Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 361
Filter
1.
Carbohydr Polym ; 337: 122187, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710543

ABSTRACT

The effects of different electron beam irradiation doses (2, 4, 8 KGy) and various types of fatty acids (lauric acid, stearic acid, and oleic acid) on the formation, structure, physicochemical properties, and digestibility of starch-lipid complex were investigated. The complexing index of the complexes was higher than 85 %, indicating that the three fatty acids could easily form complexes with starch. With the increase of electron beam irradiation dose, the complexing index increased first and then decreased. The highest complexing index was lauric acid (97.12 %), stearic acid (96.80 %), and oleic acid (97.51 %) at 2 KGy radiation dose, respectively. Moreover, the microstructure, crystal structure, thermal stability, rheological properties, and starch solubility were analyzed. In vitro digestibility tests showed that adding fatty acids could reduce the content of hydrolyzed starch, among which the resistant starch content of the starch-oleic acid complex was the highest (54.26 %). The lower dose of electron beam irradiation could decrease the digestibility of starch and increase the content of resistant starch.


Subject(s)
Electrons , Fatty Acids , Solubility , Starch , Starch/chemistry , Fatty Acids/chemistry , Lauric Acids/chemistry , Rheology , Hydrolysis , Oleic Acid/chemistry , Lipids/chemistry
2.
Int J Biol Macromol ; 268(Pt 2): 131996, 2024 May.
Article in English | MEDLINE | ID: mdl-38697417

ABSTRACT

This research investigated the effect of lecithin on the complexation of lauric acid with maize starch, potato starch, waxy maize starch, and high amylose maize starch. Rapid visco analysis showed that lecithin altered the setback pattern of potato starch-lauric acid and maize starch-lauric acid mixtures but not waxy maize starch-lauric acid. Further investigation, including differential scanning calorimetry, complex index, and X-ray diffraction, showed that lecithin enhanced the complexation of maize starch, potato starch, and high amylose maize starch with lauric acid. Fourier transform infrared and Raman spectroscopy revealed increasingly ordered structures formed in maize starch-lauric acid-lecithin, potato starch-lauric acid-lecithin, and high amylose maize starch-lauric acid-lecithin systems compared to corresponding binary systems. These highly ordered complexes of maize starch, potato starch, and high amylose maize starch also demonstrated greater resistance to in vitro enzymatic hydrolysis. Waxy maize starch complexation however remained unaffected by lecithin. The results of this study show that lecithin impacts complexation between fatty acids and native starches containing amylose, with the starch source being critical. Lecithin minimally impacted the complexation of low amylose starch and fatty acids.


Subject(s)
Amylose , Lauric Acids , Lecithins , Starch , Zea mays , Lauric Acids/chemistry , Lecithins/chemistry , Starch/chemistry , Amylose/chemistry , Zea mays/chemistry , Solanum tuberosum/chemistry , Hydrolysis , X-Ray Diffraction , Spectroscopy, Fourier Transform Infrared , Calorimetry, Differential Scanning
3.
Food Res Int ; 187: 114373, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763649

ABSTRACT

Effect of complexation of three medium-chain fatty acids (octanoic, decylic and lauric acid, OA, DA and LA, respectively) on structural characteristics, physicochemical properties and digestion behaviors of cassava starch (CS) was investigated. Current study indicated that LA was more easily to combine with CS (complex index 88.9%), followed by DA (80.9%), which was also consistent with their corresponding complexed lipids content. Following the investigation of morphology, short-range ordered structure, helical structure, crystalline/amorphous region and fractal dimension of the various complexes, all cassava starch-fatty acids complexes (CS-FAs) were characterized with a flaked morphology rather than a round morphology in native starch (control CS). X-ray diffraction demonstrated that all CS-FAs had a V-type crystalline structure, and nuclear magnetic resonance spectroscopy confirmed that the complexes made from different fatty acids displayed similar V6 or V7 type polymorphs. Interestingly, small-angle X-ray scattering analysis revealed that α value became greater following increased carbon chain length of fatty acids, indicating the formation of a more ordered fractal structure in the aggregates. Changes in rheological parameters G' and G'' indicated that starch complexed with fatty acids was more likely to form a gel network, but difference among three CS-FAs complexes was significant, which might be contributed to their corresponding hydrophobicity and hydrophilicity raised from individual fatty acids. Importantly, digestion indicated that CS-LA complexes had the lowest hydrolysis degree, followed by the greatest RS content, indicating the importance of chain length of fatty acids for manipulating the fine structure and functionality of the complexes.


