Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.355
Filter
1.
Arh Hig Rada Toksikol ; 75(2): 102-109, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38963144

ABSTRACT

COVID-19 can cause a range of complications, including cardiovascular, renal, and/or respiratory insufficiencies, yet little is known of its potential effects in persons exposed to toxic metals. The aim of this study was to answer this question with in silico toxicogenomic methods that can provide molecular insights into COVID-19 complications owed to exposure to arsenic, cadmium, lead, mercury, nickel, and chromium. For this purpose we relied on the Comparative Toxicogenomic Database (CTD), GeneMANIA, and ToppGene Suite portal and identified a set of five common genes (IL1B, CXCL8, IL6, IL10, TNF) for the six metals and COVID-19, all of which code for pro-inflammatory and anti-inflammatory cytokines. The list was expanded with additional 20 related genes. Physical interactions are the most common between the genes affected by the six metals (77.64 %), while the dominant interaction between the genes affected by each metal separately is co-expression (As 56.35 %, Cd 64.07 %, Pb 71.5 %, Hg 81.91 %, Ni 64.28 %, Cr 88.51 %). Biological processes, molecular functions, and pathways in which these 25 genes participate are closely related to cytokines and cytokine storm implicated in the development of COVID-19 complications. In other words, our findings confirm that exposure to toxic metals, alone or in combinations, might escalate COVID-19 severity.


Subject(s)
COVID-19 , Cadmium , Mercury , Humans , Cadmium/toxicity , Mercury/toxicity , Lead/toxicity , Computer Simulation , SARS-CoV-2 , Arsenic/toxicity , Nickel/toxicity , Metals, Heavy/toxicity , Chromium/toxicity , Cytokines , Interleukin-1beta/genetics , Interleukin-8/genetics , Toxicogenetics , Interleukin-6/genetics , Interleukin-10/genetics , Tumor Necrosis Factor-alpha/genetics
2.
Biol Res ; 57(1): 44, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38965573

ABSTRACT

BACKGROUND: Exposure of humans and animals to heavy metals is increasing day-by-day; thus, lead even today remains of significant public health concern. According to CDC, blood lead reference value (BLRV) ranges from 3.5 µg/dl to 5 µg/dl in adults. Recently, almost 2.6% decline in male fertility per year has been reported but the cause is not well established. Lead (Pb2+) affects the size of testis, semen quality, and secretory functions of prostate. But the molecular mechanism(s) of lead toxicity in sperm cells is not clear. Thus, present study was undertaken to evaluate the adverse effects of lead acetate at environmentally relevant exposure levels (0.5, 5, 10 and 20 ppm) on functional and molecular dynamics of spermatozoa of bucks following in vitro exposure for 15 min and 3 h. RESULTS: Lead significantly decreased motility, viable count, and motion kinematic patterns of spermatozoa like curvilinear velocity, straight-line velocity, average path velocity, beat cross frequency and maximum amplitude of head lateral displacement even at 5 ppm concentration. Pb2+ modulated intracellular cAMP and Ca2+ levels in sperm cells through L-type calcium channels and induced spontaneous or premature acrosome reaction (AR) by increasing tyrosine phosphorylation of sperm proteins and downregulated mitochondrial transmembrane potential. Lead significantly increased DNA damage and apoptosis as well. Electron microscopy studies revealed Pb2+ -induced deleterious effects on plasma membrane of head and acrosome including collapsed cristae in mitochondria. CONCLUSIONS: Pb2+ not only mimics Ca2+ but also affects cellular targets involved in generation of cAMP, mitochondrial transmembrane potential, and ionic exchange. Lead seems to interact with Ca2+ channels because of charge similarity and probably enters the sperm cell through these channels and results in hyperpolarization. Our findings also indicate lead-induced TP and intracellular Ca2+ release in spermatozoa which in turn may be responsible for premature acrosome exocytosis which is essential feature of capacitation for fertilization. Thus, lead seems to reduce the fertilizing capacity of spermatozoa even at 0.5 ppm concentrations.


Subject(s)
Acrosome Reaction , Acrosome , Calcium , Lead , Sperm Motility , Spermatozoa , Male , Spermatozoa/drug effects , Calcium/metabolism , Sperm Motility/drug effects , Animals , Acrosome/drug effects , Lead/toxicity , Acrosome Reaction/drug effects , Cyclic AMP/metabolism , Cattle , Membrane Potential, Mitochondrial/drug effects , Signal Transduction/drug effects , Semen Analysis , DNA Damage/drug effects , Organometallic Compounds/toxicity , Organometallic Compounds/pharmacology
3.
Ecotoxicol Environ Saf ; 281: 116663, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964059

ABSTRACT

Biological characteristics of pregnant women during early pregnancy make them susceptible to both poor sleep quality and metal/metalloid exposure. However, the effects of metal(loid) exposure on sleep quality in pregnant women remain unknown and unexplored. We aimed to examine the relationship between exposure to a mixture of metal(loid)s and pregnant women's sleep quality during early pregnancy. We recruited 493 pregnant women in the first trimester from prenatal clinics in Jinan, Shandong Province, China, and collected their spot urine samples. All urine specimens were assessed for eight metal(loid)s: arsenic (As), cadmium (Cd), iron (Fe), zinc (Zn), molybdenum (Mo), lead (Pb), selenium (Se), and mercury (Hg). We used the Pittsburgh Sleep Quality Index (PSQI) to assess sleep quality. Linear regression, logistic regression, generalized additive models (GAMs), quantile g-computation, and Bayesian kernel machine regression (BKMR) were applied to investigate the relationships between metal(loid) exposure and sleep quality. The results from single metal(loid) models, quantile g-computation models, and BKMR models consistently suggested that Fe was positively related to women's sleep quality. Moreover, in the quantile g-computation models, As was the most critical contributor to the negative effects of the metal(loid) mixture on sleep quality. In addition, we found significant As by Fe interaction for scores of PSQI and habitual sleep efficiency, Pb by Fe interaction for PSQI and sleep latency, and Hg by Fe interaction for PSQI, suggesting the interactive effects of As and Fe, Pb and Fe, Hg and Fe on sleep quality and specific sleep components. Our study provided the first-hand evidence of the effects of metal(loid) exposure on pregnant women's sleep quality. The underlying mechanisms need to be explored in the future.


