Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Clin Chim Acta ; 493: 148-155, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30858092

ABSTRACT

BACKGROUND: Cerebral Creatine deficiency syndromes (CCDS) include three hereditary diseases affecting the metabolism of creatine (Cr): arginine glycine amidinotransferase deficiency, guanidinoacetate methyltransferase deficiency and disorders of creatine transporter. These pathologies cause a brain creatine deficiency responsible of non-specific neurological impairments with mental retardation. LC-MS/MS measurements of guanidinoacetic acid (GAA) and creatine in urine and plasma are an important screening test to identify the deficit. Analysis of this polar and basic molecules not hold on standard column requires a derivatization step to butyl-esters. To overcome this long and fastidious derivatization, an ion pairing (IP) method was chosen in this study. METHOD: IP method was validated using Comité francais d'accréditation (COFRAC) recommendations. Then, urine GAA and creatine of 15 patients with a CDS deficiency suspected were tested y LC-MS/MS using IP technique, and performances were assessed with reference laboratory method (butylation method). Moreover, references values were suggested y the study of 100 urines samples of healthy patients. RESULTS: The method developed provided a good accuracy and precision with intra and inter-day coefficients of variation (CVs) <15%. The curve was linear for the biological and pathological concentrations. The comparison with the reference method did not reveal any significant difference for analytical performances but showed a simplification of the preparation of samples. CONCLUSION: The use of IP technique that we have developed demonstrated a good correlation with the butylation method. Moreover, this new method not only allows a simplification of the technique, but also decreases in run time.


Subject(s)
Clinical Laboratory Techniques/methods , Clinical Laboratory Techniques/standards , Creatine/urine , Glycine/analogs & derivatives , Guanidinoacetate N-Methyltransferase/deficiency , Language Development Disorders/urine , Movement Disorders/congenital , Chromatography, High Pressure Liquid , Glycine/urine , Guanidinoacetate N-Methyltransferase/urine , Humans , Language Development Disorders/diagnosis , Movement Disorders/diagnosis , Movement Disorders/urine , Tandem Mass Spectrometry
2.
Genet Med ; 19(2): 256-263, 2017 02.
Article in English | MEDLINE | ID: mdl-28055022

ABSTRACT

Disclaimer: These ACMG Standards and Guidelines are intended as an educational resource for clinical laboratory geneticists to help them provide quality clinical laboratory genetic services. Adherence to these standards and guidelines is voluntary and does not necessarily assure a successful medical outcome. These Standards and Guidelines should not be considered inclusive of all proper procedures and tests or exclusive of others that are reasonably directed to obtaining the same results. In determining the propriety of any specific procedure or test, clinical laboratory geneticists should apply their professional judgment to the specific circumstances presented by the patient or specimen. Clinical laboratory geneticists are encouraged to document in the patient's record the rationale for the use of a particular procedure or test, whether or not it is in conformance with these Standards and Guidelines. They also are advised to take notice of the date any particular guideline was adopted, and to consider other relevant medical and scientific information that becomes available after that date. It also would be prudent to consider whether intellectual property interests may restrict the performance of certain tests and other procedures.Cerebral creatine deficiency syndromes are neurometabolic conditions characterized by intellectual disability, seizures, speech delay, and behavioral abnormalities. Several laboratory methods are available for preliminary and confirmatory diagnosis of these conditions, including measurement of creatine and related metabolites in biofluids using liquid chromatography-tandem mass spectrometry or gas chromatography-mass spectrometry, enzyme activity assays in cultured cells, and DNA sequence analysis. These guidelines are intended to standardize these procedures to help optimize the diagnosis of creatine deficiency syndromes. While biochemical methods are emphasized, considerations for confirmatory molecular testing are also discussed, along with variables that influence test results and interpretation.Genet Med 19 2, 256-263.


