Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.227
Filter
1.
Yakugaku Zasshi ; 144(6): 651-657, 2024.
Article in Japanese | MEDLINE | ID: mdl-38825474

ABSTRACT

Microbial exudates including siderophore, which changes chemical species of actinides and lanthanides. We have investigated effects of desferrioxamine B (DFOB; one of the siderophores) and siderophore-like organic molecules (SLOM) on the adsorption of lanthanides by microbial cells, aluminium oxide (Al2O3), and manganese (Mn) oxides. When DFOB was present, the distribution coefficients of cerium (Ce) were measured to be lower than those of neighboring elements of lanthanum (La) and praseodymium (Pr) (Negative anomaly of Ce adsorption). Even though initial oxidation state of Ce in the solution was III, that was changed to IV after the addition of DFOB, indicating that Ce(III) was oxidized by forming complex with DFOB. When lanthanides were adsorbed by biogenic Mn(IV) oxides, negative anomaly of Ce adsorption was observed in the sorption in alkaline solution. Ce(III) was oxidized to forme the complexes of Ce(IV) with SLOM in the solution. These results show that siderophore possesses high performance of oxidation of Ce(III) to Ce(IV) during association, affectiong the adsorption behavior of Ce. After Fukushima accident, radioactive Cs accumulation by Eleutherococcus sciadophylloides (Koshiabura) caused by the dissolution of Fe from soil around the roots, that was dominated by siderophore releasing microorganisms (SB). These SBs may enhance dissolution of iron (Fe) and uranium (U) phases in the nuclear fuel debris formed in the nuclear reactors in Fukushima Daiichi nuclear power plant. Thus, in the interaction between microorganisms and radionuclides, SLOMs discharged by microorganisms are deeply involved in the chemical state change of radionuclides.


Subject(s)
Oxidation-Reduction , Siderophores , Adsorption , Deferoxamine/metabolism , Aluminum Oxide/chemistry , Lanthanoid Series Elements/chemistry , Manganese Compounds/chemistry , Oxides , Cerium , Radioisotopes
2.
J Biol Inorg Chem ; 29(3): 331-338, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38717473

ABSTRACT

Two new lanthanide-complexes based on the 5-nitropicolinate ligand (5-npic) were obtained and fully characterized. Single-crystal X-ray diffraction revealed that these compounds are isostructural to a Dy-complex, previously published by us, based on dinuclear monomers link together with an extended hydrogen bond network, providing a final chemical formula of [Ln2(5-npic)6(H2O)4]·(H2O)2, where Ln = Dy (1), Gd (2), and Tb (3). Preliminary photoluminescent studies exhibited a ligand-centered emission for all complexes. The potential antitumoral activity of these materials was assayed in a prostatic cancer cell line (PC-3; the 2nd most common male cancerous disease), showing a significant anticancer activity (50-60% at 500 µg·mL-1). In turn, a high biocompatibility by both, the complexes and their precursors in human immunological HL-60 cells, was evidenced. In view of the strongest toxic effect in the tumoral cell line provided by the free 5-npic ligand (~ 40-50%), the overall anticancer complex performance seems to be triggered by the presence of this molecule.


Subject(s)
Antineoplastic Agents , Lanthanoid Series Elements , Picolinic Acids , Humans , Lanthanoid Series Elements/chemistry , Lanthanoid Series Elements/pharmacology , Picolinic Acids/chemistry , Picolinic Acids/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Male , Drug Screening Assays, Antitumor , Models, Molecular , HL-60 Cells , Crystallography, X-Ray , Molecular Structure , Cell Line, Tumor , PC-3 Cells , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Cell Survival/drug effects , Cell Proliferation/drug effects
3.
Anal Chem ; 96(19): 7697-7705, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38697043

