Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.465
Filter
1.
BMC Microbiol ; 24(1): 153, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704527

ABSTRACT

BACKGROUND: Saline lakes are home to various archaea that play special and crucial roles in the global biogeochemical cycle. The Qinghai-Tibet Plateau hosts a large number of lakes with diverse salinity ranging from 0.1 to over 400 g/L, harboring complex and diverse archaea. To the best of our knowledge, the formation mechanisms and potential ecological roles of archaea in Qinghai-Tibetan Plateau saline lakes remain largely unknown. RESULTS: Using High-throughput Illumina sequencing, we uncovered the vastly distinct archaea communities between two typical saline lakes with significant salinity differences on the Qinghai Tibet Plateau (Qinghai saline lake and Chaka hypersaline lake) and suggested archaea played different important roles in methanogenesis-related and nitrate reduction-related functions of these two lakes, respectively. Rather than the individual effect of salinity, the composite effect of salinity with diverse environmental parameters (e.g., temperature, chlorophyll a, total nitrogen, and total phosphorus) dominated the explanation of the variations in archaeal community structure in different habitats. Based on the network analysis, we further found the correlations between dominant archaeal OTUs were tight but significantly different between the two habitats, implying that archaeal interactions may also largely determine the shape of archaeal communities. CONCLUSION: The present study improved our understanding of the structure and function of archaea in different saline lakes on the Qinghai-Tibet Plateau and provided a new perspective on the mechanisms underlying shaping their communities.


Subject(s)
Archaea , Lakes , Salinity , Lakes/microbiology , Lakes/chemistry , Archaea/genetics , Archaea/classification , Archaea/metabolism , Tibet , High-Throughput Nucleotide Sequencing , Phylogeny , Biodiversity , Ecosystem , RNA, Ribosomal, 16S/genetics , Nitrogen/metabolism , Nitrogen/analysis , DNA, Archaeal/genetics
2.
Environ Monit Assess ; 196(6): 535, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727754

ABSTRACT

Revealing the spatiotemporal evolution characteristics and key driving processes behind the habitat quality is of great significance for the scientific management of production, living, and ecological spaces in resource-based cities, as well as for the efficient allocation of resources. Focusing on the largest coal-mining subsidence area in Jiangsu Province of China, this study examines the spatiotemporal evolution of land use intensity, morphology, and functionality across different time periods. It evaluates the habitat quality characteristics of the Pan'an Lake area by utilizing the InVEST model, spatial autocorrelation, and hotspot analysis techniques. Subsequently, by employing the GTWR model, it quantifies the influence of key factors, unveiling the spatially varying characteristics of their impact on habitat quality. The findings reveal a notable surge in construction activity within the Pan'an Lake area, indicative of pronounced human intervention. Concurrently, habitat degradation intensifies, alongside an expanding spatial heterogeneity in degradation levels. The worst habitat quality occurs during the periods of coal mining and large-scale urban construction. The escalation in land use intensity emerges as the primary catalyst for habitat quality decline in the Pan'an Lake area, with other factors exhibiting spatial variability in their effects and intensities across different stages.


Subject(s)
Coal Mining , Ecosystem , Environmental Monitoring , China , Lakes/chemistry , Conservation of Natural Resources
3.
Bull Environ Contam Toxicol ; 112(6): 78, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796607

ABSTRACT

Anodonta woodiana samples from Xidong Water Works and Mashan in Taihu Lake, Yiyang near Dongting Lake, and Taiping Harbor in Gehu Lake preserved in a "specimen bank" established for the "Freshwater Mussel Watch" monitoring program were used to determine the historical metal backgrounds from different waters in the present study. The elements Co, Ni, Mo, Cd, Al, Cr, Mn, Fe, Cu, Zn, As, Ba, and Pb were determined using A. woodiana from four lacustrine sites. The results showed that Al, Cr, Mn, Fe, Cu, Zn, As, Ba, and Pb were all detected, whereas Co, Ni, Mo, and Cd were below the detection limits of 0.0165, 0.0106, 0.0189 and 0.0182 µg kg- 1, respectively. In particular, A. woodiana was noted to be an unusual Mn hyperaccumulator (ranged from 5124.09 to 13015.47 µg g- 1). The results of discriminant analysis showed that the four water samples could be accurately separated. This difference has the potential to infer the background difference of heavy metal pollution in different lacustrine habitats.


