Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 249
Filter
1.
J ASEAN Fed Endocr Soc ; 38(2): 124-127, 2023.
Article in English | MEDLINE | ID: mdl-38045665

ABSTRACT

Primary growth hormone (GH) resistance or growth hormone insensitivity syndrome, also called Laron syndrome, is a hereditary disease caused by mutations in the GH receptor or in the post-receptor signaling pathway. This disorder is characterized by postnatal growth failure resembling GH deficiency. Differentiating the two conditions is necessary. We present the cases of two siblings, a 16-year-old female and a 9-year-old male, born from a consanguineous union. Both had normal birth weights with subsequent severe short stature and delayed teeth eruption, with no features suggestive of any systemic illness. Serum insulin-like growth factor 1 (IGF1) and insulin-like growth factor binding protein 3 (IGFBP3) were both low. Suspecting GH deficiency, provocative testing with clonidine was done revealing peak growth hormone >40 ng/mL in both patients. In view of low IGF1 and IGFBP3 and high GH on stimulation, IGF1 generation test was done for both siblings, with values supporting the diagnosis of GH insensitivity or Laron syndrome.


Subject(s)
Human Growth Hormone , Laron Syndrome , Male , Female , Humans , Adolescent , Child , Laron Syndrome/diagnosis , Siblings , Growth Hormone/therapeutic use , Human Growth Hormone/therapeutic use , Receptors, Somatotropin
2.
Front Endocrinol (Lausanne) ; 14: 1291812, 2023.
Article in English | MEDLINE | ID: mdl-37941907

ABSTRACT

The growth hormone (GH)-insulin-like growth factor-1 (IGF1) signaling pathway emerged in recent years as a key determinant of aging and longevity. Disruption of this network in different animal species, including flies, nematodes and mouse, was consistently associated with an extended lifespan. Epidemiological analyses have shown that patients with Laron syndrome (LS), the best-characterized disease under the umbrella of the congenital IGF1 deficiencies, seem to be protected from cancer. While aging and cancer, as a rule, are considered diametrically opposite processes, modern lines of evidence reinforce the notion that aging and cancer might, as a matter of fact, be regarded as divergent manifestations of identical biochemical and cellular underlying processes. While the effect of individual mutations on lifespan and health span is very difficult to assess, genome-wide screenings identified a number of differentially represented aging- and longevity-associated genes in patients with LS. The present review summarizes recent data that emerged from comprehensive analyses of LS patients and portrays a number of previously unrecognized targets for GH-IGF1 action. Our article sheds light on complex aging and longevity processes, with a particular emphasis on the role of the GH-IGF1 network in these mechanisms.


Subject(s)
Human Growth Hormone , Laron Syndrome , Neoplasms , Humans , Mice , Animals , Laron Syndrome/genetics , Aging/genetics , Longevity/genetics , Growth Hormone , Human Growth Hormone/genetics , Neoplasms/metabolism
3.
Yale J Biol Med ; 96(3): 313-325, 2023 09.
Article in English | MEDLINE | ID: mdl-37780997

ABSTRACT

Laron syndrome (LS) is a rare autosomal recessively segregating disorder of severe short stature. The condition is characterized by short limbs, delayed puberty, hypoglycemia in infancy, and obesity. Mutations in growth hormone receptor (GHR) have been implicated in LS; hence, it is also known as growth hormone insensitivity syndrome (MIM-262500). Here we represent a consanguineous Pakistani family in which three siblings were afflicted with LS. Patients had rather similar phenotypic presentations marked with short stature, delayed bone age, limited extension of elbows, truncal obesity, delayed puberty, childish appearance, and frontal bossing. They also had additional features such as hypo-muscularity, early fatigue, large ears, widely-spaced breasts, and attention deficit behavior, which are rarely reported in LS. The unusual combination of the features hindered a straightforward diagnosis and prompted us to first detect the regions of shared homozygosity and subsequently the disease-causing variant by next generation technologies, like SNP genotyping and exome sequencing. A homozygous pathogenic variant c.508G>C (p.(Asp170His)) in GHR was detected. The variant is known to be implicated in LS, supporting the molecular diagnosis of LS. Also, we present detailed clinical, hematological, and hormonal profiling of the siblings.


