Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31.979
Filter
1.
Neurol India ; 72(2): 309-318, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38691475

ABSTRACT

BACKGROUND: Acute cerebral infarction (ACI) is a common neurological disease that is associated with high morbidity, disability and mortality rates. At present, antiplatelet therapy is a necessary treatment for ACI. The present study aimed to investigate the effects of omentin-1 on the intravenous thrombolysis of ACI. OBJECTIVE: The present study aimed to investigate the effects of omentin-1 on the intravenous thrombolysis of ACI. MATERIAL AND METHODS: The mouse model of ACI was induced using male C57BL/6 mice through middle cerebral artery occlusion (MCAO). Meanwhile, the murine BV2 microglial cells were pretreated with 0.1 mg/ml of lipopolysaccharide (LPS), and then induced with 2 mM of adenosine triphosphate (ATP). RESULTS: The omentin-1 mRNA expression in patients receiving intravenous thrombolysis for ACI was down-regulated compared with the normal group. Additionally, the serum level of omentin-1 was negatively correlated with National Institute of Health Stroke Scale (NIHSS) score or serum level of IL-1ß or MMP-2 in patients receiving intravenous thrombolysis for ACI. Meanwhile, the serum mRNA expression of omentin-1 was positively correlated with Barthel index or high-sensitivity C-reactive protein (hs-CRP) in patients undergoing intravenous thrombolysis for ACI. As observed from the in vitro model, Omentin-1 reduced inflammation, promoted cell growth, alleviated ROS-induced oxidative stress, and enhanced AMPK activity through activating NLRP3 ubiquitination. Omentin-1 presented ACI in the mouse model of ACI. Regulating AMPK activity contributed to controlling the effects of Omentin-1 on the in vitro model. CONCLUSIONS: Omentin-1 reduced neuroinflammation and ROS-induced oxidative stress in the mouse model of ACI, which was achieved by inhibiting NLRP3 ubiquitination through regulating AMPK activity. Therefore, omentin-1 may serve as a treatment factor for the intravenous thrombolysis of ACI in further clinical application.


Subject(s)
Cytokines , GPI-Linked Proteins , Lectins , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Ubiquitination , Animals , Cytokines/metabolism , Male , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , GPI-Linked Proteins/metabolism , Humans , Ubiquitination/drug effects , Disease Models, Animal , Cerebral Infarction/drug therapy , AMP-Activated Protein Kinases/metabolism , Thrombolytic Therapy/methods , Middle Aged , Aged
2.
Front Cell Infect Microbiol ; 14: 1391758, 2024.
Article in English | MEDLINE | ID: mdl-38716194

ABSTRACT

Campylobacter jejuni, a Gram-negative bacterium, is one of the most common causes of foodborne illness worldwide. Its adhesion mechanism is mediated by several bacterial factors, including flagellum, protein adhesins, lipooligosaccharides, proteases, and host factors, such as surface glycans on epithelial cells and mucins. Fungal lectins, specialized carbohydrate-binding proteins, can bind to specific glycans on host and bacterial cells and thus influence pathogenesis. In this study, we investigated the effects of fungal lectins and protease inhibitors on the adhesion of C. jejuni to model biotic surfaces (mucin, fibronectin, and collagen) and Caco-2 cells as well as the invasion of Caco-2 cells. The lectins Marasmius oreades agglutinin (MOA) and Laccaria bicolor tectonin 2 (Tec2) showed remarkable efficacy in all experiments. In addition, different pre-incubations of lectins with C. jejuni or Caco-2 cells significantly inhibited the ability of C. jejuni to adhere to and invade Caco-2 cells, but to varying degrees. Pre-incubation of Caco-2 cells with selected lectins reduced the number of invasive C. jejuni cells the most, while simultaneous incubation showed the greatest reduction in adherent C. jejuni cells. These results suggest that fungal lectins are a promising tool for the prevention and treatment of C. jejuni infections. Furthermore, this study highlights the potential of fungi as a rich reservoir for novel anti-adhesive agents.