Subject(s)
Environmental Monitoring , Lakes , Metals, Heavy , Water Pollutants, Chemical , China , Water Pollutants, Chemical/analysis , Lakes/chemistry , Metals, Heavy/analysis , Animals
4.
Water Environ Res ; 96(5): e11041, 2024 May.
Article in English | MEDLINE | ID: mdl-38797514

ABSTRACT

The aim of the study is to investigate the leaching of fluorescent dissolved organic matter (fDOM) from microplastics. In addition, this study identifies the connection between fDOM and microplastics in the aquatic environment. Three-dimensional excitation-emission matrix identified five fluorophores, that is, peak A, M, T, Tuv, and Wuv, and the parallel factor analysis modeling identified five components, that is, tryptophan-like, p-hydroxy acetophenone, humic acid (C-like), detergent-like, and fulvic acid (M-like) in the urban surface water. Mimic experiments using commonly used synthetic plastic (like microplastics) in Mili-Q water under solar radiation and dark environments demonstrate the release of fDOM from plastic. Two fluorophore peaks were observed at Ex/Em = 250/302 nm and Ex/Em = 260/333 nm for the expanded polystyrene plastic polymer and one fluorophore peak at Ex/Em = 260/333 nm for the low-density polyethylene. Fluorophore and component intensity exhibited notable associations with microplastics in the aquatic environment. These findings indicated that the characteristics and dynamics of fDOM in urban surface water are influenced by microplastics. PRACTITIONER POINTS: Fluorescent dissolved organic matters were identified in urban surface waters. Expanded polystyrene (EPS) had shown two fluorophores at Em/Ex = 250/302 and Em/Ex = 260/333. Low-density polyethylene (LDPE) had one fluorophore at Em/Ex = 260/333. Fluorophore and component intensity in the aquatic settings exhibited associations with microplastics.


Subject(s)
Lakes , Microplastics , Rivers , Water Pollutants, Chemical , Microplastics/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Lakes/chemistry , Rivers/chemistry , Factor Analysis, Statistical , Environmental Monitoring/methods , Organic Chemicals/analysis , Organic Chemicals/chemistry , Cities , Fluorescence
5.
Environ Monit Assess ; 196(6): 586, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809274

ABSTRACT

Artificial neural networks offer a viable route in assessing and understanding the presence and concentration of heavy metals that can cause dangerous complications in the wider context of water quality prediction for the sustainability of the ecosystem. In order to estimate the heavy metal concentrations in Iznik Lake, which is an important water source for the surrounding communities, characterization data were taken from five different water sources flowing into the lake between 2015 and 2021. These characterization results were evaluated with IBM SPSS Statistics 23 software, with the addition of the lake water quality system. For this purpose, seven distinct physicochemical parameters were measured and monitored in Karasu, Kirandere, Olukdere and Sölöz water sources flowing into the lake, to serve as input data. Concentration levels of 15 distinct heavy metals in Karsak Stream originating from the lake were as the output. Specifically, Sn for Karasu (0.999), Sb for Kirandere (1.000), Cr for Olukdere (1.000) and Pb and Se for Sölöz (0.995) indicate parameter estimation R2 coefficients close to 1.000. Sn stands out as the common heavy metal parameter with best estimation prospects. Given the importance of the independent variable in estimating heavy metal pollution, conductivity, COD, COD and temperature stood out as the most effective parameters for Karasu, Olukdere, Kirandere and Sölöz, respectively. The ANN model emerges as a good prediction tool that can be used effectively in determining the heavy metal pollution in the lake as part of the efforts to protect the water budget of Lake Iznik and to eliminate the existing pollution.


Subject(s)
Environmental Monitoring , Lakes , Metals, Heavy , Neural Networks, Computer , Water Pollutants, Chemical , Lakes/chemistry , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/statistics & numerical data , Turkey , Water Quality
6.
Environ Sci Technol ; 58(19): 8480-8489, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38693822

ABSTRACT

Identifying the sources and fate of microplastics in natural systems has garnered a great deal of attention because of their implications for ecosystem health. This work characterizes the size fraction, morphology, color, and polymer composition of microplastics in western Lake Superior and its adjacent harbor sampled in August and September 2021. The results reveal that the overall microplastic counts are similar, with the harbor stations ranging from 0.62 to 3.32 microplastics per liter and the lake stations ranged from 0.83 to 1.4 microplastics per liter. However, meaningful differences between the sample locations can be seen in the size fraction trends and polymer composition. Namely, the harbor samples had relatively larger amounts of the largest size fraction and more diversity of polymer types, which can be attributed to the urbanized activity and shorter water residence time. Power law size distribution modeling reveals deviations that help in the understanding of potential sources and removal mechanisms, although it significantly underpredicts microplastic counts for smaller-sized particles (5-45 µm), as determined by comparison with concurrently collected microplastic samples enumerated by Nile Red staining and flow cytometry.