Subject(s)
Laron Syndrome , Puberty, Delayed , Humans , Laron Syndrome/genetics , Laron Syndrome/diagnosis , Mutation/genetics , Obesity , Pakistan , Receptors, Somatotropin/genetics
4.
Orphanet J Rare Dis ; 18(1): 312, 2023 10 07.
Article in English | MEDLINE | ID: mdl-37805563

ABSTRACT

BACKGROUND: Severe primary insulin-like growth factor-I (IGF-I) deficiency (SPIGFD) is a rare growth disorder characterized by short stature (standard deviation score [SDS] ≤ 3.0), low circulating concentrations of IGF-I (SDS ≤ 3.0), and normal or elevated concentrations of growth hormone (GH). Laron syndrome is the best characterized form of SPIGFD, caused by a defect in the GH receptor (GHR) gene. However, awareness of SPIGFD remains low, and individuals living with SPIGFD continue to face challenges associated with diagnosis, treatment and care. OBJECTIVE: To gather perspectives on the key challenges for individuals and families living with SPIGFD through a multi-stakeholder approach. By highlighting critical gaps in the awareness, diagnosis, and management of SPIGFD, this report aims to provide recommendations to improve care for people affected by SPIGFD globally. METHODS: An international group of clinical experts, researchers, and patient and caregiver representatives from the SPIGFD community participated in a virtual, half-day meeting to discuss key unmet needs and opportunities to improve the care of people living with SPIGFD. RESULTS: As a rare disorder, limited awareness and understanding of SPIGFD amongst healthcare professionals (HCPs) poses significant challenges in the diagnosis and treatment of those affected. Patients often face difficulties associated with receiving a formal diagnosis, delayed treatment initiation and limited access to appropriate therapy. This has a considerable impact on the physical health and quality of life for patients, highlighting a need for more education and clearer guidance for HCPs. Support from patient advocacy groups is valuable in helping patients and their families to find appropriate care. However, there remains a need to better understand the burden that SPIGFD has on individuals beyond height, including the impact on physical, emotional, and social wellbeing. CONCLUSIONS: To address the challenges faced by individuals and families affected by SPIGFD, greater awareness of SPIGFD is needed within the healthcare community, and a consensus on best practice in the care of individuals affected by this condition. Continued efforts are also needed at a global level to challenge existing perceptions around SPIGFD, and identify solutions that promote equitable access to appropriate care. Medical writing support was industry-sponsored.


Subject(s)
Dwarfism , Laron Syndrome , Humans , Insulin-Like Growth Factor I/therapeutic use , Quality of Life , Laron Syndrome/diagnosis , Laron Syndrome/drug therapy , Laron Syndrome/genetics , Dwarfism/drug therapy , Growth Disorders
5.
Biol Pharm Bull ; 46(9): 1338-1342, 2023.
Article in English | MEDLINE | ID: mdl-37661412

ABSTRACT

Growth hormone receptor (GHR)-deficient pigs were generated using the CRISPR/Cas9 system to investigate the involvement of GHR-mediated growth hormone (GH) signaling in androgen-associated gene expression of hepatic drug metabolizing enzymes (DMEs) and drug transporters. We initially confirmed that no wild-type GHR mRNA was present in GHR-/- (GHR-KO) pigs; in addition, as previously reported, those pigs exhibited decreases in body weight and serum insulin-like growth factor-1 concentration and an increase in serum GH concentration compared with the levels in GHR-/+ and GHR+/+ pigs with a wild-type GHR mRNA. The real-time RT-PCR results on the mRNA levels of hepatic DMEs and drug transporters in the GHR-KO pigs and the pigs with a wild-type GHR mRNA revealed that, among the examined hepatic DMEs, the mRNA levels of CYP1A2, CYP2A19, sulfotransferase (SULT) 1A1, and SULT2A1 were higher in GHR-KO pigs than in the pigs with a wild-type GHR mRNA, whereas the opposite trend was observed for the mRNA level of uridine 5'-diphospho-glucuronosyltransferase 1A6. No such significant differences in the mRNA levels of three hepatic drug transporters including multidrug resistance protein 1 were observed. In addition, the mRNA level of hepatic cut-like homeobox 2 (CUX2), which is expressed in an androgen-dependent manner and associated with the hepatic mRNA expression of several DMEs, was significantly decreased in GHR-KO pigs. The present findings strongly suggest that not only serum androgen but also GHR-mediated GH signaling contributes to the mRNA expression of several DMEs and CUX2, but not transporters, in the pig liver.