Subject(s)
Bacterial Adhesion , Campylobacter jejuni , Lectins , Protease Inhibitors , Campylobacter jejuni/drug effects , Campylobacter jejuni/physiology , Campylobacter jejuni/metabolism , Humans , Caco-2 Cells , Bacterial Adhesion/drug effects , Lectins/metabolism , Lectins/pharmacology , Protease Inhibitors/pharmacology , Protease Inhibitors/metabolism , Fungi/drug effects , Mucins/metabolism , Epithelial Cells/microbiology , Fibronectins/metabolism
3.
Scand J Immunol ; 99(6): e13366, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38720518

ABSTRACT

Antiphospholipid syndrome is a rare autoimmune disease characterized by persistent antiphospholipid antibodies. Immunoglobulin G plays a vital role in disease progression, with its structure and function affected by glycosylation. We aimed to investigate the changes in the serum immunoglobulin G glycosylation pattern in antiphospholipid syndrome patients. We applied lectin microarray on samples from 178 antiphospholipid syndrome patients, 135 disease controls (including Takayasu arteritis, rheumatoid arthritis and cardiovascular disease) and 100 healthy controls. Lectin blots were performed for validation of significant differences. Here, we show an increased immunoglobulin G-binding level of soybean agglutinin (p = 0.047, preferring N-acetylgalactosamine) in antiphospholipid syndrome patients compared with healthy and disease controls. Additionally, the immunoglobulin G from antiphospholipid syndrome patients diagnosed with pregnancy events had lower levels of fucosylation (p = 0.001, recognized by Lotus tetragonolobus) and sialylation (p = 0.030, recognized by Sambucus nigra I) than those with simple thrombotic events. These results suggest the unique serum immunoglobulin G glycosylation profile of antiphospholipid syndrome patients, which may inform future studies to design biomarkers for more accurate diagnosis of antiphospholipid syndrome and even for the prediction of clinical symptoms in patients.


Subject(s)
Antiphospholipid Syndrome , Immunoglobulin G , Humans , Antiphospholipid Syndrome/immunology , Antiphospholipid Syndrome/blood , Antiphospholipid Syndrome/diagnosis , Glycosylation , Female , Male , Immunoglobulin G/blood , Immunoglobulin G/immunology , Adult , Middle Aged , Pregnancy , Lectins/blood , Lectins/metabolism , Lectins/immunology , Biomarkers/blood , Protein Array Analysis/methods , Antibodies, Antiphospholipid/blood , Antibodies, Antiphospholipid/immunology , Plant Lectins/metabolism , Plant Lectins/immunology , Aged , Glycoproteins
4.
Anal Chem ; 96(21): 8332-8341, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38720429

ABSTRACT

Glycans are complex oligosaccharides that are involved in many diseases and biological processes. Unfortunately, current methods for determining glycan composition and structure (glycan sequencing) are laborious and require a high level of expertise. Here, we assess the feasibility of sequencing glycans based on their lectin binding fingerprints. By training a Boltzmann model on lectin binding data, we predict the approximate structures of 88 ± 7% of N-glycans and 87 ± 13% of O-glycans in our test set. We show that our model generalizes well to the pharmaceutically relevant case of Chinese hamster ovary (CHO) cell glycans. We also analyze the motif specificity of a wide array of lectins and identify the most and least predictive lectins and glycan features. These results could help streamline glycoprotein research and be of use to anyone using lectins for glycobiology.


Subject(s)
Cricetulus , Lectins , Polysaccharides , Polysaccharides/chemistry , Polysaccharides/metabolism , Lectins/chemistry , Lectins/metabolism , CHO Cells , Animals , Protein Binding , Cricetinae
5.
RMD Open ; 10(2)2024 May 15.
Article in English | MEDLINE | ID: mdl-38749532