Subject(s)
Environmental Monitoring , Estuaries , Lakes , Microplastics , Microplastics/analysis , Lakes/chemistry , Water Pollutants, Chemical/analysis
7.
Sci Total Environ ; 932: 172879, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38697529

ABSTRACT

Omega-3 polyunsaturated fatty acids (ω3-PUFA) are central to the growth and reproduction of aquatic consumers. Dissolved nutrients in aquatic ecosystems strongly affect algal taxonomic composition and thus the production and transfer of specific ω3-PUFA to consumers at higher trophic levels. However, most studies were conducted in nutrient-poor, oligotrophic lakes, leading to an insufficient understanding of how water nutrients affect algal ω3-PUFA and their trophic transfer in consumers in highly eutrophic lakes. We conducted a field investigation in a highly eutrophic lake and collected basal food sources (phytoplankton, periphyton and macrophytes) and aquatic consumers (invertebrates, zooplankton and fish), and measured their fatty acid (FA) composition. Our results showed that periphyton and phytoplankton were both important sources of ω3-PUFA supporting the highly eutrophic lake food web. High water nutrient levels led to low ω3-PUFA levels in phytoplankton and periphyton, resulting in decreased nutritional quality. Consequently, ω3-PUFA of invertebrates and zooplankton reflected variations in ω3-PUFA of phytoplankton and periphyton, respectively. The ω3-PUFA levels of fish decreased as phytoplankton and periphyton ω3-PUFA decreased. Among fish, the Redfin Culter (Cultrichthys erythropterus) and Bar Cheek Goby (Rhinogobius giurinus) exhibited significantly higher levels of EPA and DHA compared to the Pond Loach (Misgurnus anguillicaudatus), which may have been caused by their different feeding modes. Decreases in the ω3-PUFA levels of basal food sources may be one of the causes leading to the reduction of trophic links in aquatic food webs. Our study elucidated the sources and fate of ω3-PUFA in highly eutrophic lakes, complemented previous studies in oligo- and mesotrophic lakes, and emphasized the role of high-quality food sources. Our results offer new perspectives for the conservation and management of highly eutrophic lake ecosystems.


Subject(s)
Environmental Monitoring , Eutrophication , Fatty Acids, Omega-3 , Food Chain , Lakes , Phytoplankton , Lakes/chemistry , Fatty Acids, Omega-3/analysis , Animals , Zooplankton , Water Pollutants, Chemical/analysis , Fishes/metabolism , Invertebrates
8.
Sci Total Environ ; 932: 173047, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38723957

ABSTRACT

This research was designed to estimate the contributions of phosphorus (P) in different factions from an upstream plain river network to algal growth in a downstream shallow eutrophic lake, Taihu Lake, in China. During three flow regimes, the P fractions in multiple phases (particulate, colloidal and dissolved phases) and their algal availabilities were assessed via bioassays with Dolichospermum flos-aquae as the test organism. The P partitioning patterns among multiple phases were strongly affected by the concentration of total suspended solids (TSS) that changed with the river flow regime, with stronger disturbance of sediments at lower water levels (low flow) and weaker disturbance of sediments at higher water levels (high flow) in the plain river network. The median TSS concentration across the river network decreased from 157.4 mg/L during low flow to 31.8 mg/L during high flow, and the median particulate P concentration decreased from 0.132 mg/L to 0.093 mg/L. The particulate P contributed equally to the amount of algal available P (AAP) as did the water-mobilizable P (colloidal plus dissolved phase) in the rivers flowing into Taihu Lake. The annual average concentrations of particulate algal available P (P-AAP), colloidal algal available P (C-AAP) and dissolved algal available P (D-AAP) were estimated to be 0.032 mg/L, 0.012 mg/L and 0.019 mg/L, respectively, during 2012-2018, accounting for 50.8 %, 19.0 % and 30.2 %, respectively, of the total AAP. At the watershed scale, controlling P drainage from downstream urbanized areas should be emphasized. Additionally, controlling sediment resuspension or reducing the TSS concentration in the inflowing rivers is important for decreasing the particulate P flux to downstream lakes.


Subject(s)
Environmental Monitoring , Eutrophication , Lakes , Phosphorus , Rivers , Water Pollutants, Chemical , Phosphorus/analysis , Lakes/chemistry , Rivers/chemistry , China , Water Pollutants, Chemical/analysis , Geologic Sediments/chemistry
9.
Sci Total Environ ; 932: 173134, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38734096