Subject(s)
Androgens , Laron Syndrome , Animals , Swine , Membrane Transport Proteins , Fibrinolytic Agents , Gene Expression
6.
J Clin Endocrinol Metab ; 109(1): 46-56, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37579214

ABSTRACT

CONTEXT: The European Increlex® Growth Forum Database (Eu-IGFD) is an ongoing surveillance registry (NCT00903110) established to collect long-term safety and effectiveness data on the use of recombinant human insulin-like growth factor-1 (rhIGF-1, mecasermin, Increlex) for the treatment of children/adolescents with severe primary insulin-like growth factor-1 deficiency (SPIGFD). OBJECTIVE: This analysis of Eu-IGFD data aimed to identify the frequency and predictive factors for hypoglycemia adverse events (AEs) in children treated with rhIGF-1. METHODS: Data were collected from December 2008 to May 2021. Logistic regression was performed to identify predictive risk factors for treatment-induced hypoglycemia AEs. Odds ratios (ORs) are presented with 95% CIs for each factor. RESULTS: In total, 306 patients were enrolled in the registry; 84.6% were diagnosed with SPIGFD. Patients who experienced ≥ 1 hypoglycemia AE (n = 80) compared with those with no hypoglycemia AEs (n = 224) had a lower mean age at treatment start (8.7 years vs 9.8 years), a more frequent diagnosis of Laron syndrome (27.5% vs 10.3%), and a history of hypoglycemia (18.8% vs 4.5%). Prior history of hypoglycemia (OR 0.25; 95% CI: [0.11; 0.61]; P = .002) and Laron syndrome diagnosis (OR 0.36; 95% CI: [0.18; 0.72]; P = .004) predicted future hypoglycemia AEs. Total hypoglycemia AEs per patient per treatment year was 0.11 and total serious hypoglycemia AEs per patient per treatment year was 0.01. CONCLUSION: Hypoglycemia occurs more frequently in patients with prior history of hypoglycemia and/or Laron syndrome compared with patients without these risk factors, and these patients should be carefully monitored for this AE throughout treatment.


Subject(s)
Hypoglycemia , Laron Syndrome , Child , Adolescent , Humans , Hypoglycemia/chemically induced , Hypoglycemia/epidemiology , Longitudinal Studies , Insulin-Like Growth Factor I , Recombinant Proteins/adverse effects , Databases, Factual , Logistic Models
7.
BMC Endocr Disord ; 23(1): 155, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37474955

ABSTRACT

BACKGROUND: Human growth hormone (hGH) plays a crucial role in growth by binding to growth hormone receptor (GHR) in target cells. Binding of GH molecules to their cognate receptors triggers downstream signaling pathways leading to the transcription of several genes, including insulin-like growth factor (IGF)-1. Pathogenic variants in the GHR gene can result in structural and functional defects in the GHR protein, leading to Laron Syndrome (LS) with the primary clinical manifestation of short stature. So far, around 100 GHR variants have been reported, mostly biallelic, as causing LS. CASE PRESENTATION: We report on three siblings from an Iranian consanguineous family who presented with dwarfism. Whole-exome sequencing (WES) was performed on the proband, revealing a novel homozygous missense variant in the GHR gene (NM_000163.5; c.610 T > A, p.(Trp204Arg)) classified as a likely pathogenic variant according to the recommendation of the American College of Medical Genetics (ACMG). Co-segregation analysis was investigated using Sanger sequencing. CONCLUSIONS: To date, approximately 400-500 LS cases with GHR biallelic variants, out of them 10 patients originating from Iran, have been described in the literature. Given the high rate of consanguineous marriages in the Iranian population, the frequency of LS is expected to be higher, which might be explained by undiagnosed cases. Early diagnosis of LS is very important, as treatment is available for this condition.


Subject(s)
Dwarfism , Human Growth Hormone , Laron Syndrome , Humans , Receptors, Somatotropin/genetics , Receptors, Somatotropin/metabolism , Laron Syndrome/genetics , Laron Syndrome/drug therapy , Iran , Consanguinity , Pedigree , Dwarfism/genetics , Insulin-Like Growth Factor I/metabolism
8.
Endocr Relat Cancer ; 30(9)2023 09 01.
Article in English | MEDLINE | ID: mdl-37343154