ABSTRACT

OBJECTIVES: To investigate lectin pathway proteins (LPPs) as biomarkers for axial spondyloarthritis (axSpA) in a cross-sectional cohort with a suspicion of axSpA, comprising newly diagnosed axSpA and chronic low back pain (cLBP) individuals. METHODS: Serum samples from 515 participants within the OptiRef cohort, including 151 axSpA patients and 364 cLBP patients, were measured using immunoassays for LPPs (mannan-binding lectin (MBL), collectin liver-1 (CL-L1), M-ficolin, H-ficolin and L-ficolin, MBL-associated serine proteases (MASP)-1, -2 and -3, MBL-associated proteins (MAp19 and MAp44) and the complement activation product C3dg). RESULTS: Serum levels of L-ficolin, MASP-2 and C3dg were elevated in axSpA patients, whereas levels of MASP-3 and CL-L1 were decreased, and this remained significant for C3dg and MASP-3 after adjustment for C reactive protein (CRP). A univariate regression analysis showed serum levels of CL-L1, MASP-2, MASP-3 and C3dg to predict the diagnosis of axSpA, and MASP-3 and C3dg remained significant in a multivariate logistic regression analysis. Assessment of the diagnostic potential showed that a combination of human leukocyte antigen B27 (HLA-B27) and measurements of L-ficolin, MASP-3 and C3dg increased the diagnostic specificity for axSpA, however, with a concomitant loss of sensitivity. CONCLUSIONS: Serum levels of complement activation, that is, C3dg, and MASP-3 differed significantly between axSpA and cLBP patients after adjustment for CRP. Although combining HLA-B27 with measurements of L-ficolin, MASP-3 and C3dg increased the diagnostic specificity for axSpA, this seems unjustified due to the concomitant loss of sensitivity. However, both C3dg and MASP-3 were associated with axSpA diagnosis in multivariate logistic regression, suggesting an involvement of complement in the inflammatory processes and possibly pathogenesis in axSpA.


Subject(s)
Axial Spondyloarthritis , Biomarkers , Complement System Proteins , Humans , Biomarkers/blood , Male , Female , Adult , Middle Aged , Cross-Sectional Studies , Complement System Proteins/metabolism , Complement System Proteins/analysis , Axial Spondyloarthritis/diagnosis , Axial Spondyloarthritis/blood , Axial Spondyloarthritis/etiology , Mannose-Binding Protein-Associated Serine Proteases/metabolism , Mannose-Binding Protein-Associated Serine Proteases/analysis , Lectins/blood , Complement Activation
6.
Clin Respir J ; 18(5): e13772, 2024 May.
Article in English | MEDLINE | ID: mdl-38725348

ABSTRACT

Sialic acid-binding immunoglobulin-like lectin-15 (Siglec-15) has been identified as an immune suppressor and a promising candidate for immunotherapy of cancer management. However, the association between Siglec-15 expression and clinicopathological features of lung adenocarcinoma (LUAD), especially the prognostic role, is not fully elucidated. In this present study, a serial of bioinformatics analyses in both tissue and cell levels were conducted to provide an overview of Siglec-15 expression. Real-time quantitative PCR (qPCR) test, western blotting assay, and immunohistochemistry (IHC) analyses were conducted to evaluate the expression of Siglec-15 in LUAD. Survival analysis and Kaplan-Meier curve were employed to describe the prognostic parameters of LUAD. The results of bioinformatics analyses demonstrated the up-regulation of Siglec-15 expression in LUAD. The data of qPCR, western blotting, and IHC analyses further proved that the expression of Siglec-15 in LUAD tissues was significantly increased than that in noncancerous tissues. Moreover, the expression level of Siglec-15 protein in LUAD was substantially associated with TNM stage. LUAD cases with up-regulated Siglec-15 expression, positive N status, and advance TNM stage suffered a critical unfavorable prognosis. In conclusion, Siglec-15 could be identified as a novel prognostic biomarker in LUAD and targeting Siglec-15 may provide a promising strategy for LUAD immunotherapy.


Subject(s)
Adenocarcinoma of Lung , Biomarkers, Tumor , Lung Neoplasms , Humans , Prognosis , Female , Male , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/mortality , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/mortality , Middle Aged , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Aged , Immunohistochemistry , Neoplasm Staging , Up-Regulation , Immunoglobulins/metabolism , Immunoglobulins/genetics , Lectins/metabolism , Lectins/genetics , Survival Analysis , Membrane Proteins
7.
Cell Commun Signal ; 22(1): 271, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750493