ABSTRACT

Dual/multimodal imaging strategies are increasingly recognized for their potential to provide comprehensive diagnostic insights in cancer imaging by harnessing complementary data. This study presents an innovative probe that capitalizes on the synergistic benefits of afterglow luminescence and magnetic resonance imaging (MRI), effectively eliminating autofluorescence interference and delivering a superior signal-to-noise ratio. Additionally, it facilitates deep tissue penetration and enables noninvasive imaging. Despite the advantages, only a limited number of probes have demonstrated the capability to simultaneously enhance afterglow luminescence and achieve high-resolution MRI and afterglow imaging. Herein, we introduce a cutting-edge imaging platform based on semiconducting polymer nanoparticles (PFODBT) integrated with NaYF4@NaGdF4 (Y@Gd@PFO-SPNs), which can directly amplify afterglow luminescence and generate MRI and afterglow signals in tumor tissues. The proposed mechanism involves lanthanide nanoparticles producing singlet oxygen (1O2) upon white light irradiation, which subsequently oxidizes PFODBT, thereby intensifying afterglow luminescence. This innovative platform paves the way for the development of high signal-to-background ratio imaging modalities, promising noninvasive diagnostics for cancer.


Subject(s)
Lanthanoid Series Elements , Magnetic Resonance Imaging , Nanoparticles , Polymers , Semiconductors , Magnetic Resonance Imaging/methods , Animals , Lanthanoid Series Elements/chemistry , Polymers/chemistry , Nanoparticles/chemistry , Mice , Humans , Gadolinium/chemistry , Luminescence , Singlet Oxygen/chemistry , Yttrium/chemistry , Fluorides/chemistry , Mice, Nude
4.
Inorg Chem ; 63(21): 9877-9887, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38748735

ABSTRACT

19F parashift probes with paramagnetically shifted reporter nuclei provide attractive platforms to develop molecular imaging probes. These probes enable ratiometric detection of molecular disease markers using a direct detection technique. Here, we describe a series of trivalent lanthanide (Ln(III)) complexes that are structural analogues of the clinically approved MR contrast agent (CA) ProHance to obtain LnL 19F parashift probes. We evaluated trans-gadolinium paramagnetic lanthanides compared to diamagnetic YL for 19F chemical shift and relaxation rate enhancement. The paramagnetic contribution to chemical shift (δPCS) for paramagnetic LnL exhibited either shifts to lower frequency (δPCS < 0 for TbL, DyL, and HoL) or shifts to higher frequency (δPCS > 0 for ErL, TmL, and YbL) compared to YL 19F spectroscopic signal. Zero-echo time pulse sequences achieved 56-fold sensitivity enhancement for DyL over YL, while developing probe-specific pulse sequences with fast delay times and acquisition times achieved 0.6-fold enhancement in limit of detection for DyL. DyL provides an attractive platform to develop 19F parashift probes for ratiometric detection of enzymatic activity.


Subject(s)
Lanthanoid Series Elements , Lanthanoid Series Elements/chemistry , Molecular Structure , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Magnetic Resonance Imaging , Contrast Media/chemistry , Fluorine/chemistry , Humans
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124410, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38718745

ABSTRACT

Tandem enzyme can catalyze some cascade reactions with high efficiency, and some few tandem enzyme-like mimics have been discovered recently. Further improving the catalytic efficiency of tandem nanoenzymes with facile method may undoubtedly promote and broaden their applications in various fields. In this work, cupric oxide nanoparticles (CuO NPs) with dual-functional enzyme mimics were synthesized using the rapid deposition method in advance, which simultaneously combined with lanthanide infinite coordination polymers (Ln ICPs) during the self-assemble of Tb3+, guanine-5'-triphosphate (GTP) and auxiliary ligand terephthalic acid (TA). Excitingly, the obtained Tb-GTP/TA@CuO ICPs, not only displayed obviously enhanced tandem catalytic activity compared with pure CuO NPs, but also provided a versatile ratiometric platform for ultrahigh selective and sensitive detection of glutathione (GSH) under single-wavelength excitation. A good linear relationship between the ratio signal and the GSH concentration was spanning from 0.001 to 20 µM with an impressive detection limit of 0.50 nM. This study opens a new and universal avenue for preparing integrated multifunctional probes by coupling of nanoenzyme catalytic activity with superior luminescent Ln ICPs through facile method.