ABSTRACT

Methane (CH4) is a potent greenhouse gas, with lake ecosystems significantly contributing to its global emissions. Denitrifying anaerobic methane oxidation (DAMO) process, mediated by NC10 bacteria and ANME-2d archaea, links global carbon and nitrogen cycles. However, their potential roles in mitigating methane emissions and removing nitrogen from lake ecosystems remain unclear. This study explored the spatial variations in activities of nitrite- and nitrate-DAMO and their functional microbes in Changdanghu Lake sediments (Jiangsu Province, China). The results showed that although the average abundance of ANME-2d archaea (5.0 × 106 copies g-1) was significantly higher than that of NC10 bacteria (2.1 × 106 copies g-1), the average potential rates of nitrite-DAMO (4.59 nmol 13CO2 g-1 d-1) and nitrate-DAMO (5.01 nmol 13CO2 g-1 d-1) showed no significant difference across all sampling sites. It is estimated that nitrite- and nitrate-DAMO consumed approximately 6.46 and 7.05 mg CH4 m-2 d-1, respectively, which accordingly achieved 15.07-24.95 mg m-2 d-1 nitrogen removal from the studied lake sediments. Statistical analyses found that nitrite- and nitrate-DAMO activities were both significantly related to sediment nitrate contents and ANME-2d archaeal abundance. In addition, NC10 bacterial and ANME-2d archaeal community compositions showed significant correlations with sediment organic carbon content and water depth. Overall, this study underscores the dual roles of nitrite- and nitrate-DAMO processes in CH4 mitigation and nitrogen elimination and their key environmental impact factors (sediment organic carbon and inorganic nitrogen contents, and water depth) in shallow lake, enhancing the understanding of carbon and nitrogen cycles in freshwater aquatic ecosystems.


Subject(s)
Denitrification , Geologic Sediments , Lakes , Methane , Nitrogen , Oxidation-Reduction , Methane/metabolism , Methane/analysis , Lakes/chemistry , Lakes/microbiology , Geologic Sediments/chemistry , Geologic Sediments/microbiology , China , Nitrogen/analysis , Anaerobiosis , Archaea/metabolism , Bacteria/metabolism , Water Pollutants, Chemical/analysis
10.
Microb Ecol ; 87(1): 68, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722447

ABSTRACT

It is necessary to predict the critical transition of lake ecosystems due to their abrupt, non-linear effects on social-economic systems. Given the promising application of paleolimnological archives to tracking the historical changes of lake ecosystems, it is speculated that they can also record the lake's critical transition. We studied Lake Dali-Nor in the arid region of Inner Mongolia because of the profound shrinking the lake experienced between the 1300 s and the 1600 s. We reconstructed the succession of bacterial communities from a 140-cm-long sediment core at 4-cm intervals and detected the critical transition. Our results showed that the historical trajectory of bacterial communities from the 1200 s to the 2010s was divided into two alternative states: state1 from 1200 to 1300 s and state2 from 1400 to 2010s. Furthermore, in the late 1300 s, the appearance of a tipping point and critical slowing down implied the existence of a critical transition. By using a multi-decadal time series from the sedimentary core, with general Lotka-Volterra model simulations, local stability analysis found that bacterial communities were the most unstable as they approached the critical transition, suggesting that the collapse of stability triggers the community shift from an equilibrium state to another state. Furthermore, the most unstable community harbored the strongest antagonistic and mutualistic interactions, which may imply the detrimental role of interaction strength on community stability. Collectively, our study showed that sediment DNA can be used to detect the critical transition of lake ecosystems.


Subject(s)
Bacteria , DNA, Bacterial , Geologic Sediments , Lakes , Lakes/microbiology , Lakes/chemistry , Geologic Sediments/microbiology , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , China , DNA, Bacterial/genetics , Ecosystem , RNA, Ribosomal, 16S/genetics , Microbiota
11.
Sci Total Environ ; 931: 172908, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38697552

ABSTRACT

Shallow lakes, recognized as hotspots for nitrogen cycling, contribute to the emission of the potent greenhouse gas nitrous oxide (N2O), but the current emission estimates for this gas have a high degree of uncertainty. However, the role of N2O-reducing bacteria (N2ORB) as N2O sinks and their contribution to N2O reduction in aquatic ecosystems in response to N2O dynamics have not been determined. Here, we investigated the N2O dynamics and microbial processes in the nitrogen cycle, which included both N2O production and consumption, in five shallow lakes spanning approximately 500 km. The investigated sites exhibited N2O oversaturation, with excess dissolved N2O concentrations (ΔN2O) ranging from 0.55 ± 0.61 to 53.17 ± 15.75 nM. Sediment-bound N2O (sN2O) was significantly positively correlated with the nitrate concentration in the overlying water (p < 0.05), suggesting that nitrate accumulation contributes to benthic N2O generation. High N2O consumption activity (RN2O) corresponded to low ΔN2O. In addition, a significant negative correlation was found between RN2O and nir/nosZ, showing that bacteria encoding nosZ contributed to N2O consumption in the benthic sediments. Redundancy analysis indicated that benthic functional genes effectively reflected the variations in RN2O and ∆N2O. qPCR analysis revealed that the clade II nosZ gene was more sensitive to ΔN2O than the clade I nosZ gene. Furthermore, four novel genera of potential nondenitrifying N2ORB were identified based on metagenome-assembled genome analysis. These genera, which are affiliated with clade II, lack genes responsible for N2O production. Collectively, benthic N2ORB, especially for clade II-type N2ORB, harnesses N2O consumption activity leading to low N2O emissions from shallow lakes. This study advances our knowledge of the role of benthic clade II-type N2ORB in regulating N2O emissions in shallow lakes.