ABSTRACT

BACKGROUND: Macrophages are key inflammatory immune cells that orchestrate the initiation and progression of autoimmune diseases. The characters of macrophage in diseases are determined by its phenotype in response to the local microenvironment. Ficolins have been confirmed as crucial contributors to autoimmune diseases, with Ficolin-2 being particularly elevated in patients with autoimmune diseases. However, whether Ficolin-A stimulates macrophage polarization is still poorly understood. METHODS: We investigated the transcriptomic expression profile of murine bone marrow-derived macrophages (BMDMs) stimulated with Ficolin-A using RNA-sequencing. To further confirm a distinct phenotype activated by Ficolin-A, quantitative RT-PCR and Luminex assay were performed in this study. Additionally, we assessed the activation of underlying cell signaling pathways triggered by Ficolin-A. Finally, the impact of Ficolin-A on macrophages were investigated in vivo through building Collagen-induced arthritis (CIA) and Dextran Sulfate Sodium Salt (DSS)-induced colitis mouse models with Fcna-/- mice. RESULTS: Ficolin-A activated macrophages into a pro-inflammatory phenotype distinct to LPS-, IFN-γ- and IFN-γ + LPS-induced phenotypes. The transcriptomic profile induced by Ficolin-A was primarily characterized by upregulation of interleukins, chemokines, iNOS, and Arginase 1, along with downregulation of CD86 and CD206, setting it apart from the M1 and M2 phenotypes. The activation effect of Ficolin-A on macrophages deteriorated the symptoms of CIA and DSS mouse models, and the deletion of Fcna significantly alleviated the severity of diseases in mice. CONCLUSION: Our work used transcriptomic analysis by RNA-Seq to investigate the impact of Ficolin-A on macrophage polarization. Our findings demonstrate that Ficolin-A induces a novel pro-inflammatory phenotype distinct to the phenotypes activated by LPS, IFN-γ and IFN-γ + LPS on macrophages.


Subject(s)
Ficolins , Inflammation , Lectins , Macrophages , Mice, Inbred C57BL , Phenotype , Animals , Macrophages/metabolism , Macrophages/drug effects , Lectins/genetics , Lectins/metabolism , Mice , Inflammation/genetics , Inflammation/pathology , Macrophage Activation/drug effects , Colitis/chemically induced , Colitis/pathology , Colitis/genetics , Cell Polarity/drug effects , Arthritis, Experimental/genetics , Arthritis, Experimental/pathology , Signal Transduction/drug effects
8.
Front Immunol ; 15: 1380481, 2024.
Article in English | MEDLINE | ID: mdl-38774868

ABSTRACT

Objectives: Cell surface glycosylation can influence protein-protein interactions with particular relevance to changes in core fucosylation and terminal sialylation. Glycans are ligands for immune regulatory lectin families like galectins (Gals) or sialic acid immunoglobulin-like lectins (Siglecs). This study delves into the glycan alterations within immune subsets of systemic lupus erythematosus (SLE). Methods: Evaluation of binding affinities of Galectin-1, Galectin-3, Siglec-1, Aleuria aurantia lectin (AAL, recognizing core fucosylation), and Sambucus nigra agglutinin (SNA, specific for α-2,6-sialylation) was conducted on various immune subsets in peripheral blood mononuclear cells (PBMCs) from control and SLE subjects. Lectin binding was measured by multi-parameter flow cytometry in 18 manually gated subsets of T-cells, NK-cells, NKT-cells, B-cells, and monocytes in unstimulated resting state and also after 3-day activation. Stimulated pre-gated populations were subsequently clustered by FlowSOM algorithm based on lectin binding and activation markers, CD25 or HLA-DR. Results: Elevated AAL, SNA and CD25+/CD25- SNA binding ratio in certain stimulated SLE T-cell subsets correlated with SLE Disease Activity Index 2000 (SLEDAI-2K) scores. The significantly increased frequencies of activated AALlow Siglec-1low NK metaclusters in SLE also correlated with SLEDAI-2K indices. In SLE, activated double negative NKTs displayed significantly lower core fucosylation and CD25+/CD25- Siglec-1 binding ratio, negatively correlating with disease activity. The significantly enhanced AAL binding in resting SLE plasmablasts positively correlated with SLEDAI-2K scores. Conclusion: Alterations in the glycosylation of immune cells in SLE correlate with disease severity, which might represent potential implications in the pathogenesis of SLE.