Subject(s)
Copper , Glutathione , Lanthanoid Series Elements , Polymers , Spectrometry, Fluorescence , Copper/chemistry , Glutathione/analysis , Glutathione/chemistry , Polymers/chemistry , Lanthanoid Series Elements/chemistry , Spectrometry, Fluorescence/methods , Limit of Detection , Nanoparticles/chemistry , Catalysis , Metal Nanoparticles/chemistry
6.
Phys Chem Chem Phys ; 26(20): 14573-14581, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38722087

ABSTRACT

The supramolecular interaction between lanthanide complexes and proteins is at the heart of numerous chemical and biological studies. Some of these complexes have demonstrated remarkable interaction properties with proteins or peptides in solution and in the crystalline state. Here we have used the paramagnetism of lanthanide ions to characterize the affinity of two lanthanide complexes for ubiquitin. As the interaction process is dynamic, the acquired NMR data only reflect the time average of the different steps. We have used molecular dynamics (MD) simulations to get a deeper insight into the detailed interaction scenario at the microsecond scale. This NMR/MD approach enabled us to establish that the tris-dipicolinate complex interacts specifically with arginines and lysines, while the crystallophore explores the protein surface through weak interactions with carboxylates. These observations shed new light on the dynamic interaction properties of these complexes, which will ultimately enable us to propose a crystallization mechanism.


Subject(s)
Lanthanoid Series Elements , Molecular Dynamics Simulation , Ubiquitin , Ubiquitin/chemistry , Lanthanoid Series Elements/chemistry , Nuclear Magnetic Resonance, Biomolecular , Picolinic Acids/chemistry , Protein Binding
7.
Anal Methods ; 16(16): 2556-2568, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38592494

ABSTRACT

A novel luminescence-based analytical methodology was established employing a europium(III) complex with 3-allyl-2-hydroxybenzohydrazide (HAZ) as the coordinating ligand for the quantification of gemifloxacin mesylate (GMF) in pharmaceutical preparations and human plasma samples spiked with the compound. The stoichiometry of the europium complex with HAZ was determined via the Job plot and exhibited a metal-to-ligand ratio of 1 : 2. The analytical procedure relies on a rapid and significant enhancement of luminescence by the Eu(AZ)2 complex when it interacts with gemifloxacin mesylate, which allowed for the rapid detection of 96 samples within approximately 2 minutes. The thermodynamic parameters of the complexation of GMF with Eu(AZ)2 were evaluated and showed that the complexation of GMF was spontaneous with a negative ΔG. The binding constant K was 4.27 × 105 L mol-1 and DFT calculations supported GMF binding and the formation of Eu(AZ)2-GMF without further ligand exchange. The calibration graph for the luminescence quantitation of GMF was linear over a wide concentration range of 0.11-16 µg mL-1 (2.26 × 10-7 to 3.30 × 10-5 mol L-1), with a limit of quantification (LOQ) of 110 ng mL-1 (230 nmol L-1) and a detection limit (LOD) of 40 ng mL-1 (82 nmol L-1). The proposed method showed good accuracy with an average recovery of 99% with relative standard deviations of less than 5% in spiking experiments, even in complex pharmaceutical dosage forms such as tablets and in human blood plasma. Herein, the ability of the suppression of the luminescence background by using the long lag times of the lanthanide probe in a time-resolved detection scheme provided reliable and precise results, which suggests its potential for use in further real or patient samples.


Subject(s)
Europium , Gemifloxacin , Humans , Gemifloxacin/chemistry , Gemifloxacin/blood , Europium/chemistry , Luminescent Measurements/methods , Limit of Detection , Coordination Complexes/chemistry , Coordination Complexes/blood , Lanthanoid Series Elements/chemistry , Naphthyridines/blood , Naphthyridines/chemistry
8.
Inorg Chem ; 63(17): 7560-7570, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38610098

ABSTRACT

[Ln·DOTA]- complexes and systems derived therefrom are commonly used in MRI and optical bioimaging. These lanthanide(III) complexes are chiral, and, in solution, they are present in four forms, with two sets of enantiomers, with the ligand donors arranged in either a square antiprismatic, SAP, or twisted square antiprismatic geometry, TSAP. This complicated speciation is found in laboratory samples. To investigate speciation in biological media, when Ln·DOTA-like complexes interact with chiral biomolecules, six Eu·DOTA-monoamide complexes were prepared and investigated by using 1D and 2D 1H NMR. To emulate the chirality of biological media, the amide pendant arm was modified with one or two chiral centers. It is known that a chiral center on the DOTA scaffold significantly influences the properties of the system. Here, it was found that chirality much further away from the metal center changes the available conformational space and that both chiral centers and amide cis/trans isomerism may need to be considered─a fact that, for the optically enriched materials, led to the conclusion that eight chemically different forms may need to be considered, instead of the four forms necessary for DOTA. The results reported here clearly demonstrate the diverse speciation that must be considered when correlating an observation to a structure of a lanthanide(III) complex.