Subject(s)
Digestion , Fatty Acids , Lauric Acids , Manihot , Starch , X-Ray Diffraction , Manihot/chemistry , Starch/chemistry , Lauric Acids/chemistry , Fatty Acids/chemistry , Decanoic Acids/chemistry , Rheology , Caprylates/chemistry , Magnetic Resonance Spectroscopy
4.
J Mater Chem B ; 12(16): 3947-3958, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38586917

ABSTRACT

Colorectal cancer (CRC) occurs in the colorectum and ranks second in the global incidence of all cancers, accounting for one of the highest mortalities. Although the combination chemotherapy regimen of 5-fluorouracil (5-FU) and platinum(IV) oxaliplatin prodrug (OxPt) is an effective strategy for CRC treatment in clinical practice, chemotherapy resistance caused by tumor-resided Fusobacterium nucleatum (Fn) could result in treatment failure. To enhance the efficacy and improve the biocompatibility of combination chemotherapy, we developed an antibacterial-based nanodrug delivery system for Fn-associated CRC treatment. A tumor microenvironment-activated nanomedicine 5-FU-LA@PPL was constructed by the self-assembly of chemotherapeutic drug derivatives 5-FU-LA and polymeric drug carrier PPL. PPL is prepared by conjugating lauric acid (LA) and OxPt to hyperbranched polyglycidyl ether. In principle, LA is used to selectively combat Fn, inhibit autophagy in CRC cells, restore chemosensitivity of 5-FU as well as OxPt, and consequently enhance the combination chemotherapy effects for Fn-associated drug-resistant colorectal tumor. Both in vitro and in vivo studies exhibited that the tailored nanomedicine possessed efficient antibacterial and anti-tumor activities with improved biocompatibility and reduced non-specific toxicity. Hence, this novel anti-tumor strategy has great potential in the combination chemotherapy of CRC, which suggests a clinically relevant valuable option for bacteria-associated drug-resistant cancers.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Fluorouracil , Lauric Acids , Fluorouracil/pharmacology , Fluorouracil/chemistry , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Humans , Lauric Acids/chemistry , Lauric Acids/pharmacology , Animals , Mice , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Fusobacterium nucleatum/drug effects , Oxaliplatin/pharmacology , Oxaliplatin/chemistry , Drug Delivery Systems , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Prodrugs/chemistry , Prodrugs/pharmacology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Mice, Inbred BALB C , Particle Size , Drug Carriers/chemistry
5.
Sci Rep ; 14(1): 9270, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38649421

ABSTRACT

The present study explored the anticancer activity of a Chitosan-based nanogel incorporating thiocolchicoside and lauric acid (CTL) against oral cancer cell lines (KB-1). Cell viability, AO/EtBr dual staining and Cell cycle analysis were done to evaluate the impact of CTL nanogel on oral cancer cells. Real-time PCR was performed to analyze proapoptotic and antiapoptotic gene expression in CTL-treated KB-1 cells. Further, molecular docking analysis was conducted to explore the interaction of our key ingredient, thiocolchicoside and its binding affinities. The CTL nanogel demonstrated potent anticancer activity by inhibiting oral cancer cell proliferation and inducing cell cycle arrest in cancer cells. Gene expression analysis indicated alterations in Bax and Bcl-2 genes; CTL nanogel treatment increased Bax mRNA expression and inhibited the Bcl-2 mRNA expression, which showed potential mechanisms of the CTL nanogel's anticancer action. It was found that thiocolchicoside can stabilize the protein's function or restore it as a tumour suppressor. The CTL nanogel exhibited excellent cytotoxicity and potent anticancer effects, making it a potential candidate for non-toxic chemotherapy in cancer nanomedicine. Furthermore, the nanogel's ability to modulate proapoptotic gene expression highlights its potential for targeted cancer therapy. This research contributes to the growing interest in Chitosan-based nanogels and their potential applications in cancer treatment.