Subject(s)
Amidinotransferases/deficiency , Amino Acid Metabolism, Inborn Errors/genetics , Brain Diseases, Metabolic, Inborn/genetics , Creatine/deficiency , Creatine/metabolism , Guanidinoacetate N-Methyltransferase/deficiency , Intellectual Disability/genetics , Language Development Disorders/genetics , Mental Retardation, X-Linked/genetics , Movement Disorders/congenital , Plasma Membrane Neurotransmitter Transport Proteins/deficiency , Repressor Proteins/genetics , Speech Disorders/genetics , Amidinotransferases/blood , Amidinotransferases/cerebrospinal fluid , Amidinotransferases/genetics , Amidinotransferases/urine , Amino Acid Metabolism, Inborn Errors/blood , Amino Acid Metabolism, Inborn Errors/cerebrospinal fluid , Amino Acid Metabolism, Inborn Errors/urine , Brain Diseases, Metabolic, Inborn/blood , Brain Diseases, Metabolic, Inborn/cerebrospinal fluid , Brain Diseases, Metabolic, Inborn/urine , Clinical Laboratory Techniques/methods , Creatine/blood , Creatine/cerebrospinal fluid , Creatine/genetics , Creatine/urine , Developmental Disabilities/blood , Developmental Disabilities/cerebrospinal fluid , Developmental Disabilities/genetics , Developmental Disabilities/urine , Genetic Testing/standards , Genetics, Medical/standards , Genomics , Guanidinoacetate N-Methyltransferase/blood , Guanidinoacetate N-Methyltransferase/cerebrospinal fluid , Guanidinoacetate N-Methyltransferase/genetics , Guanidinoacetate N-Methyltransferase/urine , Guidelines as Topic , Humans , Intellectual Disability/blood , Intellectual Disability/cerebrospinal fluid , Intellectual Disability/urine , Language Development Disorders/blood , Language Development Disorders/cerebrospinal fluid , Language Development Disorders/urine , Mental Retardation, X-Linked/blood , Mental Retardation, X-Linked/cerebrospinal fluid , Mental Retardation, X-Linked/urine , Movement Disorders/blood , Movement Disorders/cerebrospinal fluid , Movement Disorders/genetics , Movement Disorders/urine , Plasma Membrane Neurotransmitter Transport Proteins/blood , Plasma Membrane Neurotransmitter Transport Proteins/cerebrospinal fluid , Plasma Membrane Neurotransmitter Transport Proteins/genetics , Plasma Membrane Neurotransmitter Transport Proteins/urine , Repressor Proteins/blood , Repressor Proteins/cerebrospinal fluid , Repressor Proteins/urine , Speech Disorders/blood , Speech Disorders/cerebrospinal fluid
3.
Hum Mutat ; 21(4): 401-7, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12655555

ABSTRACT

The conversion of 3-methylglutaconyl-CoA to 3-hydroxy-3-methylglutaryl-CoA is the only step in leucine catametabolism yet to be characterized at enzyme and DNA levels. The deficiency of the putative mitochondrial enzyme 3-methylglutaconyl-CoA hydratase associates with the rare organic aciduria 3-methylglutaconic aciduria type I (MGA1), but neither the enzyme nor its gene have been described in any organism. Here we report that human 3-methylglutaconyl-CoA hydratase is identical with a previously described RNA-binding protein (designated AUH) possessing enoyl-CoA hydratase activity. Molecular analyses in five patients from four independent families revealed homozygosity or compound heterozygosity for mutations in the AUH gene; most mutations are predicted to completely abolish protein function. Mutations identified include c.80delG, R197X, IVS8-1G>A, A240V, and c.613_614insA. Clinical severity of MGA1 in published patients has been quite variable. Included in the present study is an additional patient with MGA1 who was detected by neonatal screening and has remained asymptomatic up to his present age of 2 years. The boy is homozygous for an N-terminal frameshift mutation in the AUH gene. Complete absence of 3-methylglutaconyl-CoA hydratase/AUH appears to be compatible with normal development in some cases. Further work is required to identify external or genetic factors associated with development of clinical problems in patients with MGA1.


Subject(s)
Glutarates/urine , Hydro-Lyases/genetics , Mutation/genetics , Amino Acid Metabolism, Inborn Errors/blood , Amino Acid Metabolism, Inborn Errors/enzymology , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/urine , Carnitine/blood , Child, Preschool , Exons/genetics , Genes, Recessive/genetics , Humans , Infant, Newborn , Intellectual Disability/blood , Intellectual Disability/genetics , Intellectual Disability/urine , Language Development Disorders/blood , Language Development Disorders/genetics , Language Development Disorders/urine , Male , Neonatal Screening/methods
4.
J Inherit Metab Dis ; 22(7): 815-20, 1999 Oct.
Article in English | MEDLINE | ID: mdl-10518282

ABSTRACT

The prevalence of 3-methylglutaconic aciduria was evaluated among children with developmental language disorders. A urine specimen was obtained from 40 children referred for developmental language delay to the Tel-Aviv Child Development Center during 12/96-6/97 and from 50 age-matched controls. Urine organic acids were analysed by gas chromatography-mass spectrometry. Urinary 3-methylglutaconic acid was quantified. A mildly increased excretion of 3-methylglutaconic acid was found in 8 children with developmental language delay. The combined excretion of 3-methylglutaconic and 3-methylglutaric acid was increased in 9 patients. There were no differences in the excretion of other organic acids. The patients with elevated 3-methylglutaconic acid did not differ from the other patients with developmental language disorders in any of the parameters evaluated. Mildly elevated urinary levels of 3-methylglutaconic acid may be a marker of a still undefined metabolic disorder presenting with developmental language delay. A further study in large groups of children with different developmental disorders is mandatory.


Subject(s)
Glutarates/urine , Language Development Disorders/urine , Child , Child, Preschool , Female , Fumarates/urine , Humans , Language Development Disorders/complications , Male , Malonates/urine , Mass Screening , Meglutol/analogs & derivatives , Meglutol/urine
SELECTION OF CITATIONS
SEARCH DETAIL
...