Subject(s)
Coordination Complexes , Lanthanoid Series Elements , Magnetic Resonance Imaging , Lanthanoid Series Elements/chemistry , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Coordination Complexes/pharmacology , Stereoisomerism , Molecular Structure , Heterocyclic Compounds, 1-Ring/chemistry , Amides/chemistry , Contrast Media/chemistry , Contrast Media/pharmacology
9.
Talanta ; 274: 126056, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38599123

ABSTRACT

Early diagnosis is paramount for enhancing survival rates and prognosis in the context of malignant diseases. Hepatocellular carcinoma (HCC), the second leading cause of cancer-related deaths worldwide, poses significant challenges for its early detection. In this study, we present an innovative approach which contributed to the early diagnosis of HCC. By lanthanide encoding signal amplification to map glycan-linkages at the single-cell level, the minute quantities of "soft" glycan-linkages on single cell surface were converted into "hard" elemental tags through the use of an MS2 signal amplifier. Harnessing the power of lanthanides encoded within MS2, we achieve nearly three orders of magnitude signal amplification. These encoded tags are subsequently quantified using single-cell inductively coupled plasma mass spectrometry (SC-ICP-MS). Linear discriminant analysis (LDA) identifies seven specific glycan-linkages (α-2,3-Sia, α-Gal, α-1,2-Fuc, α-1,6-Fuc, α-2,6-Sia, α-GalNAc, and Gal-ß-1,3-GalNAc) as biomarkers. Our methodology is initially validated at the cellular level with 100% accuracy in discriminating between hepatic carcinoma HepG2 cells and their normal HL7702 cells. We apply this approach to quantify and classify glycan-linkages on the surfaces of 55 clinical surgical HCC specimens. Leveraging these seven glycan-linkages as biomarkers, we achieve precise differentiation between 8 normal hepatic specimens, 40 early HCC specimens, and 7 colorectal metastasis HCC specimens. This pioneering work represents the first instance of employing single-cell glycan-linkages as biomarkers promising for the early diagnosis of HCC with a remarkable 100% predictive accuracy rate, which holds immense potential for enhancing the feasibility and precision of HCC diagnosis in clinical practice.


Subject(s)
Carcinoma, Hepatocellular , Lanthanoid Series Elements , Liver Neoplasms , Mass Spectrometry , Polysaccharides , Single-Cell Analysis , Carcinoma, Hepatocellular/diagnosis , Humans , Liver Neoplasms/diagnosis , Polysaccharides/analysis , Polysaccharides/chemistry , Lanthanoid Series Elements/chemistry , Mass Spectrometry/methods , Single-Cell Analysis/methods , Early Detection of Cancer/methods , Hep G2 Cells , Biomarkers, Tumor/analysis
10.
Biosens Bioelectron ; 257: 116330, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38677022

ABSTRACT

Perfluorooctanoic acid (PFOA) poses a threat to the environment and human health due to its persistence, bioaccumulation, and reproductive toxicity. Herein, a lanthanide metal-organic framework (Ln-MOF)-based surface molecularly imprinted polymers (SMIPs) ratiometric fluorescence probe (Eu/Tb-MOF@MIPs) and a smartphone-assisted portable device were developed for the detection of PFOA with high selectivity in real water samples. The integration of Eu/Tb MOFs as carriers not only had highly stable multiple emission signals but also prevented deformation of the imprinting cavity of MIPs. Meanwhile, the MIPs layer preserved the fluorescence of Ln-MOF and provided selective cavities for improved specificity. Molecular dynamics (MD) was employed to simulate the polymerization process of MIPs, revealing that the formation of multiple recognition sites was attributed to the establishment of hydrogen bonds between functional monomers and templates. The probe showed a good linear relationship with PFOA concentration in the range of 0.02-2.8 µM, by giving the limit of detection (LOD) of 0.98 nM. Additionally, The red-green-blue (RGB) values analysis based on the smartphone-assisted portable device demonstrated a linear relationship of 0.1-2.8 µM PFOA with the LOD of 3.26 nM. The developed probe and portable device sensing platform exhibit substantial potential for on-site detecting PFOA in practical applications and provide a reliable strategy for the intelligent identification of important targets in water environmental samples.


