Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43.534
Filter
1.
ACS Appl Mater Interfaces ; 16(28): 37183-37196, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38963398

ABSTRACT

Here, we explored a new manufacturing strategy that uses the mask laser interference additive manufacturing (MLIAM) technique, which combines the respective strengths of laser interference lithography and mask lithography to efficiently fabricate across-scales three-dimensional bionic shark skin structures with superhydrophobicity and adhesive reduction. The phenomena and mechanisms of the MLIAM curing process were revealed and analyzed, showing the feasibility and flexibility. In terms of structural performance, the adhesive force on the surface can be tuned based on the growth direction of the bionic shark skin structures, where the maximum rate of the adhesive reduction reaches about 65%. Furthermore, the evolution of the directional diffusion for the water droplet, which is based on the change of the contact angle, was clearly observed, and the mechanism was also discussed by the models. Moreover, no-loss transportations were achieved successfully using the gradient adhesive force and superhydrophobicity on the surface by tuning the growth direction and modifying by fluorinated silane. Finally, this work gives a strategy for fabricating across-scale structures on micro- and nanometers, which have potential application in bioengineering, diversional targeting, and condenser surface.


Subject(s)
Lasers , Sharks , Skin , Animals , Hydrophobic and Hydrophilic Interactions , Surface Properties , Bionics
2.
Sensors (Basel) ; 24(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-39000814

ABSTRACT

Extracting moso bamboo parameters from single-source point cloud data has limitations. In this article, a new approach for extracting moso bamboo parameters using airborne laser scanning (ALS) and terrestrial laser scanning (TLS) point cloud data is proposed. Using the field-surveyed coordinates of plot corner points and the Iterative Closest Point (ICP) algorithm, the ALS and TLS point clouds were aligned. Considering the difference in point distribution of ALS, TLS, and the merged point cloud, individual bamboo plants were segmented from the ALS point cloud using the point cloud segmentation (PCS) algorithm, and individual bamboo plants were segmented from the TLS and the merged point cloud using the comparative shortest-path (CSP) method. The cylinder fitting method was used to estimate the diameter at breast height (DBH) of the segmented bamboo plants. The accuracy was calculated by comparing the bamboo parameter values extracted by the above methods with reference data in three sample plots. The comparison results showed that by using the merged data, the detection rate of moso bamboo plants could reach up to 97.30%; the R2 of the estimated bamboo height was increased to above 0.96, and the root mean square error (RMSE) decreased from 1.14 m at most to a range of 0.35-0.48 m, while the R2 of the DBH fit was increased to a range of 0.97-0.99, and the RMSE decreased from 0.004 m at most to a range of 0.001-0.003 m. The accuracy of moso bamboo parameter extraction was significantly improved by using the merged point cloud data.


Subject(s)
Algorithms , Sasa , Lasers , Poaceae
3.
Sensors (Basel) ; 24(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39001100

ABSTRACT

To quickly obtain rice plant phenotypic traits, this study put forward the computational process of six rice phenotype features (e.g., crown diameter, perimeter of stem, plant height, surface area, volume, and projected leaf area) using terrestrial laser scanning (TLS) data, and proposed the extraction method for the tiller number of rice plants. Specifically, for the first time, we designed and developed an automated phenotype extraction tool for rice plants with a three-layer architecture based on the PyQt5 framework and Open3D library. The results show that the linear coefficients of determination (R2) between the measured values and the extracted values marked a better reliability among the selected four verification features. The root mean square error (RMSE) of crown diameter, perimeter of stem, and plant height is stable at the centimeter level, and that of the tiller number is as low as 1.63. The relative root mean squared error (RRMSE) of crown diameter, plant height, and tiller number stays within 10%, and that of perimeter of stem is 18.29%. In addition, the user-friendly automatic extraction tool can efficiently extract the phenotypic features of rice plant, and provide a convenient tool for quickly gaining phenotypic trait features of rice plant point clouds. However, the comparison and verification of phenotype feature extraction results supported by more rice plant sample data, as well as the improvement of accuracy algorithms, remain as the focus of our future research. The study can offer a reference for crop phenotype extraction using 3D point clouds.


