermophilus, and L. lactis subsp. cremoris in cheese samples.


Subject(s)
Cheese , Lactobacillales , Lactobacillus delbrueckii , Lactococcus lactis , Lactococcus , Animals , Cattle , Female , Lactobacillales/genetics , Milk , Real-Time Polymerase Chain Reaction , Lactobacillus delbrueckii/genetics , Lactococcus lactis/genetics
11.
BMC Genomics ; 25(1): 324, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561675

ABSTRACT

Lactococcus lactis is widely applied by the dairy industry for the fermentation of milk into products such as cheese. Adaptation of L. lactis to the dairy environment often depends on functions encoded by mobile genetic elements (MGEs) such as plasmids. Other L. lactis MGEs that contribute to industrially relevant traits like antimicrobial production and carbohydrate utilization capacities belong to the integrative conjugative elements (ICE). Here we investigate the prevalence of ICEs in L. lactis using an automated search engine that detects colocalized, ICE-associated core-functions (involved in conjugation or mobilization) in lactococcal genomes. This approach enabled the detection of 36 candidate-ICEs in 69 L. lactis genomes. By phylogenetic analysis of conserved protein functions encoded in all lactococcal ICEs, these 36 ICEs could be classified in three main ICE-families that encompass 7 distinguishable ICE-integrases and are characterized by apparent modular-exchangeability and plasticity. Finally, we demonstrate that phylogenetic analysis of the conjugation-associated VirB4 ATPase function differentiates ICE- and plasmid-derived conjugation systems, indicating that conjugal transfer of lactococcal ICEs and plasmids involves genetically distinct machineries. Our genomic analysis and sequence-based classification of lactococcal ICEs creates a comprehensive overview of the conserved functional repertoires encoded by this family of MGEs in L. lactis, which can facilitate the future exploitation of the functional traits they encode by ICE mobilization to appropriate starter culture strains.


Subject(s)
Lactococcus lactis , Lactococcus lactis/genetics , Phylogeny , Plasmids/genetics , Proteins/metabolism , Genome , Conjugation, Genetic , DNA Transposable Elements
12.
Can Vet J ; 65(3): 259-266, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38434158

ABSTRACT

Objectives: To evaluate the effects of a cell-free supernatant from Lactococcus lactis (CFSM) on performance and diarrhearelated parameters and the presence of F4+ enterotoxigenic E. coli (ETEC) in piglets during post-weaning, and to evaluate the in vitro effect of the CFSM on faeG gene expression in an E. coli F4+. Animals and procedure: In 3 trials with 90 piglets per trial, pigs were assigned to receive a placebo or 1 of 2 CFSM treatments and observed for diarrhea and performance. Fecal swabs were taken to determine the presence of ETEC. Quantitative RT-PCR was used to assess faeG gene expression in E. coli 21259 after treatment with CFSM at 50 mg/mL. Results: The CFSM administered for 14 d at a dose of 24 mg/kg BW (2X) reduced diarrhea-related parameters compared to the placebo. Quantitative RT-PCR showed that, in E. coli 21259 treated with CFSM at 50 mg/mL, expression of the faeG gene was significantly repressed (P < 0.0001) relative to that in the untreated control. Conclusion: The evaluated CFSM reduced the frequency and prevalence of diarrhea in a field situation. The in vitro treatment had an inhibitory effect on the expression of the faeG gene in F4+ E. coli 21259.


Effet d'un surnageant de culture de Lactococcus lactis sur la diarrhée et les paramètres de performance des porcelets en période post-sevrage et sur l'expression du gène faeG in vitro. Objectifs: Évaluer les effets d'un surnageant acellulaire de Lactococcus lactis (CFSM) sur les paramètres de performance et de diarrhée et la présence d'E. coli entérotoxinogène F4+ (ETEC) chez les porcelets en post-sevrage, et évaluer l'effet in vitro du CFSM sur l'expression du gène faeG dans un E. coli F4+. Animaux et procédure: Dans 3 essais portant sur 90 porcelets par essai, les porcs ont reçu un placebo ou 1 des 2 traitements CFSM et ont été observés pour détecter la diarrhée et leurs performances. Des prélèvements fécaux ont été effectués pour déterminer la présence d'ETEC. La RT-PCR quantitative a été utilisée pour évaluer l'expression du gène faeG dans E. coli 21259 après traitement avec CFSM à 50 mg/mL. Résultats: Le CFSM administré pendant 14 jours à une dose de 24 mg/kg de poids corporel (2X) a réduit les paramètres liés à la diarrhée par rapport au placebo. La RT-PCR quantitative a montré que, chez E. coli 21259 traité avec CFSM à 50 mg/mL, l'expression du gène faeG était significativement réprimée (P < 0,0001) par rapport à celle du témoin non traité. Conclusion: Le CFSM évalué a réduit la fréquence et la prévalence de la diarrhée sur le terrain. Le traitement in vitro a eu un effet inhibiteur sur l'expression du gène faeG chez F4+ E. coli 21259.(Traduit par Dr Serge Messier).