Subject(s)
Antineoplastic Agents , Apoptosis , Chitosan , Colchicine , Colchicine/analogs & derivatives , Lauric Acids , Mouth Neoplasms , Nanogels , Polyethyleneimine , Humans , Chitosan/analogs & derivatives , Chitosan/chemistry , Chitosan/pharmacology , Lauric Acids/chemistry , Lauric Acids/pharmacology , Cell Line, Tumor , Nanogels/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Colchicine/pharmacology , Apoptosis/drug effects , Mouth Neoplasms/drug therapy , Mouth Neoplasms/pathology , Molecular Docking Simulation , Cell Proliferation/drug effects , Cell Survival/drug effects , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology
6.
Int J Biol Macromol ; 260(Pt 2): 129526, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38242387

ABSTRACT

A model system of gelatinized wheat starch (GWS) and lauric acid (LA) was used to examine the effect of residual short-range molecular order in GWS on the formation of starch-lipid complexes. The extent of residual short-range molecular order, as determined by Raman spectroscopy, decreased with increasing water content or heating duration of gelatinization. The enthalpy changes, crystallinity, short-range molecular order and the in vitro enzymic digestion of GWS-LA complexes increased initially to a maximum and then declined as the short-range molecular order in GWS decreased, showing that there was an optimal amount of residual short-range molecular order in GWS for maximizing GWS-LA complexes formation. Below this optimum amount, the limited disruption of short-range molecular order may constrain the mobility of amylose chains for complexation with LA, whereas with excessive disruption above this amount the amylose chains may be too disorganized or entangled to form complexes with LA. The susceptibility of GWS-LA complexes to enzymatic hydrolysis was influenced by both long- and short-range structural order, and to a lesser extent the amounts of complexes. This study showed clearly the role of short-range molecular order in gelatinized starch in influencing the formation of GWS-LA complexes.


Subject(s)
Amylose , Starch , Starch/chemistry , Amylose/chemistry , Lauric Acids/chemistry , Hydrolysis
7.
J Oleo Sci ; 72(9): 831-837, 2023.
Article in English | MEDLINE | ID: mdl-37648460

ABSTRACT

Alkali series with different atomic numbers affect the physicochemical properties of aqueous solutions. The micellar properties of aqueous solutions of dodecanoate as surfactants were measured by changing the counterions (C12-Na, C12-K, C12-Rb, and C12-Cs). A plot of Krafft temperature vs. alkali metal atomic number showed a downward convex curve, with its minimum temperature (20°C) in the C12-K system. By contrast, a plot of the critical micelle concentration (CMC) vs. alkali metal atomic number exhibited an upward convex curve with the maximum CMC (25.6 mmol L-1) at C12-K. Furthermore, the minimum surface tension (γ min ) of the solution at the CMC increased with increasing atomic number (C12-Na ≈ C12-K < C12-Rb < C12-Cs). The size of the dodecanoate micelles decreased with increasing atomic number. The ionization degree of the micelles also increased with increasing atomic number of the alkali metal. Small-angle X-ray scattering (SAXS) measurements revealed that alkali dodecanoate micelles formed spherical to ellipsoidal structures. In addition, micelles from the shell region showed large electrostatic repulsion, judging from the shape of the spectrum in the higher Q -1 region. From the measurement results of the solubilization of naphthalene into the micelles, the size of the micelles corresponded to the maximum solubilization quantity of naphthalene.