Subject(s)
Lasers , Oryza , Phenotype , Oryza/genetics , Oryza/growth & development , Algorithms , Plant Leaves
4.
PLoS One ; 19(7): e0301619, 2024.
Article in English | MEDLINE | ID: mdl-38991031

ABSTRACT

Changes in limb volume and shape among transtibial amputees affects socket fit and comfort. The ability to accurately measure residual limb volume and shape and relate it to comfort could contribute to advances in socket design and overall care. This work designed and validated a novel 3D laser scanner that measures the volume and shape of residual limbs. The system was designed to provide accurate and repeatable scans, minimize scan duration, and account for limb motion during scans. The scanner was first validated using a cylindrical body with a known shape. Mean volumetric errors of 0.17% were found under static conditions, corresponding to a radial spatial resolution of 0.1 mm. Limb scans were also performed on a transtibial amputee and yielded a standard deviation of 8.1 ml (0.7%) across five scans, and a 46 ml (4%) change in limb volume when the socket was doffed after 15 minutes of standing.


Subject(s)
Amputees , Artificial Limbs , Lasers , Tibia , Humans , Tibia/surgery , Tibia/diagnostic imaging , Amputation Stumps/diagnostic imaging , Imaging, Three-Dimensional/methods , Prosthesis Design/methods , Male , Prosthesis Fitting/methods
5.
Anal Chem ; 96(28): 11542-11548, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38972070

ABSTRACT

A variety of organic compounds in human exhaled breath were measured online by mass spectrometry using the fifth (206 nm) and fourth (257 nm) harmonic emissions of a femtosecond ytterbium (Yb) laser as the ionization source. Molecular ions were enhanced significantly by means of resonance-enhanced, two-color, two-photon ionization, which was useful for discrimination of analytes against the background. The limit of detection was 0.15 ppm for acetone in air. The concentration of acetone in exhaled breath was determined for three subjects to average 0.31 ppm, which lies within the range of normal healthy subjects and is appreciably lower than the range for patients with diabetes mellitus. Many other constituents, which could be assigned to acetaldehyde, ethanol, isoprene, phenol, octane, ethyl butanoate, indole, octanol, etc., were observed in the exhaled air. Therefore, the present approach shows potential for use in the online analysis of diabetes mellitus and also for the diagnosis of various diseases, such as COVID-19 and cancers.


Subject(s)
Breath Tests , Lasers , Mass Spectrometry , Humans , Breath Tests/methods , Mass Spectrometry/methods , COVID-19/diagnosis , Exhalation , Acetone/analysis , Volatile Organic Compounds/analysis , Diabetes Mellitus/diagnosis , SARS-CoV-2/isolation & purification , Limit of Detection
6.
Sci Rep ; 14(1): 15924, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987345

ABSTRACT

Wild bird repulsion is critical in agriculture because it helps avoid agricultural food losses and mitigates the risk of avian influenza. Wild birds transmit avian influenza in poultry farms and thus cause large economic losses. In this study, we developed an automatic wild bird repellent system that is based on deep-learning-based wild bird detection and integrated with a laser rotation mechanism. When a wild bird appears at a farm, the proposed system detects the bird's position in an image captured by its detection unit and then uses a laser beam to repel the bird. The wild bird detection model of the proposed system was optimized for detecting small pixel targets, and trained through a deep learning method by using wild bird images captured at different farms. Various wild bird repulsion experiments were conducted using the proposed system at an outdoor duck farm in Yunlin, Taiwan. The statistical test results of our experimental data indicated that the proposed automatic wild bird repellent system effectively reduced the number of wild birds in the farm. The experimental results indicated that the developed system effectively repelled wild birds, with a high repulsion rate of 40.3% each day.


