Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Futur ; 72(4): 473-488, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34554492

ABSTRACT

Mechanisms associated with the control of flower color in crape myrtle varieties have yet to be sufficiently elucidated, which has tended to hamper the use of modern molecular and genetic strategies in the breeding programs for this plant. The whole transcriptome of four L. indica varieties characterized by different flower colors (white, light purple, deep purplish pink, and strong red) was sequenced, and we performed bioinformatic, quantitative PCR, and co-expression analyses of R2R3 MYB transcription factor and anthocyanin/flavonol pathway genes. We obtained a total of 49,980 transcripts with full-length coding sequences. Both transcriptome and qPCR analyses revealed that anthocyanin/flavonol pathway genes were differentially expressed among the four different flowers types, with the expression of LiPAL, LiCHS, LiCHI, LiDFR, LiANS/LDOX, and LiUFGT being induced in colorful flowers, whereas that of LiF3´5´H, LiFLS, and LiLAR was found to be inhibited. Base on phylogenetic analysis, seven R2R3 MYB transcriptional factors were identified as putative regulators of flower color. The molecular characteristics and co-expression patterns indicated that these MYBs differentially modulate their target genes, with two probably acting as activators, three as repressors, and one contributing to the regulation of vacuolar pH. The findings of this study indicate that the anthocyanin biosynthesis is more active than the flavonol and proanthocyanin in the colorful flowers. These observations provide new genomic information on L. indica and contribute gene resources for the flower color-targeted breeding of crape myrtle.


Subject(s)
Anthocyanins/biosynthesis , Flavonols/metabolism , Lagerstroemia/enzymology , Proanthocyanidins/metabolism , Transcriptome , Anthocyanins/metabolism , Flavonols/analysis , Lagerstroemia/metabolism , Peptide Biosynthesis/physiology , Proanthocyanidins/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...