Subject(s)
Bacteria , Lakes , Nitrous Oxide , Nitrous Oxide/analysis , Lakes/chemistry , Bacteria/classification , Environmental Monitoring , Nitrogen Cycle , Air Pollutants/analysis , Geologic Sediments/chemistry
12.
Chemosphere ; 358: 142221, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701861

ABSTRACT

Lanthanum modified bentonite (LMB) is typical P-inactivating agent that has been applied in over 200 lakes. Dissolved organic carbon (DOC) and high pH restrict the phosphorus (P) immobilization performance of LMB. However, the P immobilization/release behaviors of LMB-amended sediment when suspended to overlying water with high pH and DOC have not yet been studied. In the present work, batch adsorption and long-term incubation experiments were performed to study the combined effects of pH and DOC on the P control by LMB. The results showed that the coexistence of low concentration of DOC or preloading with some DOC had a negligible effect on P binding by LMB. In the presence of DOC, the P adsorption was more pronounced at pH 7.5 and was measurably less at pH 9.5. Additionally, the pH value was the key factor that decided the P removal at low DOC concentration. The increase in pH and DOC could significantly promote the release of sediment P with a higher EPC0. Under such condition, a higher LMB dosage was needed to effectively control the P releasing from sediment. In sediment/water system with intermittent resuspension, the alkaline conditions greatly facilitated the release of sediment P and DOC, which increased from 0.087 to 0.581 mg/L, and from 11.05 to 26.56 mg/L, respectively. Under the dual effect of pH and DOC, the P-immobilization performance of LMB was weakened, and a tailor-made scheme became essential for determining the optimum dosage. The desorption experiments verified that the previously loaded phosphorus on LMB was hard to be released even under high pH and DOC conditions, with an accumulative desorption rate of less than 2%. Accordingly, to achieve the best P controlling efficiency, the application strategies depending on LMB should avoid the high DOC loading period such as the rainy season and algal blooms.


Subject(s)
Bentonite , Carbon , Geologic Sediments , Lanthanum , Phosphorus , Water Pollutants, Chemical , Bentonite/chemistry , Lanthanum/chemistry , Phosphorus/chemistry , Hydrogen-Ion Concentration , Geologic Sediments/chemistry , Carbon/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Lakes/chemistry
13.
Environ Sci Technol ; 58(20): 8736-8747, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38723264

ABSTRACT

Inland waters (rivers, lakes, and reservoirs) and wetlands (marshes and coastal wetlands) represent large and continuous sources of nitrous oxide (N2O) emissions, in view of adequate biomass and anaerobic conditions. Considerable uncertainties remain in quantifying spatially explicit N2O emissions from aquatic systems, attributable to the limitations of models and a lack of comprehensive data sets. Herein, we conducted a synthesis of 1659 observations of N2O emission rates to determine the major environmental drivers across five aquatic systems. A framework for spatially explicit estimates of N2O emissions in China was established, employing a data-driven approach that upscaled from site-specific N2O fluxes to robust multiple-regression models. Results revealed the effectiveness of models incorporating soil organic carbon and water content for marshes and coastal wetlands, as well as water nitrate concentration and dissolved organic carbon for lakes, rivers, and reservoirs for predicting emissions. Total national N2O emissions from inland waters and wetlands were 1.02 × 105 t N2O yr-1, with contributions from marshes (36.33%), rivers (27.77%), lakes (25.27%), reservoirs (6.47%), and coastal wetlands (4.16%). Spatially, larger emissions occurred in the Songliao River Basin and Continental River Basin, primarily due to their substantial terrestrial biomass. This study offers a vital national inventory of N2O emissions from inland waters and wetlands in China, providing paradigms for the inventorying work in other countries and insights to formulate effective mitigation strategies for climate change.