Subject(s)
Biosensing Techniques , Caprylates , Fluorescent Dyes , Fluorocarbons , Metal-Organic Frameworks , Molecularly Imprinted Polymers , Smartphone , Water Pollutants, Chemical , Metal-Organic Frameworks/chemistry , Caprylates/analysis , Caprylates/chemistry , Fluorescent Dyes/chemistry , Biosensing Techniques/instrumentation , Fluorocarbons/chemistry , Fluorocarbons/analysis , Molecularly Imprinted Polymers/chemistry , Water Pollutants, Chemical/analysis , Limit of Detection , Lanthanoid Series Elements/chemistry , Spectrometry, Fluorescence/methods , Humans
11.
ACS Nano ; 18(18): 11837-11848, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38654614

ABSTRACT

A noninvasive strategy for in situ diagnosis and precise treatment of bacterial biofilm infections is highly anticipated but still a great challenge. Currently, no in vivo biofilm-targeted theranostic agent is available. Herein, we fabricated intelligent theranostic alginate lyase (Aly)-NaNdF4 nanohybrids with a 220 nm sunflower-like structure (NaNdF4@DMS-Aly) through an enrichment-encapsulating strategy, which exhibited excellent photothermal conversion efficiency and the second near-infrared (NIR-II) luminescence. Benefiting from the site-specific targeting and biofilm-responsive Aly release from NaNdF4@DMS-Aly, we not only enabled noninvasive diagnosis but also realized Aly-photothermal synergistic therapy and real-time evaluation of therapeutic effect in mice models with Pseudomonas aeruginosa biofilm-induced pulmonary infection. Furthermore, such nanobiohybrids with a sheddable siliceous shell are capable of delaying the NaNdF4 dissolution and biodegradation upon accomplishing the therapy, which is highly beneficial for the biosafety of theranostic agents.


Subject(s)
Biofilms , Lanthanoid Series Elements , Pseudomonas aeruginosa , Theranostic Nanomedicine , Biofilms/drug effects , Animals , Mice , Pseudomonas aeruginosa/drug effects , Lanthanoid Series Elements/chemistry , Lanthanoid Series Elements/pharmacology , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Humans , Photothermal Therapy , Mice, Inbred BALB C
12.
ACS Chem Biol ; 19(5): 1056-1065, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38620063

ABSTRACT

Lanmodulins are small, ∼110-residue proteins with four EF-hand motifs that demonstrate a picomolar affinity for lanthanide ions, making them efficient in the recovery and separation of these technologically important metals. In this study, we examine the thermodynamic and structural complexities of lanthanide ion binding to a 41-residue domain, EF 2-3, that constitutes the two highest-affinity metal-binding sites in the lanmodulin protein from Methylorubrum extorquens. Using a combination of circular dichroism (CD) spectroscopy, isothermal titration calorimetry (ITC), two-dimensional infrared (2D IR) spectroscopy, and molecular dynamics (MD) simulations, we characterize the metal binding capabilities of EF 2-3. ITC demonstrates that binding occurs between peptide and lanthanides with conditional dissociation constants (Kd) in the range 20-30 µM, with no significant differences in the Kd values for La3+, Eu3+, and Tb3+ at pH 7.4. In addition, CD spectroscopy suggests that only one binding site of EF 2-3 undergoes a significant conformational change in the presence of lanthanides. 2D IR spectroscopy demonstrates the presence of both mono- and bidentate binding configurations in EF 2-3 with all three lanthanides. MD simulations, supported by Eu3+ luminescence measurements, explore these results, suggesting a competition between water-lanthanide and carboxylate-lanthanide interactions in the EF 2-3 domain. These results underscore the role of the core helical bundle of the protein architecture in influencing binding affinities and communication between the metal-binding sites in the full-length protein.