Subject(s)
Animals, Wild , Deep Learning , Influenza in Birds , Lasers , Animals , Influenza in Birds/prevention & control , Birds , Ducks , Taiwan
7.
Zhongguo Zhong Yao Za Zhi ; 49(11): 2906-2919, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39041150

ABSTRACT

Rheumatoid arthritis(RA) is a condition in which the joints are in a weakly acidic environment. In RA, RA fibroblastlike synoviocytes( RAFLS) in the joints become abnormally activated and secrete a large amount of matrix metalloproteinases(MMPs), and the receptor protein CD44 on the cell membrane is specifically upregulated. Xuetongsu(XTS), an active ingredient in the Tujia ethnomedicine Xuetong, is known to inhibit the proliferation of RAFLS. However, its development and utilization have been limited due to poor targeting ability. A biomimetic XTS-Prussian blue nanoparticles(PB NPs) drug delivery system called THMPX NPs which can target CD44 was constructed in this study. The surface of THMPX NPs was modified with hyaluronic acid(HA) and a long chain of triglycerol monostearate(TGMS) and 3-aminobenzeneboronic acid(PBA)(PBA-TGMS). The overexpressed MMPs and H+ in inflammatory RAFLS can synergistically cleave the PBA-TGMS on the surface of the nanoparticles, exposing HA to interact with CD44. This allows THMPX NPs to accumulate highly in RAFLS, and upon near-infrared light irradiation, generate heat and release XTS, thereby inhibiting the proliferation and migration of RAFLS. Characterization revealed that THMPX NPs were uniform cubes with a diameter of(190. 3±4. 7) nm and an average potential of(-15. 3± 2. 3) m V. Upon near-infrared light irradiation for 5 min, the temperature of THMPX NPs reached 41. 5 ℃, indicating MMPs and H+-triggered drug release. Safety assessments showed that THMPX NPs had a hemolysis rate of less than 4% and exhibited no cytotoxicity against normal RAW264. 7 and human fibroblast-like synoviocytes(HFLS). In vitro uptake experiments demonstrated the significant targeting ability of THMPX NPs to RAFLS. Free radical scavenging experiments revealed excellent free radical clearance capacity of THMPX NPs, capable of removing reactive oxygen species in RAFLS. Cell counting kit-8 and scratch assays demonstrated that THMPX NPs significantly suppressed the viability and migratory ability of RAFLS. This study provides insights into the development of innovative nanoscale targeted drugs from traditional ethnic medicines for RA treatment.


Subject(s)
Cell Movement , Cell Proliferation , Matrix Metalloproteinases , Nanoparticles , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Nanoparticles/chemistry , Humans , Cell Movement/drug effects , Cell Movement/radiation effects , Matrix Metalloproteinases/metabolism , Matrix Metalloproteinases/genetics , Ferrocyanides/chemistry , Hydrogen-Ion Concentration , Synoviocytes/drug effects , Synoviocytes/radiation effects , Synoviocytes/metabolism , Lasers , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism
8.
Anal Chim Acta ; 1317: 342898, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39030002

ABSTRACT

BACKGROUND: Nitrofurazone (NFZ) is a widely-used antimicrobial agent in aquaculture. The NFZ residue can be transmitted to humans through the food chain, and cause adverse health effects including carcinogenesis and teratogenesis. Until now, a number of modified electrodes have been developed for NFZ detection, however, there are some issues that need to be improved. For example, the reported detection sensitivity is relatively low, the modification procedure is complicated, and conventional three-electrode system is used. Therefore, it is quite important to develop new NFZ detection method with higher sensitivity, simplicity and practicality. RESULTS: Herein, a kind of integrated three-electrode array consisted with porous graphene is easily prepared through laser engraving of commercial polyimide tape. Five kinds of graphene arrays were prepared at different laser power percentage (i.e. 30 %, 40 %, 50 %, 60 % and 70 %). It is found that their structure, morphology, fluffiness and porosity show great difference, consequently affecting the electrochemical performance of graphene arrays such as conductivity, active area and electron transfer ability. The engraved graphene array at 50 % laser power percentage (LIG-50 array) is superior owing to uniform 3D structure, abundant pores and high stability. More importantly, LIG-50 array is more active for NFZ oxidation, and significantly enhances the detection sensitivity. The linear range of LIG-50 sensor is from 0.2 to 8 µM, and the detection limit is 0.035 µM, which is successfully used in fish meat samples. SIGNIFICANCE: A sensitive, portable and practical electrochemical sensor has been successfully developed for NFZ using laser-engraved graphene array. The demonstration using fish meat samples manifests this new sensor has good accuracy and great potential in application. This study could provide a new possibility for the design and fabrication of other high-performance electrochemical sensor for various applications in the future.