Subject(s)
Flow Cytometry , Lectins , Lupus Erythematosus, Systemic , Humans , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/metabolism , Flow Cytometry/methods , Adult , Female , Male , Middle Aged , Lectins/metabolism , Lectins/immunology , Protein Binding , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Glycosylation , Galectins/metabolism , Galectins/immunology , Young Adult , Severity of Illness Index
9.
FASEB J ; 38(10): e23687, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38785390

ABSTRACT

Mammalian spermatozoa have a surface covered with glycocalyx, consisting of heterogeneous glycoproteins and glycolipids. This complexity arises from diverse monosaccharides, distinct linkages, various isomeric glycans, branching levels, and saccharide sequences. The glycocalyx is synthesized by spermatozoa developing in the testis, and its subsequent alterations during their transit through the epididymis are a critical process for the sperm acquisition of fertilizing ability. In this study, we performed detailed analysis of the glycocalyx on the sperm surface of bull spermatozoa in relation to individual parts of the epididymis using a wide range (24) of lectins with specific carbohydrate binding preferences. Fluorescence analysis of intact sperm isolated from the bull epididymides was complemented by Western blot detection of protein extracts from the sperm plasma membrane fractions. Our experimental results revealed predominant sequential modification of bull sperm glycans with N-acetyllactosamine (LacNAc), followed by subsequent sialylation and fucosylation in a highly specific manner. Additionally, variations in the lectin detection on the sperm surface may indicate the acquisition or release of glycans or glycoproteins. Our study is the first to provide a complex analysis of the bull sperm glycocalyx modification during epididymal maturation.


Subject(s)
Epididymis , Glycocalyx , Lectins , Spermatozoa , Male , Animals , Glycocalyx/metabolism , Cattle , Epididymis/metabolism , Epididymis/cytology , Spermatozoa/metabolism , Lectins/metabolism , Polysaccharides/metabolism , Glycoproteins/metabolism
10.
Int J Mol Sci ; 25(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732045

ABSTRACT

In the absence of naturally available galactofuranose-specific lectin, we report herein the bioengineering of GalfNeoLect, from the first cloned wild-type galactofuranosidase (Streptomyces sp. strain JHA19), which recognises and binds a single monosaccharide that is only related to nonmammalian species, usually pathogenic microorganisms. We kinetically characterised the GalfNeoLect to confirm attenuation of hydrolytic activity and used competitive inhibition assay, with close structural analogues of Galf, to show that it conserved interaction with its original substrate. We synthetised the bovine serum albumin-based neoglycoprotein (GalfNGP), carrying the multivalent Galf units, as a suitable ligand and high-avidity system for the recognition of GalfNeoLect which we successfully tested directly with the galactomannan spores of Aspergillus brasiliensis (ATCC 16404). Altogether, our results indicate that GalfNeoLect has the necessary versatility and plasticity to be used in both research and diagnostic lectin-based applications.


Subject(s)
Galactose , Galactose/analogs & derivatives , Galactose/metabolism , Galactose/chemistry , Aspergillus/metabolism , Aspergillus/genetics , Lectins/metabolism , Lectins/chemistry , Glycoproteins/chemistry , Glycoproteins/metabolism , Mannans/chemistry , Animals , Serum Albumin, Bovine/chemistry
11.
J Toxicol Environ Health A ; 87(14): 592-603, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38712866

ABSTRACT

Punica granatum, popularly known as pomegranate, is a fruit tree with wide worldwide distribution, containing numerous phytochemicals of great medicinal value. The aim of the present study was to determine the phytochemical profile and antioxidant potential of a protein fraction (PF) derived from P. granatum sarcotesta which is rich in lectin. In addition, the acute oral toxicity, genotoxicity and antigenotoxicity of this protein fraction (PF) from P. granatum sarcotesta was measured. The phytochemical profile of PF was determined using HPLC. The in vitro antioxidant effect was assessed using the methods of total antioxidant capacity (TAC) and DPPH and ABTS+ radical scavenging. Acute oral toxicity was determined in female Swiss mice administered a single dose of 2000 mg/kg. This PF was examined for genotoxicity and antigenotoxicity at doses of 500, 1000 and 2000 mg/kg, utilizing mouse peripheral blood cells. Phytochemical characterization detected a high content of ellagic acid and antioxidant capacity similar to that of ascorbic acid (positive control). PF was not toxic (LD50 >2000 mg/kg) and did not exert a genotoxic effect in mice. PF protected the DNA of peripheral blood cells against damage induced by cyclophosphamide. In conclusion, this PF fraction exhibited significant antioxidant activity without initiating toxic or genotoxic responses in mice.