Subject(s)
Lanthanoid Series Elements , Molecular Dynamics Simulation , Spectrophotometry, Infrared , Lanthanoid Series Elements/chemistry , Lanthanoid Series Elements/metabolism , Thermodynamics , Binding Sites , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Protein Domains , Circular Dichroism , Protein Binding , Metalloproteins
13.
ACS Appl Bio Mater ; 7(4): 2460-2471, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38517347

ABSTRACT

Here, we demonstrate a label-free dual optical response strategy for the detection of cytochrome c (Cyt c) with ultrahigh sensitivity using highly luminescent lanthanides containing inorganic-organic hybrid nanotubular sensor arrays. These sensor arrays are formed by the sequential incorporation of the photosensitizers 2,3-dihydroxynaphthalene (DHN) or 1,10-phenanthroline (Phen), and trivalent lanthanide terbium ions (Tb3+) into sodium lithocholate (NaLC) nanotube templates. Our sensing platform relies on the detection and quantification of Cyt c in solution by providing dual photoluminescence quenching responses from the nanotubular hybrid arrays in the presence of Cyt c. The large quenching of the sensitized Tb3+ emission within the DHN/Phen-Tb3+-NaLC nanotubular sensor arrays caused by the strong binding of the photosensitizers to Cyt c provides an important signal response for the selective detection of Cyt c. This long-lived lanthanide emission response-based sensing strategy can be highly advantageous for the detection of Cyt c in a cellular environment eliminating background fluorescence and scattering signals through time-gated measurements. The DHN containing nanotubular sensor arrays (DHN-NaLC and DHN-Tb3+-NaLC) provide an additional quenching response characterized by a unique spectral valley splitting with quantized quenching dip on the DHN fluorescence emission. This spectral quenching dip resulting from efficient FRET between the protein bound DHN photosensitizer and the heme group of Cyt c serves as an important means for specific detection and quantification of Cyt c in the concentration range of 0-30 µM with a low detection limit of around 20 nM.


Subject(s)
Lanthanoid Series Elements , Lanthanoid Series Elements/chemistry , Cytochromes c , Photosensitizing Agents , Terbium/chemistry , Luminescence
14.
Nat Commun ; 15(1): 2341, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491065

ABSTRACT

Nanothermometers enable the detection of temperature changes at the microscopic scale, which is crucial for elucidating biological mechanisms and guiding treatment strategies. However, temperature monitoring of micron-scale structures in vivo using luminescent nanothermometers remains challenging, primarily due to the severe scattering effect of biological tissue that compromises the imaging resolution. Herein, a lanthanide luminescence nanothermometer with a working wavelength beyond 1500 nm is developed to achieve high-resolution temperature imaging in vivo. The energy transfer between lanthanide ions (Er3+ and Yb3+) and H2O molecules, called the environment quenching assisted downshifting process, is utilized to establish temperature-sensitive emissions at 1550 and 980 nm. Using an optimized thin active shell doped with Yb3+ ions, the nanothermometer's thermal sensitivity and the 1550 nm emission intensity are enhanced by modulating the environment quenching assisted downshifting process. Consequently, minimally invasive temperature imaging of the cerebrovascular system in mice with an imaging resolution of nearly 200 µm is achieved using the nanothermometer. This work points to a method for high-resolution temperature imaging of micron-level structures in vivo, potentially giving insights into research in temperature sensing, disease diagnosis, and treatment development.


Subject(s)
Lanthanoid Series Elements , Animals , Mice , Lanthanoid Series Elements/chemistry , Temperature , Luminescence , Diagnostic Imaging , Ions
15.
Anal Sci ; 40(6): 1043-1050, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38430367