Subject(s)
Electrochemical Techniques , Electrodes , Graphite , Lasers , Nitrofurazone , Nitrofurazone/analysis , Graphite/chemistry , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Limit of Detection , Animals
9.
Georgian Med News ; (349): 103-109, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38963212

ABSTRACT

Aims - to compare the color changes, the surface roughness and morphology of the enamel bleached with two different bleaching solutions (chemical and laser activated), preceded or not with acid etching. Thirty teeth of bovine prepared and haphazardly assigned to 2 groups (n=15) depending on bleaching technique. Each group subdivided to 3 subgroup (n=5) consistent with acid etching by 37% phosphoric acid. Atomic force microscopy and VITA easy shade spectrophotometer were performed twice for all the specimens before and after bleaching. ANOVA, the Paired sample t-test, and the independent sample t-test used for statistical analysis. As for the color changes, the groups that were bleached by the chemical method, the difference among the three subgroups was statistically significant. This also applies to the groups bleached with the laser method. When comparing the results of the chemical bleaching subgroups with the laser bleaching ones, the difference was not significant. Roughness results showed significant differences between certain subgroups and non-significant differences among others. However, the difference was statistically significant between the chemical and laser groups, laser technique resulted in less surface roughness than the chemical one. Acid etching before bleaching produced better colour change in both the chemical and laser assisted bleaching. In chemical bleaching, surface roughness was higher when acid etching was used. This was also true for laser bleaching technique. In general, laser assisted bleaching produced less surface roughness than chemical bleaching.


Subject(s)
Acid Etching, Dental , Dental Enamel , Surface Properties , Tooth Bleaching , Dental Enamel/drug effects , Dental Enamel/chemistry , Cattle , Animals , Tooth Bleaching/methods , Surface Properties/drug effects , Color , Phosphoric Acids/chemistry , Phosphoric Acids/pharmacology , Microscopy, Atomic Force , Tooth Bleaching Agents/chemistry , Tooth Bleaching Agents/pharmacology , Spectrophotometry , Lasers
10.
Lasers Med Sci ; 39(1): 170, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958779

ABSTRACT

PURPOSE: Despite the importance of self-monitoring blood glucose (SMBG) for management of diabetes mellitus (DM), frequent blood sampling is discouraged by bleeding risk due to dual-antiplatelet agent therapy (DAPT) or thrombocytopenia. METHODS: We compared the bleeding time (BT) of sampling by using a laser-lancing-device (LMT-1000) and a conventional lancet in patients with DM and thrombocytopenia or patients undergoing DAPT. BT was measured using the Duke method, and pain and satisfaction scores were assessed using numeric rating scale (NRS) and visual analog scale (VAS). The consistency in the values of glucose and glycated-hemoglobin (HbA1c) sampled using the LMT-1000 or lancet were compared. RESULTS: The BT of sampling with the LMT-1000 was shorter than that with the lancet in patients with thrombocytopenia (60s vs. 85s, P = 0.024). The NRS was lower and the VAS was higher in laser-applied-sampling than lancet-applied sampling in the DAPT-user group (NRS: 1 vs. 2, P = 0.010; VAS: 7 vs. 6, P = 0.003), whereas the group with thrombocytopenia only showed improvement in the VAS score (8 vs. 7, P = 0.049). Glucose and HbA1c sampled by the LMT-1000 and lancet were significantly correlated in both the DAPT-user and the thrombocytopenia groups. CONCLUSION: The LMT-1000 can promote SMBG by shortening BT in subject with thrombocytopenia and by increasing satisfaction score, as well as by showing reliable glucose and HbA1c value.