Subject(s)
Lakes , Nitrous Oxide , Wetlands , China , Nitrous Oxide/analysis , Lakes/chemistry , Environmental Monitoring , Rivers/chemistry
14.
PeerJ ; 12: e17216, 2024.
Article in English | MEDLINE | ID: mdl-38699190

ABSTRACT

This study is the first to determine the levels of heavy metals in commercially important fish species, namely Lates niloticus and Oreochromis niloticus and the potential human health risks associated with their consumption. A total of 120 fish samples were collected from the lower Omo river and Omo delta, with 60 samples from each water source. The fish tissue samples (liver and muscle) were analyzed using a flame atomic absorption spectrometer for nine heavy metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn). The human health risk assessment tools used were the target hazard quotient (THQ), the hazard index (HI), and the target cancer risk (TCR). The mean levels of heavy metals detected in the liver and muscle of L. niloticus from the lower Omo river generally occurred in the order Fe > Zn > Pb> Cu > Mn> Cr > Co > Ni and Pb > Cu > Mn > Co > Ni, respectively. The mean levels of metals in the muscle and liver tissues of O. niloticus were in the order Fe > Pb > Zn > Mn > Cu > Cr > Co > Ni and Pb > Zn > Mn > Fe > Cu > Co > Ni, respectively. Similarly, the mean levels of heavy metals detected in the liver and muscle of L. niloticus from Omo delta occurred in the order Fe > Zn > Pb > Cu > Mn > Cr > Co > Ni and Fe > Pb > Zn > Mn > Cu > Co > Cr > Ni, respectively. The mean levels in the muscle and liver tissues of O. niloticus from the Omo delta were in the order Fe > Pb > Zn > Mn > Cu > Cr > Co > Ni and Pb > Fe > Zn > Mn > Co > Cu > Ni, respectively. The study revealed that the THQ values were below 1, indicating that consumption of L. niloticus and O. niloticus from the studied sites does not pose a potential non-carcinogenic health risk. Although the TCR values for Pb in this study were within the tolerable range, it's mean concentration in the muscle and liver tissues of both fish species from the two water bodies exceeded the permissible limit established by FAO/WHO. This is a warning sign for early intervention, and it emphasizes the need for regular monitoring of freshwater fish. Therefore, it is imperative to investigate the pollution levels and human health risks of heavy metals in fish tissues from lower Omo river and Omo delta for environmental and public health concerns.


Subject(s)
Food Contamination , Lakes , Metals, Heavy , Rivers , Water Pollutants, Chemical , Metals, Heavy/analysis , Humans , Animals , Rivers/chemistry , Risk Assessment , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/adverse effects , Food Contamination/analysis , Lakes/chemistry , Ethiopia , Fishes , Environmental Monitoring/methods , Liver/chemistry , Liver/metabolism , Cichlids/metabolism , Muscles/chemistry , Muscles/metabolism
15.
Harmful Algae ; 134: 102606, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38705611

ABSTRACT

Summer cyanobacterial blooms exhibit a dynamic interplay between toxic and non-toxic genotypes, significantly influencing the cyanotoxin levels within a lake. The challenge lies in accurately predicting these toxin concentrations due to the significant temporal fluctuations in the proportions of toxic and non-toxic genotypes. Typically, the toxic genotypes dominate during the early and late summer periods, while the non-toxic variants prevail in mid-summer. To dissect this phenomenon, we propose a model that accounts for the competitive interaction between toxic and non-toxic genotypes, as well as seasonal temperature variations. Our numerical simulations suggest that the optimal temperature of the toxic genotypes is lower than that of the optimal temperatures of the non-toxic counterparts. This difference of optimal temperature may potentially contribute to explain the dominance of toxic genotypes at the early and late summer periods, situation often observed in the field. Experimental data from the laboratory align qualitatively with our simulation results, enabling a better understanding of complex interplays between toxic and non-toxic cyanobacteria.


Subject(s)
Cyanobacteria , Seasons , Temperature , Cyanobacteria/physiology , Harmful Algal Bloom , Lakes/microbiology , Lakes/chemistry , Models, Biological
16.
Front Public Health ; 12: 1365906, 2024.
Article in English | MEDLINE | ID: mdl-38784569

ABSTRACT

The quality of water in urban parks is closely related to people's daily lives, but the pollution caused by microplastics in park water and sediments has not been comprehensively studied. Therefore, eight typical parks in the urban area of Changsha, China, were selected, and Raman spectroscopy was used to explore the spatial distributions and compositions of the microplastics in the water and sediments, analyze their influencing factors, and evaluate their environmental risks. The results showed that the abundances of surface water microplastics in all parks ranged from 150 to 525 n L-1, and the abundances of sediment microplastics ranged from 120 to 585 n kg-1. The microplastics in the surface water included polyethylene terephthalate (PET), chlorinated polyethylene (CPE), and fluororubber (FLU), while those in the sediments included polyvinyl chloride (PVC), wp-acrylate copolymer (ACR), and CPE. Regression analyses revealed significant positive correlations between human activities and the abundances of microplastics in the parks. Among them, the correlations of population, industrial discharge and domestic wastewater discharge with the abundance of microplastics in park water were the strongest. However, the correlations of car flow and tourists with the abundance of microplastics in park water were the weakest. Based on the potential ecological risk indices (PERI) classification assessment method, the levels of microplastics in the waters and sediments of the eight parks were all within the II-level risk zone (53-8,549), among which the risk indices for Meixi Lake and Yudai Lake were within the IV risk zone (1,365-8,549), which may have been caused by the high population density near the park. This study provides new insights into the characteristics of microplastics in urban park water and sediment.