Subject(s)
Sleep Quality , Humans , Female , Pregnancy , Cross-Sectional Studies , Adult , China , Environmental Pollutants/urine , Environmental Pollutants/toxicity , Selenium/urine , Arsenic/urine , Arsenic/toxicity , Metals/urine , Metals/toxicity , Metals, Heavy/urine , Metals, Heavy/toxicity , Mercury/urine , Mercury/toxicity , Young Adult , Lead/urine , Lead/toxicity , Maternal Exposure , Cadmium/urine , Cadmium/toxicity , Pregnancy Trimester, First
4.
Ecotoxicol Environ Saf ; 281: 116659, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964060

ABSTRACT

Chronic Kidney Disease (CKD), closely linked to environmental factors, poses a significant public health challenge. This study, based on 529 triple-repeated measures from key national environmental pollution area and multiple gene-related public databases, employs various epidemiological and bioinformatics models to assess the impact of combined heavy metal exposure (Chromium [Cr], Cadmium [Cd], and Lead [Pb]) on early renal injury and CKD in the elderly. Introducing the novel Enviro-Target Mendelian Randomization method, our research explores the causal relationship between metals and CKD. The findings indicate a positive correlation between increased levels of metal and renal injury, with combined exposure caused renal damage more significantly than individual exposure. The study reveals that metals primarily influence CKD development through oxidative stress and metal ion resistance pathways, focusing on three related genes (SOD2, MPO, NQO1) and a transcription factor (NFE2L2). Metals were found to regulate oxidative stress levels in the body by increasing the expression of SOD2, MPO, NQO1, and decreasing NFE2L2, leading to CKD onset. Our research establishes a new causal inference framework linking environmental pollutants-pathways-genes-CKD, assessing the impact and mechanisms of metal exposure on CKD. Future studies with more extensive in vitro evidence and larger population are needed to validate.


Subject(s)
Cadmium , Environmental Pollutants , Mendelian Randomization Analysis , Metals, Heavy , Oxidative Stress , Renal Insufficiency, Chronic , Humans , Metals, Heavy/toxicity , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/epidemiology , Oxidative Stress/drug effects , Aged , Cadmium/toxicity , Environmental Pollutants/toxicity , Lead/toxicity , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics , NAD(P)H Dehydrogenase (Quinone)/genetics , NF-E2-Related Factor 2/genetics , Environmental Exposure/adverse effects , Male , Female , Chromium/toxicity , Kidney/drug effects
5.
Ecotoxicol Environ Saf ; 281: 116683, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964061

ABSTRACT

Soil pollution by microplastics (MPs), defined as plastic particles <5 mm, and heavy metals is a significant environmental issue. However, studies on the co-contamination effects of MPs and heavy metals on buckwheat rhizosphere microorganisms, especially on the arbuscular mycorrhizal fungi (AMF) community, are limited. We introduced low (0.01 g kg-1) and high doses of lead (Pb) (2 g kg-1) along with polyethylene (PE) and polylactic acid (PLA) MPs, both individually and in combination, into soil and assessed soil properties, buckwheat growth, and rhizosphere bacterial and AMF communities in a 40-day pot experiment. Notable alterations were observed in soil properties such as pH, alkaline hydrolyzable nitrogen (AN), and the available Pb (APb). High-dose Pb combined with PLA-MPs hindered buckwheat growth. Compared to the control, bacterial Chao1 richness and Shannon diversity were lower in the high dose Pb with PLA treatment, and differentially abundant bacteria were mainly detected in the high Pb dose treatments. Variations in bacterial communities correlated with APb, pH and AN. Overall, the AMF community composition remained largely consistent across all treatments. This phenomenon may be due to fungi having lower nutritional demands than bacteria. Stochastic processes played a relatively important role in the assembly of both bacterial and AMF communities. In summary, MPs appeared to amplify both the positive and negative effects of high Pb doses on the buckwheat rhizosphere bacteria.