Subject(s)
Blood Glucose Self-Monitoring , Blood Glucose , Hemorrhage , Lasers , Humans , Female , Male , Aged , Middle Aged , Blood Glucose Self-Monitoring/instrumentation , Blood Glucose/analysis , Hemorrhage/etiology , Glycated Hemoglobin/analysis , Blood Specimen Collection/instrumentation , Blood Specimen Collection/methods , Blood Specimen Collection/adverse effects , Diabetes Mellitus/blood , Thrombocytopenia/blood , Thrombocytopenia/etiology , Capillaries , Platelet Aggregation Inhibitors/therapeutic use
11.
ACS Chem Neurosci ; 15(14): 2623-2632, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38959406

ABSTRACT

Aggregated deposits of the protein α-synuclein and depleting levels of dopamine in the brain correlate with Parkinson's disease development. Treatments often focus on replenishing dopamine in the brain; however, the brain might not be the only site requiring attention. Aggregates of α-synuclein appear to accumulate in the gut years prior to the onset of any motor symptoms. Enteroendocrine cells (specialized gut epithelial cells) may be the source of intestinal α-synuclein, as they natively express this protein. Enteroendocrine cells are constantly exposed to gut bacteria and their metabolites because they border the gut lumen. These cells also express the dopamine metabolic pathway and form synapses with vagal neurons, which innervate the gut and brain. Through this connection, Parkinson's disease pathology may originate in the gut and spread to the brain over time. Effective therapeutics to prevent this disease progression are lacking due to a limited understanding of the mechanisms by which α-synuclein aggregation occurs in the gut. We previously proposed a gut bacterial metabolic pathway responsible for the initiation of α-synuclein aggregation that is dependent on the oxidation of dopamine. Here, we develop a new tool, a laser-induced graphene-based electrochemical sensor chip, to track α-synuclein aggregation and dopamine level over time. Using these sensor chips, we evaluated diet-derived catechols dihydrocaffeic acid and caffeic acid as potential inhibitors of α-synuclein aggregation. Our results suggest that these molecules inhibit dopamine oxidation. We also found that these dietary catechols inhibit α-synuclein aggregation in STC-1 enteroendocrine cells. These findings are critical next steps to reveal new avenues for targeted therapeutics to treat Parkinson's disease, specifically in the context of functional foods that may be used to reshape the gut environment.


Subject(s)
Parkinson Disease , alpha-Synuclein , Humans , alpha-Synuclein/metabolism , Dopamine/metabolism , Electrochemical Techniques/methods , Enteroendocrine Cells/metabolism , Gastrointestinal Microbiome/physiology , Lasers , Parkinson Disease/metabolism
12.
Biosens Bioelectron ; 262: 116544, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38963952

ABSTRACT

In this work, a nanostructured conductive film possessing nanozyme features was straightforwardly produced via laser-assembling and integrated into complete nitrocellulose sensors; the cellulosic substrate allows to host live cells, while the nanostructured film nanozyme activity ensures the enzyme-free real-time detection of hydrogen peroxide (H2O2) released by the sames. In detail, a highly exfoliated reduced graphene oxide 3D film decorated with naked platinum nanocubes was produced using a CO2-laser plotter via the simultaneous reduction and patterning of graphene oxide and platinum cations; the nanostructured film was integrated into a nitrocellulose substrate and the complete sensor was manufactured using an affordable semi-automatic printing approach. The linear range for the direct H2O2 determination was 0.5-80 µM (R2 = 0.9943), with a limit of detection of 0.2 µM. Live cell measurements were achieved by placing the sensor in the culture medium, ensuring their adhesion on the sensors' surface; two cell lines were used as non-tumorigenic (Vero cells) and tumorigenic (SKBR3 cells) models, respectively. Real-time detection of H2O2 released by cells upon stimulation with phorbol ester was carried out; the nitrocellulose sensor returned on-site and real-time quantitative information on the H2O2 released proving useful sensitivity and selectivity, allowing to distinguish tumorigenic cells. The proposed strategy allows low-cost in-series semi-automatic production of paper-based point-of-care devices using simple benchtop instrumentation, paving the way for the easy and affordable monitoring of the cytopathology state of cancer cells.