Subject(s)
Environmental Monitoring , Geologic Sediments , Lakes , Microplastics , Water Pollutants, Chemical , Wetlands , China , Microplastics/analysis , Risk Assessment , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Lakes/chemistry , Humans , Cities , Parks, Recreational , Spectrum Analysis, Raman
17.
Environ Monit Assess ; 196(6): 575, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789867

ABSTRACT

Ethiopia is among the African nations most susceptible to climate change because of its frequent droughts and heavy rainfall. Therefore, hydrological and water management problems require an investigation of regional variability and extreme rainfall patterns. This study analyzed the spatiotemporal trends of extreme rainfall in the Lake Tana sub-basin (LTSB) of Ethiopia's upper Blue Nile basin (UBNB) between 1981 and 2019. The trend and geographic patterns of ten extreme rainfall indices are evaluated using high-resolution data from Climate Hazards Group InfraRed Precipitation Stations (CHIRPS). The researcher used RClimDex, an R software tool, to analyze the ten severe rainfall indices. The variability of the extreme rain indices was also assessed by applying the standard anomaly index (SAI). The trend analysis shows that the majority of rainfall indices decreased in the majority of station locations. Among the rainfall locations, the decreasing trend was only significant in 40% consecutive wet days (CWD), 13.33% (R95p and R99p), and 6.66% highest rainfall amount in a 1-day period (RX1day). In contrast, significant positive patterns were revealed in the incidence of rainfall events of number of heavy precipitation days (R10mm), annual total wet day rainfall (PRCPTOT), and consecutive dry days (CDD), with significant positive trends of 26.66% (R10mm) and 40% (PRCPTOT). Furthermore, a spatial distribution result of extreme rainfall trends reveals considerable variations between stations location. Thus, these findings point to the necessity of creating adaptation and mitigation plans for climate change variability within the sub-basin.


Subject(s)
Climate Change , Environmental Monitoring , Lakes , Rain , Ethiopia , Environmental Monitoring/methods , Lakes/chemistry
18.
PeerJ ; 12: e17393, 2024.
Article in English | MEDLINE | ID: mdl-38799067

ABSTRACT

Inland waters are crucial in the carbon cycle, contributing significantly to the global CO2 fluxes. Carbonate lakes may act as both sources and sinks of CO2 depending on the interactions between the amount of dissolved inorganic carbon (DIC) inputs, lake metabolisms, and geochemical processes. It is often difficult to distinguish the dominant mechanisms driving CO2 dynamics and their effects on CO2 emissions. This study was undertaken in three groundwater-fed carbonate-rich lakes in central Spain (Ruidera Lakes), severely polluted with nitrates from agricultural overfertilization. Diel and seasonal (summer and winter) changes in CO2 concentration (CCO2) DIC, and CO2 emissions-(FCO2)-, as well as physical and chemical variables, including primary production and phytoplanktonic chlorophyll-a were measured. In addition, δ13C-DIC, δ13C-CO2 in lake waters, and δ13C of the sedimentary organic matter were measured seasonally to identify the primary CO2 sources and processes. While the lakes were consistently CCO2 supersaturated and FCO2 was released to the atmosphere during both seasons, the highest CCO2 and DIC were in summer (0.36-2.26 µmol L-1). Our results support a strong phosphorus limitation for primary production in these lakes, which impinges on CO2 dynamics. External DIC inputs to the lake waters primarily drive the CCO2 and, therefore, the FCO2. The δ13C-DIC signatures below -12‰  confirmed the primary geogenic influence on DIC. As also suggested by the high values on the calcite saturation index, the Miller-Tans plot revealed that the CO2 source in the lakes was close to the signature provided by the fractionation of δ13C-CO2 from calcite precipitation. Therefore, the main contribution behind the CCO2 values found in these karst lakes should be attributed to the calcite precipitation process, which is temperature-dependent according to the seasonal change observed in δ13C-DIC values. Finally, co-precipitation of phosphate with calcite could partly explain the observed low phytoplankton production in these lakes and the impact on the contribution to increasing greenhouse gas emissions. However, as eutrophication increases and the soluble reactive phosphorus (SRP) content increases, the co-precipitation of phosphate is expected to be progressively inhibited. These thresholds must be assessed to understand how the CO32- ions drive lake co-precipitation dynamics. Carbonate regions extend over 15% of the Earth's surface but seem essential in the CO2 dynamics at a global scale.