Subject(s)
Fagopyrum , Lead , Microplastics , Mycorrhizae , Rhizosphere , Soil Microbiology , Soil Pollutants , Soil Pollutants/toxicity , Soil Pollutants/analysis , Mycorrhizae/drug effects , Lead/toxicity , Microplastics/toxicity , Bacteria/drug effects , Bacteria/classification , Bacteria/growth & development , Soil/chemistry
6.
Plant Physiol Biochem ; 213: 108826, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38908351

ABSTRACT

Rice production is threatened by heavy metal stress. The use of multi-walled carbon nanotubes (MWCNTs) in agriculture has been reported in previous studies. We aimed to quantify the impact of MWCNTs on the growth and physiological characteristics of scented rice under cadmium (Cd) and lead (Pb) stresses. Therefore, a pot experiment was conducted, two scented rice varieties Yuxiangyouzhan and Xiangyaxiangzhan were used as materials grown under different concentrations of MWCNTs (0, 100, and 300 mg kg-1 recorded as CK, CNPs100, and CNPs300, respectively). The yield, antioxidant response, and rhizosphere microbial community of scented rice were studied. The results showed that compared with the CK treatment, the CNPs100 and CNPs300 treatments increased leaf dry weight by 17.95%-56.22% at the heading stage, and the H2O2 content in leaves decreased significantly by 36.64%-42.27% at the maturity stage. Under CNPs100 treatment, the grain yield of two scented rice varieties increased significantly by 17.54% and 27.40%, respectively. The MWCNTs regulated the distribution of the Cd and Pb in different plant tissues. The content of Cd (0.11-0.20 mg kg-1) and Pb (0.01-0.04 mg kg-1) in grain were at a safety level (<0.2 mg kg-1). Moreover, MWCNTs increased soil microbial community abundance and altered community composition structure under Cd-Pb stress, which in turn improved agronomic traits and quality of scented rice. Overall, this study suggested that the application of MWCNTs regulates the growth, yield, physiological response, and soil microbial community, the genotypes response effect of scented rice to MWCNTs is needed further studied.


Subject(s)
Antioxidants , Cadmium , Lead , Nanotubes, Carbon , Oryza , Rhizosphere , Oryza/microbiology , Oryza/drug effects , Oryza/metabolism , Oryza/growth & development , Cadmium/toxicity , Cadmium/metabolism , Lead/metabolism , Lead/toxicity , Antioxidants/metabolism , Microbiota/drug effects , Plant Leaves/drug effects , Plant Leaves/metabolism , Soil Microbiology , Stress, Physiological/drug effects
7.
Plant Physiol Biochem ; 213: 108867, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38936069

ABSTRACT

Understanding the heavy metals (HMs) tolerance mechanism is crucial for improving plant growth in metal-contaminated soil. In order to evaluate the lead (Pb) tolerance mechanism in Brassica species, a comparative proteomic study was used. Thirteen-day-old seedlings of B. juncea and B. napus were treated with different Pb(NO3)2 concentrations at 0, 3, 30, and 300 mg/L. Under 300 mg/L Pb(NO3)2 concentration, B. napus growth was significantly decreased, while B. juncea maintained normal growth similar to the control. The Pb accumulation was also higher in B. napus root and shoot compared to B. juncea. Gel-free proteomic analysis of roots revealed a total of 68 and 37 differentially abundant proteins (DAPs) in B. juncea and B. napus-specifically, after 300 mg/L Pb exposure. The majority of these proteins are associated with protein degradation, cellular respiration, and enzyme classification. The upregulated RPT2 and tetrapyrrole biosynthesis pathway-associated proteins maintain the cellular homeostasis and photosynthetic rate in B. juncea. Among the 55 common DAPs, S-adenosyl methionine and TCA cycle proteins were upregulated in B. juncea and down-regulated in B. napus after Pb exposure. Furthermore, higher oxidative stress also reduced the antioxidant enzyme activity in B. napus. The current finding suggests that B. juncea is more Pb tolerant than B. napus, possibly due to the upregulation of proteins involved in protein recycling, degradation, and tetrapyrrole biosynthesis pathway.


Subject(s)
Lead , Plant Proteins , Proteomics , Tetrapyrroles , Lead/toxicity , Lead/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Proteomics/methods , Tetrapyrroles/metabolism , Tetrapyrroles/biosynthesis , Mustard Plant/metabolism , Mustard Plant/drug effects , Mustard Plant/genetics , Brassica/metabolism , Brassica/drug effects , Brassica/genetics , Plant Roots/metabolism , Plant Roots/drug effects
8.
Article in English | MEDLINE | ID: mdl-38929008

ABSTRACT

Liver diseases, including non-alcoholic fatty liver disease (NAFLD), are a growing global health issue. Environmental exposure to toxic metals can harm the liver, increasing the risk of NAFLD. Essential elements are vital for liver health, but imbalances or deficiencies can contribute to the development of NAFLD. Therefore, understanding the interplay between toxic metals and essential elements in liver disease is important. This study aims to assess the individual and combined effects of toxic metals (lead(Pb), cadmium (Cd), mercury (Hg)), and essential elements (manganese and selenium) on the risk of liver disease. Methods: We assessed the individual and combined effects of Pb, Cd, Hg, manganese (Mn), and selenium (Se) on liver disease risk using data from the National Health and Nutrition Examination Survey between 2017 and 2018. We performed descriptive statistics and linear regression analysis and then utilized Bayesian Kernel Machine Regression (BKMR) techniques such as univariate, bivariate, and overall effect analysis. BKMR enabled the assessment of non-linear exposure-response functions and interactions between metals and essential elements. Posterior Inclusion Probabilities (PIPs) were calculated to determine the importance of each metal and essential element in contributing to liver disease. Regarding our study results, the regression analysis of liver injury biomarkers ALT, AST, ALP, GGT, total bilirubin, and the FLI-an indicator of NAFLD-with toxic metals and essential elements, adjusting for covariates such as age, sex, BMI, alcohol consumption, ethnicity, income, and smoking status, demonstrated the differential effects of these contaminants on the markers of interest. Our BKMR analysis provided further insights. For instance, the PIP results underscored Pb's consistent importance in contributing to liver disease (PIP = 1.000), followed by Hg (PIP = 0.9512), Cd (PIP = 0.5796), Se (PIP = 0.5572), and Mn (PIP = 0.4248). Our univariate analysis showed a positive trend with Pb, while other exposures were relatively flat. Our analysis of the single-variable effects of toxic metals and essential elements on NAFLD also revealed that Pb significantly affected the risk of NAFLD. Our bivariate analysis found a positive (toxic) trend when Pb was combined with other metals and essential elements. For the overall exposure effect of exposure to all the contaminants together, the estimated risk of NAFLD showed a steady increase from the 60th to the 75th percentile. In conclusion, our study indicates that Pb exposure, when combined with other toxic metals and essential elements, plays a significant role in bringing about adverse liver disease outcomes.