Subject(s)
Lactococcus lactis , Animals , Swine , Lactococcus lactis/genetics , Escherichia coli , Diarrhea/prevention & control , Diarrhea/veterinary , Specimen Handling/veterinary
13.
Metab Eng ; 83: 24-38, 2024 May.
Article in English | MEDLINE | ID: mdl-38460783

ABSTRACT

Cheese taste and flavour properties result from complex metabolic processes occurring in microbial communities. A deeper understanding of such mechanisms makes it possible to improve both industrial production processes and end-product quality through the design of microbial consortia. In this work, we caracterise the metabolism of a three-species community consisting of Lactococcus lactis, Lactobacillus plantarum and Propionibacterium freudenreichii during a seven-week cheese production process. Using genome-scale metabolic models and omics data integration, we modeled and calibrated individual dynamics using monoculture experiments, and coupled these models to capture the metabolism of the community. This model accurately predicts the dynamics of the community, enlightening the contribution of each microbial species to organoleptic compound production. Further metabolic exploration revealed additional possible interactions between the bacterial species. This work provides a methodological framework for the prediction of community-wide metabolism and highlights the added value of dynamic metabolic modeling for the comprehension of fermented food processes.


Subject(s)
Cheese , Models, Biological , Cheese/microbiology , Lactococcus lactis/metabolism , Lactococcus lactis/genetics , Lactobacillus plantarum/metabolism , Lactobacillus plantarum/genetics , Propionibacterium freudenreichii/metabolism , Propionibacterium freudenreichii/genetics
14.
Microbiol Spectr ; 12(4): e0392723, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38441470

ABSTRACT

Aeromonas hydrophila, an aquatic pathogenic bacterium, has been found to infect many fish species and cause huge aquaculture losses. Antibiotics are the most common drugs used to treat these infections. However, antibiotic abuse can lead to the development of antibiotic resistance. Probiotics have the potential to replace antibiotics for preventing infections. Zebrafish (Danio rerio) is a model organism used to study the innate immune system and host-pathogen interactions. Currently, there is little information on how the fish immune system responds to A. hydrophila and probiotic treatment. To increase the understanding of the molecular mechanisms behind the zebrafish defense against A. hydrophila and provide evidence that antibiotics can be replaced by probiotics, a transcriptome analysis of the zebrafish spleen was conducted 48 hours after infection by A. hydrophila, as well as after treatment using Lactococcus lactis KUST48 4 hours after infection. A total of 36,499 genes were obtained. There were 3,337 genes found to have significant differential expression between treatment and control groups. According to further annotation and enrichment analysis, differentially expressed genes (DEGs) were involved in signal transduction, endocrine system cancer, and the immune system. Insulin resistance disappeared in the zebrafish after treatment. Quantitative real-time PCR was performed to confirm the significant regulation of immune defense DEGs, the results of which were consistent with the RNA-sequencing data. These results could serve as a basis for future studies on the immune response to A. hydrophila and provide suggestions for probiotic alternatives to antibiotics, which will be of great significance to aquaculture and environmental protection.IMPORTANCEIn recent years, the unreasonable use of antibiotics has led to the emergence of drug-resistant pathogenic bacteria, antibiotic residues, cross infection, toxic side effects, and so on, which has caused a serious threat to human food safety and life health. In recent years, many studies have demonstrated the potential of probiotics as a substitute for antibiotics, but there is still a lack of understanding of the molecular mechanisms underlying probiotic therapy. We conduct a research on the impact of Lactococcus lactis KUST48 on the transcription profile of Aeromonas hydrophila-infected zebrafish spleen. Mortality of zebrafish infected with A. hydrophila was significantly reduced after treatment with L. lactis KUST48. Our results can help to strengthen our understanding of the pathogenic mechanisms of zebrafish and provide a valuable reference for the molecular mechanisms of probiotic therapy.