ABSTRACT

To ensure maximum therapeutic safety and efficacy of stem cell transplantation, it is essential to observe the kinetics of behavior, accumulation, and engraftment of transplanted stem cells in vivo. However, it is difficult to detect transplanted stem cells with high sensitivity by conventional in vivo imaging technologies. To diagnose the kinetics of transplanted stem cells, we prepared multifunctional nanoparticles, Gd2O3 co-doped with Er3+ and Yb3+ (Gd2O3: Er, Yb-NPs), and developed an in vivo double modal imaging technique with near-infrared-II (NIR-II) fluorescence imaging and magnetic resonance imaging (MRI) of stem cells using Gd2O3: Er, Yb-NPs. Gd2O3: Er, Yb-NPs were transduced into adipose tissue-derived stem cells (ASCs) through a simple incubation process without cytotoxicity under certain concentrations of Gd2O3: Er, Yb-NPs and were found not to affect the morphology of ASCs. ASCs labeled with Gd2O3: Er, Yb-NPs were transplanted subcutaneously onto the backs of mice, and successfully imaged with good contrast using an in vivo NIR-II fluorescence imaging and MRI system. These data suggest that Gd2O3: Er, Yb-NPs may be useful for in vivo double modal imaging with NIR-II fluorescence imaging and MRI of transplanted stem cells.


Subject(s)
Gadolinium , Magnetic Resonance Imaging , Stem Cells , Gadolinium/chemistry , Animals , Mice , Stem Cells/cytology , Infrared Rays , Stem Cell Transplantation , Nanoparticles/chemistry , Optical Imaging , Lanthanoid Series Elements/chemistry , Adipose Tissue/cytology
16.
Adv Mater ; 36(23): e2402981, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38513638

ABSTRACT

The photothermal therapeutic effect on tumors located at different subcutaneous depths varies due to the attenuation of light by tissue. Here, based on the wavelength-dependent optical attenuation properties of tissues, the tumor depth is assessed using a multichannel lanthanide nanocomposite. A zeolitic imidazolate framework (ZIF-8)-coated nanocomposite is able to deliver high amounts of the hydrophilic heat shock protein 90 inhibitor epigallocatechin gallate through a hydrogen-bonding network formed by the encapsulated highly polarized polyoxometalate guest. It is superior to both bare and PEGylated ZIF-8 for drug delivery. With the assessment of tumor depth and accumulated amount of nanocomposite by fluorescence, an irradiation prescription can be customized to release sufficient HSP90 inhibitor and generate heat for sensitized photothermal treatment of tumors, which not only ensured therapeutic efficacy but also minimized damage to the surrounding tissues.


Subject(s)
Catechin , Lanthanoid Series Elements , Nanocomposites , Nanocomposites/chemistry , Nanocomposites/therapeutic use , Lanthanoid Series Elements/chemistry , Animals , Catechin/analogs & derivatives , Catechin/chemistry , Mice , Humans , Cell Line, Tumor , Metal-Organic Frameworks/chemistry , Neoplasms/drug therapy , Neoplasms/pathology , Photothermal Therapy , Imidazoles/chemistry , Temperature , Zeolites/chemistry , Drug Carriers/chemistry
17.
Chem Asian J ; 19(7): e202400038, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38348520

ABSTRACT

Luminescent molecule-based bioimaging system is widely used for precise localization and distinction of cancer/tumor cells. Luminescent lanthanide (Ln(III)) complexes offer long-lived (sub-millisecond time scale) and sharp (FWHM <10 nm) emission, arising from the forbidden 4f-4f electronic transitions. Luminescent Ln(III) complex-based bioimaging has emerged as a promising option for both in vitro and in vivo visualizations. In this mini-review, the historical development and recent significant progress of luminescent Ln(III) probes for bioapplications are introduced. The recent studies are mainly focused on three points: (i) the structural modifications of Ln(III) complexes in both macrocyclic and small ligands, (ii) the acquirement of high resolution luminescence images of cancer/tumor cells and (iii) the constructions of ratiometric biosensors. Furthermore, our recent study is explained as a new Cancer GPS (cancer grade probing for determining tumor grade through photophysical property analyses of intracellular Eu(III) complex.