Subject(s)
Nutrition Surveys , Humans , Female , Male , Adult , Middle Aged , Liver Diseases/epidemiology , Liver Diseases/etiology , Environmental Exposure/adverse effects , Environmental Pollutants/toxicity , Metals, Heavy/toxicity , Selenium , Cadmium/toxicity , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/epidemiology , Aged , Young Adult , Trace Elements , Mercury/toxicity , Bayes Theorem , Manganese/toxicity , Lead/toxicity , United States/epidemiology
9.
Ecotoxicol Environ Saf ; 281: 116658, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38944006

ABSTRACT

Millions of adults and children are exposed to high levels of lead, a neurotoxicant, each year. Recent evidence suggests that lead exposure may precipitate neurodegeneration, particularly if the exposure occurs early or late in life, with unique alterations to the structure or function of specific subfields of the hippocampus, a region involved in memory and Alzheimer's disease. It has been proposed that specific hippocampal subfields may thus be useful biomarkers for lead-associated neurological disease. We turned to a population-representative New Zealand birth cohort where the extent of lead exposure was not confounded by social class (the Dunedin Study; born 1972-1973 and followed to age 45) to test the hypothesis that early life lead exposure (blood-lead level at age 11 years) is associated with smaller MRI-assessed gray matter volumes of specific subfields of the hippocampus at age 45 years. Among the 508 Dunedin Study members with childhood lead data and adult MRI data passing quality control (93.9 % of those with lead data who attended the age-45 assessment wave, 240[47.2 %] female), childhood blood-lead levels ranged from 4 to 31 µg/dL (M[SD]=10.9[4.6]). Total hippocampal volumes were lower among adults with higher childhood blood-lead levels (b=-102.6 mm3 per 5 ug/dL-unit greater blood-lead level, 95 %CI: -175.4 to -29.7, p=.006, ß=-.11), as were all volumes of the 24 hemisphere-specific subfields of the hippocampus. Of these 24 subfields, 20 demonstrated negative lead-associations greater than ß=-.05 in size, 14 were statistically significant after adjustment for multiple comparisons (pFDR<.05), and 9 remained significant after adjustment for potential confounders and multiple comparisons. Children exposed to lead demonstrate smaller volumes across all subfields of the hippocampus in midlife. The hypothesis that lead selectively impairs specific subfields of the hippocampus, or that specific subfields may be markers for lead-associated neurological disease, requires further evaluation.


Subject(s)
Hippocampus , Lead , Magnetic Resonance Imaging , Hippocampus/drug effects , Hippocampus/diagnostic imaging , Lead/toxicity , Lead/blood , Humans , Female , Male , Child , Middle Aged , New Zealand , Environmental Exposure , Birth Cohort , Biomarkers , Environmental Pollutants/toxicity
10.
J Hazard Mater ; 475: 134854, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38889468

ABSTRACT

Microplastics (MPs) have attracted widespread attention because they can lead to combined toxicity by adsorbing heavy metals from the environment. Exposure to lead (Pb), a frequently adsorbed heavy metal by MPs, is common. In the current study, the coexistence of MPs and Pb was assessed in human samples. Then, mice were used as models to examine how co-exposure to MPs and Pb promotes aortic medial degeneration. The results showed that MPs and Pb co-exposure were detected in patients with aortic disease. In mice, MPs and Pb co-exposure promoted the damage of elastic fibers, loss of vascular smooth muscle cells (VSMCs), and release of inflammatory factors. In vitro cell models revealed that co-exposure to MPs and Pb induced excessive reactive oxygen species generation, impaired mitochondrial function, and triggered PANoptosome assembly in VSMCs. These events led to PANoptosis and inflammation through the cAMP/PKA-ROS signaling pathway. However, the use of the PKA activator 8-Br-cAMP or mitochondrial ROS scavenger Mito-TEMPO improved, mitochondrial function in VSMCs, reduced cell death, and inhibited inflammatory factor release. Taken together, the present study provided novel insights into the combined toxicity of MPs and Pb co-exposure on the aorta.