Subject(s)
Biosensing Techniques , Collodion , Graphite , Hydrogen Peroxide , Nanostructures , Hydrogen Peroxide/analysis , Humans , Biosensing Techniques/instrumentation , Graphite/chemistry , Nanostructures/chemistry , Collodion/chemistry , Cell Line, Tumor , Lasers , Animals , Platinum/chemistry , Neoplasms , Limit of Detection
13.
Int J Mol Sci ; 25(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38999926

ABSTRACT

Advanced Oxidation Processes (AOPs) offer promising methods for disinfection by generating radical species like hydroxyl radicals, superoxide anion radicals, and hydroxy peroxyl, which can induce oxidative stress and deactivate bacterial cells. Photocatalysis, a subset of AOPs, activates a semiconductor using specific electromagnetic wavelengths. A novel material, Cu/Cu2O/CuO nanoparticles (NPs), was synthesized via a laser ablation protocol (using a 1064 nm wavelength laser with water as a solvent, with energy ranges of 25, 50, and 80 mJ for 10 min). The target was sintered from 100 °C to 800 °C at rates of 1.6, 1.1, and 1 °C/min. The composite phases of Cu, CuO, and Cu2O showed enhanced photocatalytic activity under visible-light excitation at 368 nm. The size of Cu/Cu2O/CuO NPs facilitates penetration into microorganisms, thereby improving the disinfection effect. This study contributes to synthesizing mixed copper oxides and exploring their activation as photocatalysts for cleaner surfaces. The electronic and electrochemical properties have potential applications in other fields, such as capacitor materials. The laser ablation method allowed for modification of the band gap absorption and enhancement of the catalytic properties in Cu/Cu2O/CuO NPs compared to precursors. The disinfection of E. coli with Cu/Cu2O/CuO systems serves as a case study demonstrating the methodology's versatility for various applications, including disinfection against different microorganisms, both Gram-positive and Gram-negative.


Subject(s)
Copper , Escherichia coli , Copper/chemistry , Escherichia coli/drug effects , Catalysis , Metal Nanoparticles/chemistry , Lasers , Oxidation-Reduction , Disinfection/methods , Light
14.
Curr Microbiol ; 81(9): 269, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39003672

ABSTRACT

The escalation of antimicrobial resistance (AMR) due to the excessive and inappropriate use of antimicrobials has prompted the urgent need for more rapid and effective antimicrobial susceptibility testing (AST) methods. Conventional AST techniques often take 16-24 h, leading to empirical prescription practices and the potential emergence of AMR. The study aimed to develop a rapid disk diffusion (RDD) method utilizing laser speckle formation (LSF) technology to expedite AST results. The study aimed to evaluate the performance of LSF technology in determining antimicrobial susceptibility. In this study, preclinical and clinical settings were established to compare the LSF technology with conventional disk diffusion (DD) methods to measure the inhibition zones. Preclinical experiments with different bacterial strains demonstrated more than 70% categorical agreement (CA) against most antimicrobials. Further, clinical experiments with multiple strains and antibiotics revealed CA ranging from 40 to 79%, while major and minor discrepancies were observed around 30% and 11%, respectively. These observations revealed high concordance between RDD and DD for multiple antimicrobials in multiple species. The results underscore the potential of RDD-based LSF technology for hastening AST procedures. The current study is marked by a unique equipment setup and analysis approach. Collectively, the suggested laser-based RDD showed greater potential than previously developed comparable methods. The proposed method and design have a higher application potential than formerly developed similar technologies. Together, the study contributes to the ongoing development of rapid AST methods.