Subject(s)
Lauric Acids , Micelles , Lauric Acids/chemistry , Metals, Alkali/chemistry , Surface Properties , Cations/chemistry , Solubility
8.
J Oleo Sci ; 72(5): 543-548, 2023.
Article in English | MEDLINE | ID: mdl-37121679

ABSTRACT

The selectivity of adsorption between alkali metal ions (Li+, Na+, K+, Rb+, and Cs+) based on the ionic functional groups of the surfactants was studied using two types of surfactants, dodecanoic acid (DA) and sodium dodecyl sulfate (SDS), in the foam separation system. The results showed that Li+ was preferably removed by foam separation using DA. The removal rates of other alkali metal ions were relatively low, and there were no significant differences among other alkali metal ions (Na+, K+, Rb+, and Cs+). However, Cs+ exhibited the highest removal rate among the mixed alkali metals by foam separation using SDS. From these results, the selectivity of the alkali metal in foam separation was dependent on the type of surfactant.


Subject(s)
Metals, Alkali , Metals, Alkali/chemistry , Metals, Alkali/isolation & purification , Lauric Acids/chemistry , Sodium Dodecyl Sulfate/chemistry
9.
ACS Appl Mater Interfaces ; 13(51): 60837-60851, 2021 Dec 29.
Article in English | MEDLINE | ID: mdl-34915699

ABSTRACT

One of the current challenges in the post-operative treatment of breast cancer is to develop a local therapeutic vector for preventing recurrence and metastasis. Herein, we develop a core-shell fibrous scaffold comprising phase-change materials and photothermal/chemotherapy agents, as a thermal trigger for programmable-response drug release and synergistic treatment. The scaffold is obtained by in situ growth of a zeolitic imidazolate framework-8 (ZIF-8) shell on the surface of poly(butylene succinate)/lauric acid (PBS/LA) phase-change fibers (PCFs) to create PCF@ZIF-8. After optimizing the core-shell and phase transition behavior, gold nanorods (GNRs) and doxorubicin hydrochloride (DOX) co-loaded PCF@ZIF-8 scaffolds were shown to significantly enhance in vitro and in vivo anticancer efficacy. In a healthy tissue microenvironment at pH 7.4, the ZIF-8 shell ensures the sustained release of DOX. If the tumor recurs, the acidic microenvironment induces the decomposition of the ZIF-8 shell. Under the second near-infrared (NIR-II) laser treatment, GNR-induced thermal not only directly destroys the relapsed tumor cells but also accelerates DOX release by inducing the phase transition of LA. Our study sheds light on a well-designed programmable-response trigger, which provides a promising strategy for post-operative recurrence prevention of cancer.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Butylene Glycols/chemistry , Doxorubicin/pharmacology , Phototherapy , Polymers/chemistry , Animals , Antibiotics, Antineoplastic/chemistry , Biocompatible Materials/chemistry , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Doxorubicin/chemistry , Drug Screening Assays, Antitumor , Female , Humans , Lauric Acids/chemistry , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/pathology , Materials Testing , Mice , Mice, Inbred BALB C , Particle Size , Zeolites/chemistry
10.
Int J Biol Macromol ; 189: 826-836, 2021 Oct 31.
Article in English | MEDLINE | ID: mdl-34428490

ABSTRACT

In this work, low molecular weight (17 kDa) hyaluronan was modified by dodecanoyl substituents. The activation of dodecanoic acid was mediated by benzoyl chloride towards the preparation of a mixed anhydride, which reacts in a second step with HA in water mixed with an organic solvent. The effect of the cosolvent was studied and showed an even distribution of substituents and higher reaction rate in water: 1,4-dioxane compared to water:tert-butanol where substituents occupy adjacent positions. The chemical characterization of the prepared derivatives was elucidated by NMR, FTIR spectroscopy, thermal analyses, and gas chromatography, while the distribution of substituents was evaluated by enzymatic degradation. Molecular-dynamics simulations reveal opposite solvent separations around HA and dodecanoyl chains, that is stronger in water:tert-butanol solution. The resulting incompatibility of solvation-shells of the two entities repels the reaction intermediates from the HA chain and drives them towards the already bound substituents, explaining the observed differences in the distribution evenness. Thus, the influence of the solvent on the reaction selectivity is observed by shielding reactive sites around HA. Therefore, a control of the distribution of the substituents was obtained by defining the concentration of HA and used cosolvent.