Subject(s)
Lead , Microplastics , Reactive Oxygen Species , Animals , Reactive Oxygen Species/metabolism , Lead/toxicity , Humans , Microplastics/toxicity , Male , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Mitochondria/drug effects , Mitochondria/metabolism , Aorta/drug effects , Aorta/pathology , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/metabolism , Mice, Inbred C57BL , Mice , Female , Middle Aged , Aortic Diseases/chemically induced , Aortic Diseases/pathology , Cyclic AMP-Dependent Protein Kinases/metabolism
11.
Int J Mol Sci ; 25(11)2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38892327

ABSTRACT

Both tissue and blood lead levels are elevated in renal cell carcinoma (RCC) patients. These studies assessed the impact of the subchronic lead challenge on the progression of RCC in vitro and in vivo. Lead challenge of Renca cells with 0.5 µM lead acetate for 10 consecutive passages decreased E-cadherin expression and cell aggregation. Proliferation, colony formation, and wound healing were increased. When lead-challenged cells were injected into mice, tumor size at day 21 was increased; interestingly, this increase was seen in male but not female mice. When mice were challenged with 32 ppm lead in drinking water for 20 weeks prior to tumor cell injection, there was an increase in tumor size in male, but not female, mice at day 21. To investigate the mechanism underlying the sex differences, the expression of sex hormone receptors in Renca cells was examined. Control Renca cells expressed estrogen receptor (ER) alpha but not ER beta or androgen receptor (AR), as assessed by qPCR, and the expression of ERα was increased in tumors in both sexes. In tumor samples harvested from lead-challenged cells, both ERα and AR were detected by qPCR, yet there was a significant decrease in AR seen in lead-challenged tumor cells from male mice only. This was paralleled by a plate-based array demonstrating the same sex difference in BMP-7 gene expression, which was also significantly decreased in tumors harvested from male but not female mice; this finding was validated by immunohistochemistry. A similar expression pattern was seen in tumors harvested from the mice challenged with lead in the drinking water. These data suggest that lead promotes RCC progression in a sex-dependent via a mechanism that may involve sex-divergent changes in BMP-7 expression.


Subject(s)
Bone Morphogenetic Protein 7 , Carcinoma, Renal Cell , Cell Proliferation , Kidney Neoplasms , Animals , Female , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/genetics , Male , Bone Morphogenetic Protein 7/metabolism , Bone Morphogenetic Protein 7/genetics , Mice , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Kidney Neoplasms/genetics , Kidney Neoplasms/chemically induced , Cell Line, Tumor , Cell Proliferation/drug effects , Lead/toxicity , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Estrogen Receptor alpha/metabolism , Estrogen Receptor alpha/genetics , Sex Factors
12.
Plant Signal Behav ; 19(1): 2365576, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38899525

ABSTRACT

Soil toxicity is a major environmental issue that leads to numerous harmful effects on plants and human beings. Every year a huge amount of Pb is dumped into the environment either from natural sources or anthropogenically. Being a heavy metal it is highly toxic and non-biodegradable but remains in the environment for a long time. It is considered a neurotoxic and exerts harmful effects on living beings. In the present review article, investigators have emphasized the side effects of Pb on the plants. Further, the authors have focused on the various sources of Pb in the environment. Investigators have emphasized the various responses including molecular, biochemical, and morphological of plants to the toxic levels of Pb. Further emphasis was given to the effect of elevated levels of Pb on the microbial population in the rhizospheres. Further, emphasized the various remediation strategies for the Pb removal from the soil and water sources.


Subject(s)
Lead , Plants , Lead/toxicity , Plants/metabolism , Plants/drug effects , Plants/microbiology , Soil Pollutants/toxicity
13.
J Hazard Mater ; 475: 134796, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38870851

ABSTRACT

Lead halide perovskite has demonstrated remarkable potential in the wearable field due to its exceptional photoelectric conversion capability. However, its lead toxicity issue has consistently been subject to criticism, significantly impeding its practical application. To address this challenge, an innovative approach called lead-rivet was proposed for the in-situ growth of perovskite crystalline structures. Through the formation of S-Pb bonds, each Pb2+ ion was firmly immobilized on the surface of the silica matrix, enabling in situ growth of perovskite nanocrystals via ion coordination between Cs+ and halide species. The robust S-Pb bonding effectively restricted the mobility of lead ions and stabilized the perovskite structure without relying on surface ligands, thereby not only preventing toxicity leakage but also providing a favorable interface for depositing protective shells. The obtained perovskites exhibit intense and narrow-band fluorescence with full-width at half-maximum less than 23 nm and show excellent stability to high temperature (above 202 °C) and high humidity (water immersion over 27 days), thus making it possible to be used in varies textile technologies including melt spinning and wet spinning. The lead leakage rate of particles is only 4.15 % demonstrating excellent toxicity inhibition performance. The prepared fibers maintained good extensibility and flexibility which could be used for 3D-printing and textiles weaving. Most importantly, the detected Pb2+ leaching was negligible as low as to 0.732 ppb which meet the standard of World Health Organization (WHO) for drinking water (<10 ppb), and the cell survival rate remained 99.196 % for PLA fluorescent filament after 24 h cultivation which showing excellent safety to human body and environment. This study establishes a controllable and highly adaptable synthesis method, thereby providing a promising avenue for the safe utilization of perovskite materials.


Subject(s)
Calcium Compounds , Lead , Nanoparticles , Oxides , Titanium , Oxides/chemistry , Oxides/toxicity , Calcium Compounds/chemistry , Calcium Compounds/toxicity , Lead/toxicity , Lead/chemistry , Titanium/chemistry , Titanium/toxicity , Nanoparticles/chemistry , Nanoparticles/toxicity , Humans , Cell Survival/drug effects
14.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892238