Subject(s)
Biosensing Techniques , Lanthanoid Series Elements , Neoplasms , Humans , Lanthanoid Series Elements/chemistry , Luminescence , Ligands , Neoplasms/diagnostic imaging
18.
Angew Chem Int Ed Engl ; 63(16): e202317728, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38376889

ABSTRACT

Applying a single molecular probe to monitor enzymatic activities in multiple, complementary imaging modalities is highly desirable to ascertain detection and to avoid the complexity associated with the use of agents of different chemical entities. We demonstrate here the versatility of lanthanide (Ln3+) complexes with respect to their optical and magnetic properties and their potential for enzymatic detection in NIR luminescence, CEST and T1 MR imaging, controlled by the nature of the Ln3+ ion, while using a unique chelator. Based on X-ray structural, photophysical, and solution NMR investigations of a family of Ln3+ DO3A-pyridine model complexes, we could rationalize the luminescence (Eu3+, Yb3+), CEST (Yb3+) and relaxation (Gd3+) properties and their variations between carbamate and amine derivatives. This allowed the design of L n L G a l 5 ${{{\bf L n L}}_{{\bf G a l}}^{5}}$ probes which undergo enzyme-mediated changes detectable in NIR luminescence, CEST and T1-weighted MRI, respectively governed by variations in their absorption energy, in their exchanging proton pool and in their size, thus relaxation efficacy. We demonstrate that these properties can be exploited for the visualization of ß-galactosidase activity in phantom samples by different imaging modalities: NIR optical imaging, CEST and T1-weighted MRI.


Subject(s)
Lanthanoid Series Elements , Lanthanoid Series Elements/chemistry , Luminescence , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy , Chelating Agents
19.
Chembiochem ; 25(5): e202300811, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38269599

ABSTRACT

Artificial dye-coupled assays have been widely adopted as a rapid and convenient method to assess the activity of methanol dehydrogenases (MDH). Lanthanide(Ln)-dependent XoxF-MDHs are able to incorporate different lanthanides (Lns) in their active site. Dye-coupled assays showed that the earlier Lns exhibit a higher enzyme activity than the late Lns. Despite widespread use, there are limitations: oftentimes a pH of 9 and activators are required for the assay. Moreover, Ln-MDH variants are not obtained by isolation from the cells grown with the respective Ln, but by incubation of an apo-MDH with the Ln. Herein, we report the cultivation of Ln-dependent methanotroph Methylacidiphilum fumariolicum SolV with nine different Lns, the isolation of the respective MDHs and the assessment of the enzyme activity using the dye-coupled assay. We compare these results with a protein-coupled assay using its physiological electron acceptor cytochrome cGJ (cyt cGJ ). Depending on the assay, two distinct trends are observed among the Ln series. The specific enzyme activity of La-, Ce- and Pr-MDH, as measured by the protein-coupled assay, exceeds that measured by the dye-coupled assay. This suggests that early Lns also have a positive effect on the interaction between XoxF-MDH and its cyt cGJ thereby increasing functional efficiency.


Subject(s)
Lanthanoid Series Elements , Lanthanoid Series Elements/chemistry , Alcohol Oxidoreductases/chemistry , Cytochromes c/chemistry , Malate Dehydrogenase
20.
Anal Chem ; 96(5): 2107-2116, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38277386

ABSTRACT

A new detection method based on the photoluminescence properties of dye-sensitized lanthanide nanoparticles (Ln NPs) was developed for enzyme-linked immunosorbent assays (ELISAs). In this method, the horseradish peroxidase (HRP) enzyme catalyzes the oxidation of phenol derivatives in the presence of hydrogen peroxide, providing dimers that are able to interact with the Ln NP surface and to efficiently photosensitize the Ln ions. Due to the very long emission lifetime of Ln, the time-gated detection of Ln NP luminescence allows the elimination of background noise due to the biological environment. After a comparison of the enzyme-catalyzed oxidation of various phenol derivatives, methyl 4-hydroxyphenyl acetate (MHPA) was selected as the most promising substrate, as the highest Ln emission intensity was observed following its HRP-catalyzed oxidation. After a meticulous optimization of the conditions of both the enzymatic reaction and the Ln sensitization (buffer, pH, concentration of the reactants, NP type, etc.), this new detection method was successfully implemented in a commercial insulin ELISA kit as a proof-of-concept, with an increased sensitivity compared to the commercial detection method.


Subject(s)
Lanthanoid Series Elements , Metal Nanoparticles , Luminescence , Lanthanoid Series Elements/chemistry , Horseradish Peroxidase/chemistry , Enzyme-Linked Immunosorbent Assay , Phenols , Hydrogen Peroxide/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...