Subject(s)
Hyaluronic Acid/chemistry , Lauric Acids/chemistry , Solvents/chemistry , Lauric Acids/chemical synthesis , Oligosaccharides/chemistry , Proton Magnetic Resonance Spectroscopy
11.
Mol Pharm ; 18(8): 3147-3157, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34251210

ABSTRACT

Polysorbates (PSs, Tweens) are widely used surfactant products consisting of a sorbitan ring connecting up to four ethylene oxide (EO) chains of variable lengths, one or more of which are esterified with fatty acids of variable lengths and saturation degrees. Pharmaceutical applications include the stabilization of biologicals in solutions and the solubilization of poorly water soluble, active ingredients. This study characterizes the complex association behavior of compendial PSs PS20 and PS80, which is fundamentally different from that of single-component surfactants. To this end, a series of demicellization experiments of isothermal titration calorimetry with different PS concentrations are evaluated. Their experiment-dependent heats of titration are converted into a common function of the state of a sample, the micellar enthalpy Qm(c). These functions demonstrate that initial micelles are already present at the lowest concentrations investigated, 2 µM for PS20 and 10 µM for PS80. Initial micelles consist primarily of the surfactant species with the lowest individual critical micelle concentration (cmc). With increasing concentration, the other PS species gradually enter these micelles in the sequence of increasing individual cmc's and hydrophilic-lipophilic balance. Concentration ranges with pronounced slopes of Qm(c) can be tentatively assigned to the uptake of the major components of the PS products. Micellization and the variation of the micelle properties progress up to at least 10 mM PS. That means the published cmc values or ranges of PS20 and PS80 may be related to certain, major components being incorporated into and forming specific micelles but must not be interpreted in terms of an absence of micelles below and constant properties, e.g., the surface activity, of the micelles above these ranges. The micellization enthalpy curves differ quite substantially between PS20 and PS80 and, in a subtler fashion, between individual quality grades such as high purity, pure lauric acid/pure oleic acid, super-refined, and China grade.


Subject(s)
Micelles , Polysorbates/chemistry , Surface-Active Agents/chemistry , Calorimetry/methods , Chemistry, Pharmaceutical/methods , Drug Compounding/methods , Drug Stability , Dynamic Light Scattering/methods , Esters/chemistry , Excipients/chemistry , Fatty Acids/chemistry , Hot Temperature , Hydrophobic and Hydrophilic Interactions , Lauric Acids/chemistry , Oleic Acid/chemistry , Protein Stability , Solubility
12.
Molecules ; 26(11)2021 May 27.
Article in English | MEDLINE | ID: mdl-34072265

ABSTRACT

Though siRNA-based therapy has achieved great progress, efficient siRNA delivery remains a challenge. Here, we synthesized a copolymer PAsp(-N=C-PEG)-PCys-PAsp(DETA) consisting of a poly(aspartate) block grafted with comb-like PEG side chains via a pH-sensitive imine bond (PAsp(-N=C-PEG) block), a poly(l-cysteine) block with a thiol group (PCys block), and a cationic poly(aspartate) block grafted with diethylenetriamine (PAsp(DETA) block). The cationic polymers efficiently complexed siRNA into polyplexes, showing a sandwich-like structure with a PAsp(-N=C-PEG) out-layer, a crosslinked PCys interlayer, and a complexing core of siRNA and PAsp(DETA). Low pH-triggered breakage of pH-sensitive imine bonds caused PEG shedding. The disulfide bond-crosslinking and pH-triggered PEG shedding synergistically decreased the polyplexes' size from 75 nm to 26 nm. To neutralize excessive positive charges and introduce the targeting ligand, the polyplexes without a PEG layer were coated with an anionic copolymer modified with the targeting ligand lauric acid. The resulting polyplexes exhibited high transfection efficiency and lysosomal escape capacity. This study provides a promising strategy to engineer the size and surface of polyplexes, allowing long blood circulation and targeted delivery of siRNA.