Subject(s)
Fish Diseases , Gram-Negative Bacterial Infections , Lactococcus lactis , Animals , Humans , Zebrafish , Aeromonas hydrophila/genetics , Lactococcus lactis/genetics , Spleen , Anti-Bacterial Agents , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/microbiology , Fish Diseases/microbiology
15.
Cancer Lett ; 588: 216777, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38432582

ABSTRACT

Intrapleural immunotherapies have emerged as a prominent field in treating malignant pleural effusion (MPE). Among these, bacteria-based intrapleural therapy has exerted an anti-MPE effect by immuno-stimulating or cytotoxic properties. We previously engineered a probiotic Lactococcus lactis (FOLactis) expressing a fusion protein of Fms-like tyrosine kinase 3 and co-stimulator OX40 ligands. FOLactis activates tumor antigen-specific immune responses and displays systemic antitumor efficacy via intratumoral delivery. However, no available lesions exist in the pleural cavity of patients with MPE for intratumoral administration. Therefore, we further optimize FOLactis to treat MPE through intrapleural injection. Intrapleural administration of FOLactis (I-Pl FOLactis) not only distinctly suppresses MPE and pleural tumor nodules, but also significantly extends noticeable survival in MPE-bearing murine models. The proportion of CD103+ dendritic cells (DCs) in tumor-draining lymph nodes increases three-fold in FOLactis group, compared to the wild-type bacteria group. The enhanced DCs recruitment promotes the infiltration of effector memory T and CD8+ T cells, as well as the activation of NK cells and the polarization of macrophages to M1. Programmed death 1 blockade antibody combination further enhances the antitumor efficacy of I-Pl FOLactis. In summary, we first develop an innovative intrapleural strategy based on FOLactis, exhibiting remarkable efficacy and favorable biosafety profiles. These findings suggest prospective clinical translation of engineered probiotics for managing MPE through direct administration into the pleural cavity.


Subject(s)
Antineoplastic Agents , Lactococcus lactis , Pleural Effusion, Malignant , Humans , Animals , Mice , Pleural Effusion, Malignant/therapy , Lactococcus lactis/genetics , CD8-Positive T-Lymphocytes/metabolism , Prospective Studies , Antineoplastic Agents/therapeutic use
16.
ACS Synth Biol ; 13(4): 1365-1372, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38518262

ABSTRACT

Lactococcus cremoris (homotypic synonym: Lactococcus lactis) is receiving increasing attention as a prominent vehicle for the delivery of live vaccines. This can hardly be achieved without developing tools for the genetic manipulation of L. cremoris, and the paucity of studies on L. cremoris endogenous promoters has attracted our attention. Here, we report the discovery and characterization of 29 candidate promoters identified from L. cremoris subsp. cremoris NZ9000 by RNA sequencing analysis. Furthermore, 18 possible constitutive promoters were obtained by RT-qPCR screening from these 29 candidate promoters. Then, these 18 promoters were cloned and characterized by a reporter gene, gusA, encoding ß-glucuronidase. Eventually, eight endogenous constitutive promoters of L. cremoris were obtained, which can be applied to genetic manipulation of lactic acid bacteria.


Subject(s)
Lactococcus lactis , Lactococcus , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Promoter Regions, Genetic/genetics , Genes, Reporter/genetics , Gene Expression
17.
J Agric Food Chem ; 72(13): 7279-7290, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38519413

ABSTRACT

PepXLcMY-3, an X-prolyl dipeptidyl aminopeptidase derived from Lactobacillus lactis MY-3, was screened and recombinantly expressed in Escherichia coli. The enzyme could exhibit about 40% activity within the pH range of 6.0-10. To further improve the pH robustness, site E396 located in the active pocket was discovered through alanine scanning. The mutant E396I displayed both developed activity and kcat/Km. The optimal pH of E396I shifted from 6.0 to 10 compared to WT, with the relative activity within the pH range of 6.0-10 significantly increased. The site K648 was then proposed by semirational design. The activity of mutant E396I/K648D reached 4.03 U/mg. The optimal pH was restored to 6.0, and the pH stability was further improved. E396I/K648D could totally hydrolyze ß-casomorphin 7 within 30 min. The hydrolysate showed 64.5% inhibition on angiotensin I converting enzyme, which was more efficient than those produced by E396I and WT, 23.2 and 44.7%, respectively.