Subject(s)
Anti-Bacterial Agents , Bacteria , Disk Diffusion Antimicrobial Tests , Lasers , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Disk Diffusion Antimicrobial Tests/methods , Humans , Microbial Sensitivity Tests/instrumentation , Microbial Sensitivity Tests/methods
15.
Annu Rev Biophys ; 53(1): 343-365, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39013027

ABSTRACT

The structure and mechanism of the water-oxidation chemistry that occurs in photosystem II have been subjects of great interest. The advent of X-ray free electron lasers allowed the determination of structures of the stable intermediate states and of steps in the transitions between these intermediate states, bringing a new perspective to this field. The room-temperature structures collected as the photosynthetic water oxidation reaction proceeds in real time have provided important novel insights into the structural changes and the mechanism of the water oxidation reaction. The time-resolved measurements have also given us a view of how this reaction-which involves multielectron, multiproton processes-is facilitated by the interaction of the ligands and the protein residues in the oxygen-evolving complex. These structures have also provided a picture of the dynamics occurring in the channels within photosystem II that are involved in the transport of the substrate water to the catalytic center and protons to the bulk.


Subject(s)
Lasers , Photosystem II Protein Complex , Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/ultrastructure , Photosystem II Protein Complex/metabolism , Electrons , Water/chemistry , Water/metabolism , X-Rays , Oxidation-Reduction , Models, Molecular
16.
Biomed Mater ; 19(5)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39016135

ABSTRACT

The performance and long-term durability of dental implants hinge on the quality of bone integration and their resistance to bacteria. This research aims to introduce a surface modification strategy for zirconia implants utilizing femtosecond laser ablation techniques, exploring their impact on osteoblast cell behavior and bacterial performance, as well as the integral factors influencing the soft tissue quality surrounding dental implants. Ultrafast lasers were employed to craft nanoscale groove geometries on zirconia surfaces, with thorough analyses conducted using x-ray diffraction, scanning electron microscopy, atomic force microscopy, and water contact angle measurements. The study evaluated the response of human fetal osteoblastic cell lines to textured zirconia ceramics by assessing alkaline phosphatase activity, collagen I, and interleukin 1ßsecretion over a 7 day period. Additionally, the antibacterial behavior of the textured surfaces was investigated usingFusobacterium nucleatum, a common culprit in infections associated with dental implants. Ciprofloxacin (CIP), a widely used antibacterial antibiotic, was loaded onto zirconia ceramic surfaces. The results of this study unveiled a substantial reduction in bacterial adhesion on textured zirconia surfaces. The fine biocompatibility of these surfaces was confirmed through the MTT assay and observations of cell morphology. Moreover, the human fetal osteoblastic cell line exhibited extensive spreading and secreted elevated levels of collagen I and interleukin 1ßin the modified samples. Drug release evaluations demonstrated sustained CIP release through a diffusion mechanism, showcasing excellent antibacterial activity against pathogenic bacteria, includingStreptococcus mutans, Pseudomonas aeruginosa, andEscherichia coli.


Subject(s)
Anti-Bacterial Agents , Ceramics , Lasers , Osteoblasts , Surface Properties , Zirconium , Zirconium/chemistry , Osteoblasts/cytology , Osteoblasts/drug effects , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Ceramics/chemistry , Ceramics/pharmacology , Cell Line , Dental Implants/microbiology , Fusobacterium nucleatum/drug effects , Materials Testing , Ciprofloxacin/pharmacology , Ciprofloxacin/chemistry , Interleukin-1beta/metabolism , Bacterial Adhesion/drug effects , X-Ray Diffraction , Microscopy, Electron, Scanning , Alkaline Phosphatase/metabolism , Microscopy, Atomic Force , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology
17.
J Am Chem Soc ; 146(28): 19555-19565, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38963823

ABSTRACT

Gelation of protein condensates formed by liquid-liquid phase separation occurs in a wide range of biological contexts, from the assembly of biomaterials to the formation of fibrillar aggregates, and is therefore of interest for biomedical applications. Soluble-to-gel (sol-gel) transitions are controlled through macroscopic processes such as changes in temperature or buffer composition, resulting in bulk conversion of liquid droplets into microgels within minutes to hours. Using microscopy and mass spectrometry, we show that condensates of an engineered mini-spidroin (NT2repCTYF) undergo a spontaneous sol-gel transition resulting in the loss of exchange of proteins between the soluble and the condensed phase. This feature enables us to specifically trap a silk-domain-tagged target protein in the spidroin microgels. Surprisingly, laser pulses trigger near-instant gelation. By loading the condensates with fluorescent dyes or drugs, we can control the wavelength at which gelation is triggered. Fluorescence microscopy reveals that laser-induced gelation significantly further increases the partitioning of the fluorescent molecules into the condensates. In summary, our findings demonstrate direct control of phase transitions in individual condensates, opening new avenues for functional and structural characterization.