Subject(s)
Polymers/chemistry , RNA, Small Interfering/metabolism , Anions , Cations , Cell Survival , Cross-Linking Reagents/chemistry , Cytoplasm/metabolism , Disulfides , Drug Delivery Systems , Humans , Hydrogen-Ion Concentration , Lauric Acids/chemistry , Ligands , Magnetic Resonance Spectroscopy , Oxygen/chemistry , Particle Size , Polyethylene Glycols/chemistry , Spectroscopy, Fourier Transform Infrared , THP-1 Cells
13.
Food Chem ; 359: 129851, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-33957325

ABSTRACT

The aim of this research was to conjugate chitosan (CT) with lauric acid (LA) and l-carnitine (CNT) to yield a product that is water-soluble at neutral pH and has surface, antimicrobial, and antioxidant activities. The resulting CT-LA-CNT is water-soluble at neutral pH, in contrast with CT and CT-LA, which require the aid of acid to become soluble. Concerning antimicrobial activity, for S. aureus, the minimum bactericidal concentration of CT was lower than those of CT-LA or CT-LA-CNT, while the three compounds exhibited similar bactericidal activity against E. coli. CT-LA-CNT was also used to study the oxidative stability of soybean oil in an oil-in-water (O/W) emulsion; sodium dodecyl sulfate (SDS) and Tween 80 and Span 80 (TS), an emulsifier mixture, were used as controls for comparison. The results showed that CT-LA-CNT was better than SDS and TS at protecting the lipid from oxidation.


Subject(s)
Carnitine/chemistry , Chitosan/chemistry , Chitosan/pharmacology , Lauric Acids/chemistry , Oils/chemistry , Water/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Emulsions , Escherichia coli/drug effects , Oxidation-Reduction , Solubility , Staphylococcus aureus/drug effects
14.
J Oleo Sci ; 70(6): 807-816, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33967168

ABSTRACT

A detailed study on the foamability, foam stability, foam liquid-carrying capacity, and foam morphology of two N-acyl amino acid surfactants with bovine serum albumin (BSA) and gelatin were performed by foam scanning. The results showed that the foamability of the mixed system increased gradually and then tended to be stable with increasing surfactant concentration. The foamability of the high-concentration BSA system was stronger than that of the low-concentration BSA system. The foamability and foam stability of sodium N-lauroyl phenylpropanoic acid (N-C12P)/BSA were better than those of sodium N-lauroyl propylamino acid (N-C12A)/BSA, and the foamability and foam stability of N-C12A/gelatin was better than those of N-C12P/gelatin. The liquid-carrying capacity of the foam initially increased and then decreased with increasing time, and the maximum liquid-carrying capacity increased with increasing surfactant concentration. When the concentration of the surfactant was 8 mM, the drainage rate of N-C12A/protein was higher than that of N-C12P/protein. The morphology of the bubble gradually changed from spherical to polyhedron and the number of bubbles gradually decreased with time increasing. Differences in surfactant structure and protein type had an important effect on the number and area of foam.