ABSTRACT

Many clinical and experimental studies have implicated the growth hormone (GH)-insulin-like growth factor (IGF-1) axis with the progression of cancer. The epidemiological finding that patients with Laron syndrome (LS), the best-characterized disease under the spectrum of congenital IGF-1 deficiencies, do not develop cancer is of major scientific and translational relevance. The evasion of LS patients from cancer emphasizes the central role of the GH-IGF-1 system in cancer biology. To identify genes that are differentially expressed in LS and that might provide a biological foundation for cancer protection, we have recently conducted genome-wide profiling of LS patients and normal controls. Analyses were performed on immortalized lymphoblastoid cell lines derived from individual patients. Bioinformatic analyses identified a series of genes that are either over- or under-represented in LS. Differential expression was demonstrated in a number of gene families, including cell cycle, metabolic control, cytokine-cytokine receptor interaction, Jak-STAT and PI3K-AKT signaling, etc. Major differences between LS and controls were also noticed in pathways associated with cell cycle distribution, apoptosis, and autophagy. The identification of novel downstream targets of the GH-IGF-1 network highlights the biological complexity of this hormonal system and sheds light on previously unrecognized mechanistic aspects associated with GH-IGF-1 action in the cancer cell.


Subject(s)
Human Growth Hormone , Laron Syndrome , Neoplasms , Humans , Growth Hormone , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Laron Syndrome/genetics , Laron Syndrome/metabolism , Neoplasms/genetics , Phosphatidylinositol 3-Kinases
9.
Biomolecules ; 13(4)2023 03 26.
Article in English | MEDLINE | ID: mdl-37189345

ABSTRACT

Laron syndrome (LS) is a rare genetic disorder characterized by low levels of insulin-like growth factor 1 (IGF1) and high levels of growth hormone (GH) due to mutations in the growth hormone receptor gene (GHR). A GHR-knockout (GHR-KO) pig was developed as a model for LS, which displays many of the same features as humans with LS-like transient juvenile hypoglycemia. This study aimed to investigate the effects of impaired GHR signaling on immune functions and immunometabolism in GHR-KO pigs. GHR are located on various cell types of the immune system. Therefore, we investigated lymphocyte subsets, proliferative and respiratory capacity of peripheral blood mononuclear cells (PBMCs), proteome profiles of CD4- and CD4+ lymphocytes and IFN-α serum levels between wild-type (WT) controls and GHR-KO pigs, which revealed significant differences in the relative proportion of the CD4+CD8α- subpopulation and in IFN-α levels. We detected no significant difference in the respiratory capacity and the capacity for polyclonal stimulation in PBMCs between the two groups. But proteome analysis of CD4+ and CD4- lymphocyte populations revealed multiple significant protein abundance differences between GHR-KO and WT pigs, involving pathways related to amino acid metabolism, beta-oxidation of fatty acids, insulin secretion signaling, and oxidative phosphorylation. This study highlights the potential use of GHR-KO pigs as a model for studying the effects of impaired GHR signaling on immune functions.


Subject(s)
Laron Syndrome , Receptors, Somatotropin , Humans , Animals , Swine , Receptors, Somatotropin/genetics , Receptors, Somatotropin/metabolism , Laron Syndrome/genetics , Laron Syndrome/metabolism , Leukocytes, Mononuclear/metabolism , Proteome , Growth Hormone/metabolism
10.
Cell Mol Life Sci ; 80(4): 109, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36995466

ABSTRACT

Signal transducer and activator of transcription (STAT) proteins act downstream of cytokine receptors to facilitate changes in gene expression that impact a range of developmental and homeostatic processes. Patients harbouring loss-of-function (LOF) STAT5B mutations exhibit postnatal growth failure due to lack of responsiveness to growth hormone as well as immune perturbation, a disorder called growth hormone insensitivity syndrome with immune dysregulation 1 (GHISID1). This study aimed to generate a zebrafish model of this disease by targeting the stat5.1 gene using CRISPR/Cas9 and characterising the effects on growth and immunity. The zebrafish Stat5.1 mutants were smaller, but exhibited increased adiposity, with concomitant dysregulation of growth and lipid metabolism genes. The mutants also displayed impaired lymphopoiesis with reduced T cells throughout the lifespan, along with broader disruption of the lymphoid compartment in adulthood, including evidence of T cell activation. Collectively, these findings confirm that zebrafish Stat5.1 mutants mimic the clinical impacts of human STAT5B LOF mutations, establishing them as a model of GHISID1.