Subject(s)
Lasers , Phase Transition , Fibroins/chemistry , Fluorescent Dyes/chemistry , Gels/chemistry
18.
Lasers Med Sci ; 39(1): 162, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38910231

ABSTRACT

The review critically evaluates the current state of studies investigating laser irradiation for modifying titanium surfaces to enhance the biointegration of dental implants. Laser modification is a rapidly evolving physicochemical surface modification process with the potential to revolutionize dental implant technology. A thorough search of electronic databases, including PubMed, Science Direct, MEDLINE, and Web of Knowledge, was conducted to identify relevant articles. The review focuses on the surface features of laser-modified implants, encompassing in vitro cell culture experiments, rare animal experiments, and limited clinical trials. Of the 26 selected sources, 21 describe surface features, while only two involve in vivo human experiments. The review highlights the lack of long-term clinical experience and calls for further research to mature these technologies. Despite the absence of a consensus on optimal laser types and settings, the overall results are promising, with few negative outcomes. As research in laser irradiation of titanium surfaces progresses, significant advancements in dental implant technology and improved patient well-being are anticipated.


Subject(s)
Dental Implants , Lasers , Surface Properties , Titanium , Humans , Animals , Osseointegration
19.
PLoS One ; 19(6): e0305929, 2024.
Article in English | MEDLINE | ID: mdl-38917184

ABSTRACT

The underwater laser polarization detection technology integrates the polarization characteristics of light into the detection and identification of underwater targets. Addressing the challenge of poor accuracy in identifying targets in strong underwater scattering environments, this article proposes an overall scheme for a laser polarization underwater detection device that suppresses scatter using polarized pulse signals. By overcoming key technological barriers in the design of polarization-preserving optical detection systems and utilizing the method of differential amplitude to measure polarization, a laser polarization underwater detection device was developed and underwater polarization detection experiments were conducted, achieving precise detection of underwater targets. The results indicate that the underwater detection device we designed has a root mean square error of less than 5.7% to detect the polarization of the target, demonstrating the accuracy and precision of the underwater detection device.


Subject(s)
Lasers , Scattering, Radiation , Water , Light
20.
Adv Clin Exp Med ; 33(6): 653-656, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38917320

ABSTRACT

BACKGROUND: The number and diversity of published peer-reviewed studies in the discipline of laser dentistry have grown considerably during the past 10 years. OBJECTIVES: Within primary research, the development of protocols to guide and formulate clinical practice demands precision and ease of reproducibility. Errors in data acquisition and management may become amplified as the applied randomized clinical trials (RCTs) forge new levels of clinical diversity and predictability in the use of laser photonic energy in both ablative (surgical) and sub-ablative (photobiomodulation (PBM) or photodynamic therapy (PDT)) applications. MATERIAL AND METHODS: A comprehensive range of empirical and computational operating parameters must be included in published studies to facilitate the uniformity of powerand time-related values of laser irradiation. RESULTS: Choosing the correct "tissue irradiation parameters" is difficult and depends on the pathology and symptoms, the surface area to be treated, laser wavelength, the thermal relaxation time of each targeted tissue, and controlling penetration depth of the light into tissues. Therefore, to allow the reproducibility of the results, it is recommended that authors mention with the greatest care and clarity the irradiation parameters used in their study. CONCLUSION: This paper outlines the concerns felt regarding the general shortfalls and proposes a minimum range of laser operating parameters that should be represented in future peer-reviewed publications.


Subject(s)
Laser Therapy , Humans , Laser Therapy/methods , Lasers , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...