Subject(s)
Gelatin/chemistry , Glycine/analogs & derivatives , Lauric Acids/chemistry , Phenylalanine/analogs & derivatives , Serum Albumin, Bovine/chemistry , Surface-Active Agents/chemistry , Animals , Cattle
15.
Bioprocess Biosyst Eng ; 44(9): 1807-1818, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34009462

ABSTRACT

Virgin coconut oil is a useful substance in our daily life. It contains a high percentage of lauric acid which has many health benefits. The current industry has developed several methods to extract the oil out from the coconut fruit. This review paper aims to highlight several common extraction processes used in modern industries that includes cold extraction, hot extraction, low-pressure extraction, chilling, freezing and thawing method, fermentation, centrifugation, enzymatic extraction and supercritical fluid carbon dioxide. Different extraction methods will produce coconut oil with different yields and purities of lauric acid, thus having different uses and applications. Challenges that are faced by the industries in extracting the coconut oil using different methods of extraction are important to be explored so that advancement in the oil extraction technology can be done for efficient downstream processing. This study is vital as it provides insights that could enhance the production of coconut oil.


Subject(s)
Coconut Oil/chemistry , Cocos/chemistry , Fruit/chemistry , Lauric Acids/chemistry , Lauric Acids/isolation & purification
16.
Int J Biol Macromol ; 182: 1112-1119, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33894257

ABSTRACT

Herein, we investigated the effects of gluten proteins (Pr) on the structure, physicochemical properties, and in vitro digestibility of wheat starch-lauric acid (WS-LA) complexes under various cooking methods (steaming, boiling, and baking). There was no ternary complex formation between WS, LA, and Pr in the samples after different cooking methods. Scanning electron microscopy (SEM) and fluorescence microscopy showed variation in size, structure and distribution of WS-LA of WS-LA-Pr samples after cooking. An increase in the intensity of V-type diffraction peak and thermal stability was observed in steamed and baked samples, however, opposite trend was noticed in boiled sample. Additionally, a higher 1022/995 cm-1 absorbance ratio was noted in WS-LA-Pr sample treated with boiling than other cooking methods. Further, in vitro resistance to enzymatic hydrolysis was improved in samples treated with steaming and baking compared with boiled treated samples. In sum, this study may offer a thorough understanding on how these interactions take place during food processing, to optimize the production and development of new food products with desired microstructure and functionality features.


Subject(s)
Glutens/chemistry , Lauric Acids/chemistry , Starch/chemistry , Triticum/chemistry , Microscopy, Electron, Scanning , Microscopy, Fluorescence
17.
Biomolecules ; 11(3)2021 03 17.
Article in English | MEDLINE | ID: mdl-33802693

ABSTRACT

As a consequence of intense industrialization in the last few decades, the amount of agro-industrial wastes has increasing, where new forms of valorization are crucial. In this work, five residual biomasses from Maranhão (Brazil) were investigated as supports for immobilization of lipase from Thermomyces lanuginosus (TLL). The new biocatalysts BM-TLL (babaçu mesocarp) and RH-TLL (rice husk) showed immobilization efficiencies >98% and hydrolytic activities of 5.331 U g-1 and 4.608 U g-1, respectively, against 142 U g-1 by Lipozyme® TL IM. High esterification activities were also found, with 141.4 U g-1 and 396.4 U g-1 from BM-TLL and RH-TLL, respectively, against 113.5 U g-1 by TL IM. Results of porosimetry, SEM, and BET demonstrated BM and RH supports are mesoporous materials with large hydrophobic area, allowing a mixture of hydrophobic adsorption and confinement, resulting in hyperactivation of TLL. These biocatalysts were applied in the production of hexyl laurate, where RH-TLL was able to generate 94% conversion in 4 h. Desorption with Triton X-100 and NaCl confirmed that new biocatalysts were more efficient with 5 times less protein than commercial TL IM. All results demonstrated that residual biomass was able to produce robust and stable biocatalysts containing immobilized TLL with better results than commercial preparations.