Subject(s)
Laron Syndrome , Zebrafish , Animals , Humans , Zebrafish/genetics , STAT5 Transcription Factor/genetics , Laron Syndrome/genetics , Mutation , Growth Hormone/genetics
11.
Endocr Relat Cancer ; 30(6)2023 06 01.
Article in English | MEDLINE | ID: mdl-36971780

ABSTRACT

Meta-analyses from 2018-2022 have shown that obesity increases the risk of various cancers such as acute myeloid lymphoma, chronic myeloid lymphoma, diffuse beta cell lymphoma, Hodgkin's lymphoma, leukemia, multiple myeloma, non-Hodgkin's lymphoma, bladder, breast, cholangiocarcinoma, colorectal, ovarian, esophageal, kidney, liver, prostate, thyroid, and uterus. Contextually, obesity, and its comorbidities, is the largest, most lethal pandemics in the history of mankind; hence, identification of underlying mechanisms is needed to adequately address this global health threat. Herein, we present the metabolic and hormonal mechanisms linked to obesity that might etiologically contribute to neoplasia, including hyperinsulinemia and putative places in the insulin-signaling pathway. Excess insulin, acting as a growth factor, might contribute to tumorigenesis, while abundant ATP and GDP supply the additional energy needed for proliferation of rapidly dividing cells. Our observations in the Ecuadorian cohort of subjects with Laron syndrome (ELS) prove that obesity does not always associate with increased cancer risk. Indeed, despite excess body fat from birth to death, these individuals display a diminished incidence of cancer when compared to their age- and sex-matched relatives. Furthermore, in cell cultures exposed to potent oxidizing agents, addition of ELS serum induces less DNA damage as well as increased apoptosis. ELS individuals have absent growth hormone (GH) counter-regulatory effects in carbohydrate metabolism due to a defective GH receptor. The corresponding biochemical phenotype includes extremely low basal serum concentrations of insulin and insulin-like growth factor-I, lower basal glucose and triglyceride (TG) levels, and diminished glucose, TG, and insulin responses to orally administered glucose or to a mixed meal.


Subject(s)
Laron Syndrome , Neoplasms , Male , Female , Humans , Laron Syndrome/genetics , Ecuador , Insulin-Like Growth Factor I , Insulin , Neoplasms/epidemiology , Neoplasms/complications , Obesity/epidemiology , Obesity/complications , Glucose
12.
J Pediatr Endocrinol Metab ; 36(5): 466-469, 2023 May 25.
Article in English | MEDLINE | ID: mdl-36957988

ABSTRACT

OBJECTIVES: Laron dwarfism is a rare genetic disorder first reported among Israeli jewish children, subsequently about 350 cases cases have been reported worldwide. We aim to describe the clinical profile of nine children with Laron dwarfism from Institute of Child Health, Chennai. METHODS: Analysis of case records from 2010 to 2018. RESULTS: Male:female ratio is 6:3. Mean age of the children at the time of diagnosis was 3 years. All children were extremely short, and mean height Z score (SD) was -7.7(0.8). All children had characteristic facies with no hypoglycaemic episodes. Microcephaly was present in four children out of which two had developmental delay. Three out of six boys had micropenis. All children had low insulin like growth factor-1 (IGF-1) and high basal growth hormone (GH) with a mean (SD) of 39.6 (11.2) ng/mL. CONCLUSIONS: Suspicion of Laron syndrome should be high when child presents with features of Growth Hormone Deficiency (GHD) with extreme stunting.


Subject(s)
Dwarfism, Pituitary , Dwarfism , Laron Syndrome , Child , Humans , Male , Female , Child, Preschool , Tertiary Healthcare , India , Growth Hormone , Dwarfism, Pituitary/diagnosis , Insulin-Like Growth Factor I , Dwarfism/genetics
13.
Stem Cell Rev Rep ; 19(2): 392-405, 2023 02.
Article in English | MEDLINE | ID: mdl-36269524

ABSTRACT

Pathway involving insulin-like growth factor 1 (IGF-1) plays significant role in growth and development. Crucial role of IGF-1 was discovered inter alia through studies involving deficient patients with short stature, including Laron syndrome individuals. Noteworthy, despite disturbances in proper growth, elevated values for selected stem cell populations were found in IGF-1 deficient patients. Therefore, here we focused on investigating role of these cells-very small embryonic-like (VSEL) and hematopoietic stem cells (HSC), in the pathology. For the first time we performed long-term observation of these populations in response to rhIGF-1 (mecasermin) therapy. Enrolled pediatric subjects with IGF-1 deficiency syndrome were monitored for 4-5 years of rhIGF-1 treatment. Selected stem cells were analyzed in peripheral blood flow cytometrically, together with chemoattractant SDF-1 using immunoenzymatic method. Patients' data were collected for correlation of experimental results with clinical outcome. IGF-1 deficient patients were found to demonstrate initially higher levels of VSEL and HSC compared to healthy controls, with their gradual decrease in response to therapy. These changes were significantly associated with SDF-1 plasma levels. Correlations of VSEL and HSC were also reported in reference to growth-related parameters, and IGF-1 and IGFBP3 values. Noteworthy, rhIGF-1 was shown to efficiently induce development of Laron patients achieving at least proper rate of growth (compared to healthy group) in 80% of subjects. In conclusion, here we provided novel insight into stem cells participation in IGF-1 deficiency in patients. Thus, we demonstrated basis for future studies in context of stem cells and IGF-1 role in growth disturbances.