ABSTRACT

Flavonoids are secondary metabolites that play important roles in the resistance of plants to abiotic stress. Despite the widely reported adverse effects of lead (Pb) contamination on maize, the effects of Pb on the biosynthetic processes of flavonoids in maize roots are still unknown. In the present work, we employed a combination of multi-omics and conventional assay methods to investigate the effects of two concentrations of Pb (40 and 250 mg/kg) on flavonoid biosynthesis in maize roots and the associated molecular regulatory mechanisms. Analysis using conventional assays revealed that 40 and 250 mg/kg Pb exposure increased the lead content of maize root to 0.67 ± 0.18 mg/kg and 3.09 ± 0.02 mg/kg, respectively, but they did not result in significant changes in maize root length. The multi-omics results suggested that exposure to 40 mg/kg of Pb caused differential expression of 33 genes and 34 metabolites related to flavonoids in the maize root system, while 250 mg/kg of Pb caused differential expression of 34 genes and 31 metabolites. Not only did these differentially expressed genes and metabolites participate in transferase activity, anthocyanin-containing compound biosynthetic processes, metal ion binding, hydroxyl group binding, cinnamoyl transferase activity, hydroxycinnamoyl transferase activity, and flavanone 4-reductase activity but they were also significantly enriched in the flavonoid, isoflavonoid, flavone, and flavonol biosynthesis pathways. These results show that Pb is involved in the regulation of maize root growth by interfering with the biosynthesis of flavonoids in the maize root system. The results of this study will enable the elucidation of the mechanisms of the effects of lead on maize root systems.


Subject(s)
Flavonoids , Gene Expression Regulation, Plant , Lead , Plant Roots , Stress, Physiological , Transcriptome , Zea mays , Zea mays/genetics , Zea mays/metabolism , Zea mays/drug effects , Zea mays/growth & development , Flavonoids/biosynthesis , Flavonoids/metabolism , Plant Roots/metabolism , Plant Roots/genetics , Plant Roots/drug effects , Plant Roots/growth & development , Lead/toxicity , Lead/metabolism , Gene Expression Regulation, Plant/drug effects , Stress, Physiological/genetics , Metabolomics/methods , Metabolome/drug effects , Gene Expression Profiling/methods , Plant Proteins/genetics , Plant Proteins/metabolism
15.
BMC Plant Biol ; 24(1): 557, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877427

ABSTRACT

In the course of their life, plants face a multitude of environmental anomaly that affects their growth and production. In recent decades, lead (Pb) gained an increasing attention as it is among the most significant contaminants in the environment. Therefore, in this study the effects of Pb concentrations (0, 50 and 100 ppm) on Vicia faba plants and attempts to alleviate this stress using chitosan (Chs; 0 and 0.1%) were performed. The results validated that with increasing Pb concentrations, a decline in growth, pigments and protein contents was observed. In the same time, a significant upsurge in the stress markers, both malondialdehyde (MDA) and H2O2, was observed under Pb stress. Nonetheless, foliar spraying with Chs improves the faba bean growth, pigment fractions, protein, carbohydrates, reduces MDA and H2O2 contents and decreases Pb concentrations under Pb stress. Pb mitigation effects by Chs are probably related with the activity of antioxidant enzymes, phenylalanine ammonia lyase (PAL) and proline. The application of Chs enhanced the activities of peroxidase, catalase and PAL by 25.77, 17.71 and 20.07%, respectively at 100 ppm Pb compared to their control. Plant genomic material exhibits significant molecular polymorphism, with an average polymorphism of 91.66% across all primers. To assess the genetic distance created among treatments, the dendrogram was constructed and the results of the similarity index ranged from 0.75 to 0.95, indicating genetic divergence. Our research offers a thorough comprehension of the role of Chs in lessening the oxidative stress, which will encourage the use of Chs in agricultural plant protection.


Subject(s)
Chitosan , Lead , Oxidative Stress , Vicia faba , Vicia faba/drug effects , Vicia faba/genetics , Vicia faba/metabolism , Lead/metabolism , Lead/toxicity , Oxidative Stress/drug effects , Chitosan/pharmacology , Hydrogen Peroxide/metabolism , Malondialdehyde/metabolism , Antioxidants/metabolism , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Phenylalanine Ammonia-Lyase/metabolism , Phenylalanine Ammonia-Lyase/genetics
16.
BMC Vet Res ; 20(1): 262, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890656

ABSTRACT

BACKGROUND: In recent years, anthropogenic activities have released heavy metals and polluted the aquatic environment. This study investigated the ability of the silica-stabilized magnetite (Si-M) nanocomposite materials to dispose of lead nitrate (Pb(NO3)2) toxicity in Nile tilapia and African catfish. RESULTS: Preliminary toxicity tests were conducted and determined the median lethal concentration (LC50) of lead nitrate (Pb(NO3)2) to Nile tilapia and African catfish to be 5 mg/l. The sublethal concentration, equivalent to 1/20 of the 96-hour LC50 Pb(NO3)2, was selected for our experiment. Fish of each species were divided into four duplicated groups. The first group served as the control negative group, while the second group (Pb group) was exposed to 0.25 mg/l Pb(NO3)2 (1/20 of the 96-hour LC50). The third group (Si-MNPs) was exposed to silica-stabilized magnetite nanoparticles at a concentration of 1 mg/l, and the fourth group (Pb + Si-MNPs) was exposed simultaneously to Pb(NO3)2 and Si-MNPs at the same concentrations as the second and third groups. Throughout the experimental period, no mortalities or abnormal clinical observations were recorded in any of the treated groups, except for melanosis and abnormal nervous behavior observed in some fish in the Pb group. After three weeks of sublethal exposure, we analyzed hepatorenal indices, oxidative stress parameters, and genotoxicity. Values of alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), urea, and creatinine were significantly higher in the Pb-intoxicated groups compared to the control and Pb + Si-MNPs groups in both fish species. Oxidative stress parameters showed a significant decrease in reduced glutathione (GSH) concentration, along with a significant increase in malondialdehyde (MDA) and protein carbonyl content (PCC) concentrations, as well as DNA fragmentation percentage in the Pb group. However, these values were nearly restored to control levels in the Pb + Si-MNPs groups. High lead accumulation was observed in the liver and gills of the Pb group, with the least accumulation in the muscles of tilapia and catfish in the Pb + Si-MNPs group. Histopathological analysis of tissue samples from Pb-exposed groups of tilapia and catfish revealed brain vacuolation, gill fusion, hyperplasia, and marked hepatocellular and renal necrosis, contrasting with Pb + Si-MNP group, which appeared to have an apparently normal tissue structure. CONCLUSIONS: Our results demonstrate that Si-MNPs are safe and effective aqueous additives in reducing the toxic effects of Pb (NO3)2 on fish tissue through the lead-chelating ability of Si-MNPs in water before being absorbed by fish.