Subject(s)
Enzymes, Immobilized/chemistry , Eurotiales/enzymology , Fungal Proteins/chemistry , Industrial Waste , Lauric Acids/chemistry , Lipase/chemistry , Adsorption , Agriculture/methods , Algorithms , Biocatalysis , Brazil , Enzymes, Immobilized/metabolism , Esterification , Fungal Proteins/metabolism , Hydrolysis , Hydrophobic and Hydrophilic Interactions , Lauric Acids/chemical synthesis , Lauric Acids/metabolism , Lignin/chemistry , Lignin/metabolism , Lignin/ultrastructure , Lipase/metabolism , Microscopy, Electron, Scanning , Models, Chemical
18.
Appl Biochem Biotechnol ; 193(9): 2781-2792, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33871767

ABSTRACT

Here, we developed an efficient strategy for the production of lauric acid-enriched monoacylglycerol (MAG) via enzymatic glycerolysis using black soldier fly (Hermetia illucens) larvae (BSFL) oil. The effects of the substrate molar ratio, reaction temperature, type of immobilized lipase, and organic solvent on the MAG content and conversion degree of BSFL oil were optimized. The maximum substrate conversion rate (97.88%) and MAG content (70.84%) were obtained in a tert-butanol system at 50 °C with a glycerol/BSFL oil molar ratio of 4:1 by using immobilized MAS1 lipase as a catalyst. The MAG content in the purified product reached 97.7%, with lauric acid accounting for 50.2%. Improved oxidation stability was observed after glycerolysis. Overall, this study provides a new strategy for the preparation of lauric acid-enriched MAG from BSFL oil.


Subject(s)
Complex Mixtures/chemistry , Diptera/chemistry , Insect Proteins/chemistry , Lauric Acids/chemistry , Lipase/chemistry , Monoglycerides/chemical synthesis , Animals , Larva/chemistry , Monoglycerides/chemistry
19.
Food Chem ; 351: 129303, 2021 Jul 30.
Article in English | MEDLINE | ID: mdl-33647689

ABSTRACT

Herein, we investigated the impact of moist (steaming and boiling) and dry (baking and microwaving)-heat treatment processes on the structure and physicochemical properties of wheat starch (WS) supplemented with lauric acid (LA). Elemental composition analysis revealed the interplay between WS and LA. Scanning electron microscopy (SEM) and iodine staining revealed that lamellar crystalline structure of WS-LA complexes was improved after moist-heat treatment (relative to samples without any heat treatments); the finding which is at variance to dry-heat treatment process. Additionally, high resistance to thermal decomposition and a lower 1022/995 cm-1 absorbance ratio were observed in moist-heat treated WS-LA compared with dry-heat samples. Moreover, the V-type diffraction peak intensity and resistance to in vitro enzymatic hydrolysis of samples treated with moist-heat were increased to a greater extent than the dry-heat treated counterparts. In sum, this study would facilitate the application of functional starch-lipid complexes in food necessitated heat treatments.


Subject(s)
Hot Temperature , Lauric Acids/chemistry , Starch/chemistry , Triticum/chemistry , Digestion , Food Handling , Hydrolysis , Microscopy, Electron, Scanning , Starch/metabolism
20.
J Nat Prod ; 84(2): 278-286, 2021 02 26.
Article in English | MEDLINE | ID: mdl-33444023

ABSTRACT

Lactylates are an important group of molecules in the food and cosmetic industries. A series of natural halogenated 1-lactylates, chlorosphaerolactylates (1-4), were recently reported from Sphaerospermopsis sp. LEGE 00249. Here, we identify the cly biosynthetic gene cluster, containing all the necessary functionalities for the biosynthesis of the natural lactylates, based on in silico analyses. Using a combination of stable isotope incorporation experiments and bioinformatic analysis, we propose that dodecanoic acid and pyruvate are the key building blocks in the biosynthesis of 1-4. We additionally report minor analogues of these molecules with varying alkyl chains. This work paves the way to accessing industrially relevant lactylates through pathway engineering.


Subject(s)
Biosynthetic Pathways , Cyanobacteria/metabolism , Esters/chemistry , Lactic Acid/chemistry , Lauric Acids/chemistry , Computational Biology , Halogenation , Molecular Structure , Multigene Family , Pyruvic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...