Subject(s)
Insulin-Like Growth Factor I , Laron Syndrome , Humans , Child , Insulin-Like Growth Factor I/pharmacology , Insulin-Like Growth Factor I/metabolism , Laron Syndrome/genetics , Laron Syndrome/therapy , Stem Cells/metabolism
14.
Article in English | WPRIM (Western Pacific) | ID: wpr-1003689

ABSTRACT

@#Primary growth hormone (GH) resistance or growth hormone insensitivity syndrome, also called Laron syndrome, is a hereditary disease caused by mutations in the GH receptor or in the post-receptor signaling pathway. This disorder is characterized by postnatal growth failure resembling GH deficiency. Differentiating the two conditions is necessary. We present the cases of two siblings, a 16-year-old female and a 9-year-old male, born from a consanguineous union. Both had normal birth weights with subsequent severe short stature and delayed teeth eruption, with no features suggestive of any systemic illness. Serum insulin-like growth factor 1 (IGF1) and insulin-like growth factor binding protein 3 (IGFBP3) were both low. Suspecting GH deficiency, provocative testing with clonidine was done revealing peak growth hormone >40 ng/mL in both patients. In view of low IGF1 and IGFBP3 and high GH on stimulation, IGF1 generation test was done for both siblings, with values supporting the diagnosis of GH insensitivity or Laron syndrome.


Subject(s)
Laron Syndrome
15.
Ann. afr. méd. (En ligne) ; 16(4): 53-63, 2023. tables, figures
Article in French | AIM (Africa) | ID: biblio-1512518

ABSTRACT

Dans les régions endémiques y compris la République Démocratique du Congo, les enfants sont susceptibles d'être exposés à la tuberculose (TB) par un contact dans l'entourage. L'absence de diagnostic peut avoir des conséquences dévastatrices. L'objectif de la présente étude était de déterminer la fréquence de TB, la résistance primaire des souches de Mycobacterium tuberculosis aux antituberculeux ainsi que des variants génétiques. Méthodes. Cette étude transversale et descriptive a été réalisée, entre juin 2011 et décembre 2017, à Kinshasa chez les enfants présumés TB. Les enfants ayant les signes évocateurs de TB figurant dans la tranche d'âge de 0-14 ans étaient inclus. Les échantillons ont été examinés par le Ziehl et mis en culture sur le milieu de Löwenstein-Jensens. Les souches étaient testées aux antituberculeux par la technique des proportions et typées par Spoligotyping. La comparaison des proportions a été faite à l'aide du test de chi-carré de Pearson. Résultats. Quarante-huit souches de Mycobacterium tuberculosis (15,4 %) ont été isolées. Dix souches (20,8%) étaient résistantes à au moins un antituberculeux plus fréquemment à l'INH. Le génotype LAM (66,7 %) et Haarlem (33,3%) était observé. Conclusion. La recherche active de TB infantile confirme qu'elle est relativement fréquente et est résistante à au moins un antituberculeux (surtout à l'INH).


Subject(s)
Humans , Tuberculosis , Mycobacterium tuberculosis , Child , Cross-Sectional Studies , Laron Syndrome , Pharmacogenomic Variants
16.
Horm Res Paediatr ; 95(6): 619-630, 2022.
Article in English | MEDLINE | ID: mdl-36446332

ABSTRACT

The growth hormone (GH)-insulin-like growth factor (IGF) cascade is central to the regulation of growth and metabolism. This article focuses on the history of the components of the IGF system, with an emphasis on the peptide hormones, IGF-I and -II, their cell surface receptors, and the IGF binding proteins (IGFBPs) and IGFBP proteases that regulate the availability of the peptide hormones for interaction with their receptors in relevant target tissues. We describe landmark events in the evolution of the somatomedin hypothesis, including evidence that has become available from experiments at the molecular and cellular levels, whole animal and tissue-specific gene knockouts, studies of cancer epidemiology, identification of prismatic human cases, and short- and long-term clinical trials of IGF-I therapy in humans. In addition, this new evidence has expanded our clinical definition of GH insensitivity (GHI) beyond growth hormone receptor mutations (classic Laron syndrome) to include conditions that cause primary IGF deficiency by impacting post-receptor signal transduction, IGF production, IGF availability to interact with the IGF-I receptor (IGF-1R), and defects in the IGF-1R, itself. We also discuss the clinical aspects of IGFs, from their description as insulin-like activity, to the use of IGF-I in the diagnosis and treatment of GH deficiency, and to the use of recombinant human IGF-I for therapy of children with GHI.