Subject(s)
Catfishes , Cichlids , Lead , Liver , Nitrates , Oxidative Stress , Silicon Dioxide , Water Pollutants, Chemical , Animals , Lead/toxicity , Oxidative Stress/drug effects , Silicon Dioxide/chemistry , Liver/drug effects , Liver/pathology , Liver/metabolism , Water Pollutants, Chemical/toxicity , Nanocomposites/chemistry , Nanocomposites/toxicity , Chelating Agents/pharmacology , Kidney/drug effects , Kidney/pathology , Bioaccumulation , Gills/drug effects , Gills/pathology , DNA Damage/drug effects
17.
Sci Rep ; 14(1): 13062, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38844557

ABSTRACT

Metals have been proved to be one of risk factors for chronic kidney disease (CKD) and diabetes, but the effect of mixed metal co-exposure and potential interaction between metals are still unclear. We assessed the urine and whole blood levels of cadmium (Cd), manganese (Mn), lead (Pb), mercury (Hg), and renal function in 3080 adults from National Health and Nutrition Survey (NHANES) (2011-2018) to explore the effect of mixed metal exposure on CKD especially in people with type 2 diabetes mellitus (T2DM). Weighted quantile sum regression model and Bayesian Kernel Machine Regression model were used to evaluate the overall exposure impact of metal mixture and potential interaction between metals. The results showed that the exposure to mixed metals was significantly associated with an increased risk of CKD in blood glucose stratification, with the risk of CKD being 1.58 (1.26,1.99) times in urine and 1.67 (1.19,2.34) times in whole blood higher in individuals exposed to high concentrations of the metal mixture compared to those exposed to low concentrations. The effect of urine metal mixture was elevated magnitude in stratified analysis. There were interactions between urine Pb and Cd, Pb and Mn, Pb and Hg, Cd and Mn, Cd and Hg, and blood Pb and Hg, Mn and Cd, Mn and Pb, Mn and Hg on the risk of CKD in patients with T2DM and no significant interaction between metals was observed in non-diabetics. In summary, mixed metal exposure increased the risk of CKD in patients with T2DM, and there were complex interactions between metals. More in-depth studies are needed to explore the mechanism and demonstrate the causal relationship.


Subject(s)
Environmental Exposure , Nutrition Surveys , Renal Insufficiency, Chronic , Humans , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/urine , Female , Male , Middle Aged , Adult , Environmental Exposure/adverse effects , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Cadmium/blood , Cadmium/urine , Cadmium/adverse effects , Cadmium/toxicity , Risk Factors , Lead/blood , Lead/urine , Lead/toxicity , Metals, Heavy/blood , Metals, Heavy/urine , Metals, Heavy/adverse effects , Metals, Heavy/toxicity , Aged , Metals/urine , Metals/blood , Metals/adverse effects , Manganese/urine , Manganese/blood , Manganese/adverse effects , Bayes Theorem
18.
Environ Health Perspect ; 132(6): 67003, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38833407

ABSTRACT

BACKGROUND: Maternal exposure to environmental chemicals can cause adverse health effects in offspring. Mounting evidence supports that these effects are influenced, at least in part, by epigenetic modifications. It is unknown whether epigenetic changes in surrogate tissues such as the blood are reflective of similar changes in target tissues such as cortex or liver. OBJECTIVE: We examined tissue- and sex-specific changes in DNA methylation (DNAm) associated with human-relevant lead (Pb) and di(2-ethylhexyl) phthalate (DEHP) exposure during perinatal development in cerebral cortex, blood, and liver. METHODS: Female mice were exposed to human relevant doses of either Pb (32 ppm) via drinking water or DEHP (5mg/kg-day) via chow for 2 weeks prior to mating through offspring weaning. Whole genome bisulfite sequencing (WGBS) was utilized to examine DNAm changes in offspring cortex, blood, and liver at 5 months of age. Metilene and methylSig were used to identify differentially methylated regions (DMRs). Annotatr and ChIP-enrich were used for genomic annotations and gene set enrichment tests of DMRs, respectively. RESULTS: The cortex contained the majority of DMRs associated with Pb (66%) and DEHP (57%) exposure. The cortex also contained the greatest degree of overlap in DMR signatures between sexes (n=13 and 8 DMRs with Pb and DEHP exposure, respectively) and exposure types (n=55 and 39 DMRs in males and females, respectively). In all tissues, detected DMRs were preferentially found at genomic regions associated with gene expression regulation (e.g., CpG islands and shores, 5' UTRs, promoters, and exons). An analysis of GO terms associated with DMR-containing genes identified imprinted genes to be impacted by both Pb and DEHP exposure. Of these, Gnas and Grb10 contained DMRs across tissues, sexes, and exposures, with some signatures replicated between target and surrogate tissues. DMRs were enriched in the imprinting control regions (ICRs) of Gnas and Grb10, and we again observed a replication of DMR signatures between blood and target tissues. Specifically, we observed hypermethylation of the Grb10 ICR in both blood and liver of Pb-exposed male animals. CONCLUSIONS: These data provide preliminary evidence that imprinted genes may be viable candidates in the search for epigenetic biomarkers of toxicant exposure in target tissues. Additional research is needed on allele- and developmental stage-specific effects, as well as whether other imprinted genes provide additional examples of this relationship. https://doi.org/10.1289/EHP14074.