Subject(s)
Lactococcus lactis , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Amino Acid Sequence , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases , Peptides/genetics , Hydrolases , Aminopeptidases/genetics , Aminopeptidases/chemistry , Aminopeptidases/metabolism , Hydrogen-Ion Concentration
18.
Biomed Pharmacother ; 173: 116384, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38471270

ABSTRACT

Bone marrow has the capacity to produce different types of immune cells, such as natural killer cells, macrophages, dendritic cells (DCs) and T cells. Improving the activation of immune cells in the bone marrow can enhance the therapy of bone metastases. Previously, we designed an engineered probiotic Lactococcus lactis, capable of expressing a fusion protein of Fms-like tyrosine kinase 3 ligand and co-stimulator OX40 ligand (FOLactis), and proved that it can induce the activation and differentiation of several immune cells. In this research, we successfully establish mouse models of bone metastasis, lung metastasis and intraperitoneal dissemination, and we are the first to directly inject the probiotics into the bone marrow to inhibit tumor growth. We observe that injecting FOLactis into the bone marrow of mice can better regulate the immune microenvironment of tumor-bearing mice, resulting in a tumor-suppressive effect. Compared to subcutaneous (s.c.) injection, intra-bone marrow (IBM) injection is more effective in increasing mature DCs and CD8+ T cells and prolonging the survival of tumor-bearing mice. Our results confirm that IBM injection of FOLactis reprograms the immune microenvironment of bone marrow and has remarkable effectiveness in various metastatic tumor models.


Subject(s)
Lactococcus lactis , Lung Neoplasms , Mice , Animals , Bone Marrow , Lactococcus lactis/genetics , CD8-Positive T-Lymphocytes , Immunotherapy, Adoptive/methods , Lung Neoplasms/secondary , Tumor Microenvironment
19.
Methods Mol Biol ; 2762: 109-121, 2024.
Article in English | MEDLINE | ID: mdl-38315362

ABSTRACT

Malaria is a vector-borne disease caused by Plasmodium parasites of which Plasmodium falciparum contributed to an estimated 247 million cases worldwide in 2021 (WHO malaria report 2022). The P. falciparum Circumsporozoite protein (PfCSP) covers the surface of the sporozoite which is critical to cell invasion in the human host. PfCSP is the leading pre-erythrocytic vaccine candidate and forms the basis of the RTS'S (Mosquirix®) malaria vaccine. However, high-yield production of full-length PfCSP with proper folding has been challenging. Here, we describe expression and purification of full-length PfCSP (containing 4 NVDP and 38 NANP repeats) with proper conformation by a simple three-step procedure in the Lactococcus lactis expression system.


Subject(s)
Lactococcus lactis , Malaria Vaccines , Malaria, Falciparum , Malaria , Humans , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Malaria/prevention & control , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Antibodies, Protozoan
20.
Protein Expr Purif ; 217: 106443, 2024 May.
Article in English | MEDLINE | ID: mdl-38360084

ABSTRACT

Efficient expression of functional proteins in heterologous hosts has become the pivotal focus of modern biotechnology and biomedical research. To this end, multiple alternatives to E. coli are being explored for recombinant protein expression. L. lactis, being a gram-positive organism, circumvents the need for an endotoxin removal step during protein purification. We report here the optimisation of the expression of HIV-1 Tat, a notoriously difficult protein, in Lactococcus lactis system. We evaluated five different promoters in two different Lactococcus lactis strains and examined the effect of pH, glucose, and induction time on the yield and purity of Tat. Finally, the recombinant Tat was functionally competent in transactivating the HIV-1 promoter in HLM-1 reporter cells. Our work provides a scaffold for future work on the expression of toxic proteins in Lactococcus lactis.


Subject(s)
HIV-1 , Lactococcus lactis , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , HIV-1/genetics , HIV-1/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Recombinant Proteins , Biotechnology
SELECTION OF CITATIONS
SEARCH DETAIL
...