Subject(s)
Insulin-Like Growth Factor II , Insulin-Like Growth Factor I , Laron Syndrome , Animals , Humans , Insulin-Like Growth Factor I/deficiency , Insulin-Like Growth Factor I/history , Insulin-Like Growth Factor I/physiology , Insulin-Like Growth Factor I/therapeutic use , Laron Syndrome/drug therapy , Laron Syndrome/genetics , Laron Syndrome/history , Laron Syndrome/physiopathology , Peptide Hormones , Protein Processing, Post-Translational , Signal Transduction , Somatomedins/deficiency , Somatomedins/history , Somatomedins/physiology , Insulin-Like Growth Factor II/deficiency , Insulin-Like Growth Factor II/history , Insulin-Like Growth Factor II/physiology , Insulin-Like Growth Factor II/therapeutic use
17.
Cells ; 11(20)2022 10 17.
Article in English | MEDLINE | ID: mdl-36291127

ABSTRACT

The growth hormone (GH)-insulin-like growth factor-1 (IGF1) signaling pathway plays a major role in orchestrating cellular interactions, metabolism, growth and aging. Studies from worms to mice showed that downregulated activity of the GH/IGF1 pathway could be beneficial for the extension of lifespan. Laron syndrome (LS) is an inherited autosomal recessive disorder caused by molecular defects of the GH receptor (GHR) gene, leading to congenital IGF1 deficiency. Life-long exposure to minute endogenous IGF1 levels in LS is associated with low stature as well as other endocrine and metabolic deficits. Epidemiological surveys reported that patients with LS have a reduced risk of developing cancer. Studies conducted on LS-derived lymphoblastoid cells led to the identification of a novel link between IGF1 and thioredoxin-interacting protein (TXNIP), a multifunctional mitochondrial protein. TXNIP is highly expressed in LS patients and plays a critical role in cellular redox regulation by thioredoxin. Given that IGF1 affects the levels of TXNIP under various stress conditions, including high glucose and oxidative stress, we hypothesized that the IGF1-TXNIP axis plays an essential role in helping maintain a physiological balance in cellular homeostasis. In this study, we show that TXNIP is vital for the cell fate choice when cells are challenged by various stress signals. Furthermore, prolonged IGF1 treatment leads to the establishment of a premature senescence phenotype characterized by a unique senescence network signature. Combined IGF1/TXNIP-induced premature senescence can be associated with a typical secretory inflammatory phenotype that is mediated by STAT3/IL-1A signaling. Finally, these mechanistic insights might help with the understanding of basic aspects of IGF1-related pathologies in the clinical setting.


Subject(s)
Carrier Proteins , Cellular Senescence , Insulin-Like Growth Factor I , Laron Syndrome , Thioredoxins , Animals , Mice , Carrier Proteins/metabolism , Cellular Senescence/drug effects , Cellular Senescence/physiology , Glucose/metabolism , Growth Hormone/metabolism , Insulin-Like Growth Factor I/pharmacology , Insulin-Like Growth Factor I/physiology , Laron Syndrome/metabolism , Mitochondrial Proteins/metabolism , Thioredoxins/metabolism , Humans , Fibroblasts/drug effects , 3T3-L1 Cells
18.
Cells ; 11(10)2022 05 12.
Article in English | MEDLINE | ID: mdl-35626664