Subject(s)
DNA Methylation , Genomic Imprinting , Lead , Liver , Animals , DNA Methylation/drug effects , Mice , Female , Liver/drug effects , Male , Lead/toxicity , Lead/blood , Genomic Imprinting/drug effects , Diethylhexyl Phthalate/toxicity , Brain/drug effects , Environmental Pollutants/toxicity , Maternal Exposure , Phthalic Acids/toxicity , Pregnancy , Prenatal Exposure Delayed Effects , Epigenesis, Genetic/drug effects
19.
Food Chem Toxicol ; 190: 114814, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38876379

ABSTRACT

Lead (Pb) is a common environmental neurotoxicant that causes behavioral impairments in both rodents and humans. Isochlorogenic acid A (ICAA), a phenolic acid found in a variety of natural sources such as tea, fruits, vegetables, coffee, plant-based food products, and various medicinal plants, exerts multiple effects, including protective effects on the lungs, livers, and intestines. The objective of this study was to investigate the potential neuroprotective effects of ICAA against Pb-induced neurotoxicity in ICR mice. The results indicate that ICAA attenuates Pb-induced anxiety-like behaviors. ICAA reduced neuroinflammation, ferroptosis, and oxidative stress caused by Pb. ICAA successfully mitigated the Pb-induced deficits in the cholinergic system in the brain through the reduction of ACH levels and the enhancement of AChE and BChE activities. ICAA significantly reduced the levels of ferrous iron and MDA in the brain and prevented decreases in GSH, SOD, and GPx activity. Immunofluorescence analysis demonstrated that ICAA attenuated ferroptosis and upregulated GPx4 expression in the context of Pb-induced nerve damage. Additionally, ICAA downregulated TNF-α and IL-6 expression while concurrently enhancing the activations of Nrf2, HO-1, NQO1, BDNF, and CREB in the brains of mice. The inhibition of BDNF, Nrf2 and GPx4 reversed the protective effects of ICAA on Pb-induced ferroptosis in nerve cells. In general, ICAA ameliorates Pb-induced neuroinflammation, ferroptosis, oxidative stress, and anxiety-like behaviors through the activation of the BDNF/Nrf2/GPx4 pathways.


Subject(s)
Anxiety , Chlorogenic Acid , Ferroptosis , Lead , Neuroinflammatory Diseases , Signal Transduction , Animals , Male , Mice , Anxiety/drug therapy , Anxiety/chemically induced , Behavior, Animal/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Chlorogenic Acid/pharmacology , Chlorogenic Acid/analogs & derivatives , Ferroptosis/drug effects , Glutathione Peroxidase/metabolism , Lead/toxicity , Mice, Inbred ICR , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/chemically induced , Neuroinflammatory Diseases/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Signal Transduction/drug effects
20.
Food Chem Toxicol ; 189: 114747, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38768937

ABSTRACT

Chronic exposure to lead (Pb) induces neurodegenerative changes in animals and humans. Drugs with strong antioxidant properties are effective against Pb-mediated neurotoxicity. In a prior study, we identified 5,7-dihydroxy-3',4',5'-trimethoxyflavone (TMF) from Ocimum basilicum L. leaves as a potent antioxidant and neuroprotective compound. This research explores TMF's neuroprotective effects against Pb-induced brain toxicity in rats to establish it as a therapeutic agent. Rats received lead acetate (100 mg/kg, orally, once daily) for 30 days to induce brain injury, followed by TMF treatment (5 and 10 mg/kg, oral, once daily) 30 min later. Cognitive and motor functions were assessed using Morris Water Maze and horizontal bar tests. Lead, monoamine oxidase (MAO) A and B enzymes, reduced glutathione (GSH), thiobarbituric acid reactive species (TBARS), Tumor necrosis factor-alpha (TNF-α), and IL-6 levels were measured in the hippocampus and cerebellum. Pb exposure impaired cognitive and motor functions, increased Pb, TBARS, TNF-α, and IL-6 levels, and compromised MAO A & B and GSH levels. TMF reversed Pb-induced memory and motor deficits and normalized biochemical anomalies. TMF's neuroprotective effects against lead involve chelating, antioxidant, anti-inflammatory, and monoaminergic properties, suggesting its potential as a treatment for metal-induced brain injury.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Animals , Antioxidants/pharmacology , Male , Rats , Anti-Inflammatory Agents/pharmacology , Neuroprotective Agents/pharmacology , Flavones/pharmacology , Lead/toxicity , Chelating Agents/pharmacology , Rats, Wistar , Hippocampus/drug effects , Hippocampus/metabolism , Neurotoxicity Syndromes/drug therapy , Neurotoxicity Syndromes/prevention & control , Glutathione/metabolism , Maze Learning/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...