Subject(s)
Carbon Dioxide , Lakes , Seasons , Lakes/chemistry , Carbon Dioxide/analysis , Carbon Dioxide/metabolism , Spain , Environmental Monitoring/methods , Carbon Cycle , Phytoplankton/metabolism
19.
Sci Total Environ ; 933: 173048, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38740204

ABSTRACT

Microplastics (MPs) are ubiquitous in freshwater sediments, raising concern about their potential impacts on ecosystem services. However, the specific impacts of microbiota mediated by MPs in sediment and plastisphere compartments on P availability remain elusive. This investigation conducted a series of microcosm experiments utilizing eutrophic lake sediment amended with fuel-based polyethylene terephthalate (PET), bio-based polylactic acid (PLA) MPs, and a natural cobblestone substrate to unravel their effects. The findings highlighted that MPs induced alterations in bacterial communities in both sediment and plastisphere, consequently modifying P availabilities at the sediment-water interface (SWI). In comparison to non-biodegradable PET, biodegradable PLA MPs presented higher proportions of specific bacteria and functional genes associated with P profiles, such as Firmicutes, Ignavibacteriota, and P mineralizing genes in the sediment and plastisphere. This, in turn, elevated the levels of soluble reactive P in the porewater by 54.19 % (0-1 cm), 55.81 % (1-3 cm), and 18.24 % (3-5 cm), respectively. Additionally, PLA obviously altered P immobilization capacity and bioavailability, increasing the organic P fraction. Whereas, inert cobblestone exhibited negligible influence on P biogeochemical processes during the incubation. Moreover, the biofilm communities and those in the surrounding sediment specifically contributed to the changes in P profiles at the SWI. The functional genes associated with P profiles in the sediment mainly concentrate on P mineralization and P uptake/transport. In the plastisphere, P activation genes are obviously affected under MP exposure. This study fills the knowledge gap concerning the repercussions of MPs on ecosystem services.


Subject(s)
Geologic Sediments , Microbiota , Microplastics , Phosphorus , Water Pollutants, Chemical , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Microbiota/drug effects , Phosphorus/analysis , Water Pollutants, Chemical/analysis , Polyesters , Bacteria , Lakes/microbiology , Lakes/chemistry , Polyethylene Terephthalates , Ecosystem
20.
Environ Sci Pollut Res Int ; 31(24): 35864-35877, 2024 May.
Article in English | MEDLINE | ID: mdl-38743335

ABSTRACT

Microplastic (MP) contamination represents an issue of global concern for both aquatic and terrestrial ecosystems, but only in recent years, the study of MPs has been focused on freshwaters. Several monitoring surveys have detected the presence of a wide array of MPs differing in size, shape, and polymer composition in rivers and lakes worldwide. Because of their role of sink for plastic particles, the abundance of MPs was investigated in waters, and deep and shoreline sediments from diverse lakes, confirming the ubiquity of this contamination. Although diverse factors, including those concerning anthropogenic activities and physical characteristics of lakes, have been supposed to affect MP abundances, very few studies have directly addressed these links. Thus, the aim of the present study was to explore the levels of MP contamination in mountain and subalpine lakes from Northern Italy. Fourteen lakes dislocated at different altitudes and characterized by dissimilar anthropic pressures were visited. Lakeshore sediments were collected close to the drift line to assess MPs contamination. Our results showed the presence of MPs in lakeshore sediments from all the lakes, with a mean (± standard deviation) expressed as MPs/Kg dry sediment accounting to 14.42 ± 13.31 (range 1.57-61.53), while expressed as MPs/m2, it was 176.07 ± 172.83 (range 25.00-666.67). The MP abundance measured for Garda Lake was significantly higher compared to all the other ones (F1,13 = 7.344; P < 0.001). The pattern of contamination was dominated by fibers in all the lakes, but they were the main contributors in mountain lakes. These findings showed that the MP abundance varied according to the altitude of the lakes, with higher levels measured in subalpine lakes located at low altitudes and surrounded by populated areas.


Subject(s)
Environmental Monitoring , Geologic Sediments , Lakes , Microplastics , Water Pollutants, Chemical , Lakes/chemistry , Italy , Geologic Sediments/chemistry , Microplastics/analysis , Water Pollutants, Chemical/analysis , Altitude
SELECTION OF CITATIONS
SEARCH DETAIL
...