ABSTRACT

Normal growth and development in mammals are tightly controlled by numerous genetic factors and metabolic conditions. The growth hormone (GH)-insulin-like growth factor-1 (IGF1) hormonal axis is a key player in the regulation of these processes. Dysregulation of the GH-IGF1 endocrine system is linked to a number of pathologies, ranging from growth deficits to cancer. Laron syndrome (LS) is a type of dwarfism that results from mutation of the GH receptor (GHR) gene, leading to GH resistance and short stature as well as a number of metabolic abnormalities. Of major clinical relevance, epidemiological studies have shown that LS patients do not develop cancer. While the mechanisms associated with cancer protection in LS have not yet been elucidated, genomic analyses have identified a series of metabolic genes that are over-represented in LS patients. We hypothesized that these genes might constitute novel targets for IGF1 action. With a fold-change of 11.09, UDP-glucuronosyltransferase 2B15 (UGT2B15) was the top up-regulated gene in LS. The UGT2B15 gene codes for an enzyme that converts xenobiotic substances into lipophilic compounds and thereby facilitates their clearance from the body. We investigated the regulation of UGT2B15 gene expression by IGF1 and insulin. Both hormones inhibited UGT2B15 mRNA levels in endometrial and breast cancer cell lines. Regulation of UGT2B15 protein levels by IGF1/insulin, however, was more complex and not always correlated with mRNA levels. Furthermore, UGT2B15 expression was dependent on p53 status. Thus, UGT2B15 mRNA levels were higher in cell lines expressing a wild-type p53 compared to cells containing a mutated p53. Animal studies confirmed an inverse correlation between UGT2B15 and p53 levels. In summary, increased UGT2B15 levels in LS might confer upon patient's protection from genotoxic damage.


Subject(s)
Glucuronosyltransferase/metabolism , Laron Syndrome , Neoplasms , Animals , Glucuronosyltransferase/genetics , Glycosyltransferases/metabolism , Growth Hormone/metabolism , Humans , Insulin/metabolism , Insulin-Like Growth Factor I/metabolism , Laron Syndrome/genetics , Laron Syndrome/metabolism , Mammals/metabolism , Neoplasms/metabolism , RNA, Messenger/genetics , Tumor Suppressor Protein p53/genetics , Uridine Diphosphate
19.
Growth Horm IGF Res ; 64: 101460, 2022 06.
Article in English | MEDLINE | ID: mdl-35490602

ABSTRACT

OBJECTIVE: Chagas disease (CD) is caused by the protozoan parasite, Trypanosoma cruzi. It affects 7 to 8 million people worldwide and leads to approximately 50,000 deaths per year. In vitro and in vivo studies had demonstrated that Trypanosoma cruziinfection causes an imbalance in the hypothalamic-pituitary-adrenal (HPA) axis that is accompanied by a progressive decrease in growth hormone (GH) and prolactin (PRL) production. In humans, inactivating mutations in the GH receptor gene cause Laron Syndrome (LS), an autosomal recessive disorder. Affected subjects are short, have increased adiposity, decreased insulin-like growth factor-I (IGFI), increased serum GH levels, are highly resistant to diabetes and cancer, and display slow cognitive decline. In addition, CD incidence in these individuals is diminished despite living in highly endemic areas. Consequently, we decided to investigate the in vitro effect of GH/IGF-I on T. cruzi infection. DESIGN: We first treated the parasite and/or host cells with different peptide hormones including GH, IGFI, and PRL. Then, we treated cells using different combinations of GH/IGF-I attempting to mimic the GH/IGF-I serum levels observed in LS subjects. RESULTS: We found that exogenous GH confers protection against T. cruzi infection. Moreover, this effect is mediated by GH and not IGFI. The combination of relatively high GH (50 ng/ml) and low IGF-I (20 ng/ml), mimicking the hormonal pattern seen in LS individuals, consistently decreased T. cruzi infection in vitro. CONCLUSIONS: The combination of relatively high GH and low IGF-I serum levels in LS individuals may be an underlying condition providing partial protection against T. cruzi infection.


Subject(s)
Chagas Disease , Human Growth Hormone , Laron Syndrome , Chagas Disease/drug therapy , Growth Hormone/genetics , Humans , Insulin-Like Growth Factor I , Prolactin
20.
Horm Res Paediatr ; 95(3): 286-290, 2022.
Article in English | MEDLINE | ID: mdl-35358968

ABSTRACT

OBJECTIVE: The aim of the study was to describe focal epilepsy in patients with Laron syndrome (LS). METHODS: Data were retrieved from medical records of a single-center cohort of 75 patients with LS. RESULTS: We describe for the first time 4 patients with concomitant focal epilepsy and LS. Two of them experienced episodes of status epilepticus. Electroencephalogram examination in all 4 patients showed interictal epileptiform discharges in the temporal regions. Three achieved long-term seizure freedom on antiseizure medications. CONCLUSION: Patients with LS may be at risk of developing focal epilepsy, which seems to be unrelated to hypoglycemic episodes in childhood.


Subject(s)
Epilepsies, Partial , Laron Syndrome , Electroencephalography , Epilepsies, Partial/complications , Epilepsies, Partial/diagnosis , Epilepsies, Partial/drug therapy , Humans , Retrospective Studies , Seizures/complications , Seizures/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...