Subject(s)
Antioxidants , Plant Extracts , Pomegranate , Animals , Mice , Antioxidants/pharmacology , Female , Plant Extracts/toxicity , Plant Extracts/chemistry , Plant Extracts/pharmacology , Pomegranate/chemistry , Lectins/toxicity , Mutagenicity Tests , DNA Damage/drug effects , Toxicity Tests, Acute
12.
Immunohorizons ; 8(5): 384-396, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38809232

ABSTRACT

The mammalian Siglec receptor sialoadhesin (Siglec1, CD169) confers innate immunity against the encapsulated pathogen group B Streptococcus (GBS). Newborn lung macrophages have lower expression levels of sialoadhesin at birth compared with the postnatal period, increasing their susceptibility to GBS infection. In this study, we investigate the mechanisms regulating sialoadhesin expression in the newborn mouse lung. In both neonatal and adult mice, GBS lung infection reduced Siglec1 expression, potentially delaying acquisition of immunity in neonates. Suppression of Siglec1 expression required interactions between sialic acid on the GBS capsule and the inhibitory host receptor Siglec-E. The Siglec1 gene contains multiple STAT binding motifs, which could regulate expression of sialoadhesin downstream of innate immune signals. Although GBS infection reduced STAT1 expression in the lungs of wild-type newborn mice, we observed increased numbers of STAT1+ cells in Siglece-/- lungs. To test if innate immune activation could increase sialoadhesin at birth, we first demonstrated that treatment of neonatal lung macrophages ex vivo with inflammatory activators increased sialoadhesin expression. However, overcoming the low sialoadhesin expression at birth using in vivo prenatal exposures or treatments with inflammatory stimuli were not successful. The suppression of sialoadhesin expression by GBS-Siglec-E engagement may therefore contribute to disease pathogenesis in newborns and represent a challenging but potentially appealing therapeutic opportunity to augment immunity at birth.


Subject(s)
Animals, Newborn , Mice, Knockout , N-Acetylneuraminic Acid , STAT1 Transcription Factor , Sialic Acid Binding Ig-like Lectin 1 , Streptococcal Infections , Streptococcus agalactiae , Animals , Mice , Streptococcus agalactiae/immunology , N-Acetylneuraminic Acid/metabolism , Sialic Acid Binding Ig-like Lectin 1/metabolism , Streptococcal Infections/immunology , Streptococcal Infections/microbiology , STAT1 Transcription Factor/metabolism , STAT1 Transcription Factor/genetics , Immunity, Innate , Mice, Inbred C57BL , Lung/immunology , Lung/microbiology , Lung/metabolism , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Female , Macrophages/immunology , Macrophages/metabolism , Lectins/metabolism , Lectins/genetics , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Sialic Acid Binding Immunoglobulin-like Lectins/genetics , Antigens, CD/metabolism , Antigens, CD/genetics , Antigens, Differentiation, B-Lymphocyte
13.
Biosens Bioelectron ; 258: 116337, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38703495

ABSTRACT

Recruiting circulating cells based on interactions between surface receptors and corresponding ligands holds promise for capturing cells with specific adhesive properties. Our study investigates the adhesion of skin cells to specific lectins, particularly focusing on advancements in lectin-based biosensors with diagnostic potential. We explore whether we can successfully capture normal skin (melanocytes and keratinocytes) and melanoma (WM35, WM115, WM266-4) cells in a low-shear flow environment by coating surfaces with lectins. Specifically, we coated surfaces with Dolichos biflorus (DBA) and Maackia Amurensis (MAL) lectins, which were used to detect and capture specific skin cells from the flow of cell mixture. Alterations in glycan expression (confirmed by fluorescent microscopy) demonstrated that DBA binds predominantly to normal skin cells, while MAL interacts strongly with melanoma cells. Assessing adhesion under static and dynamic low-shear stress conditions (up to 30 mPa) underscores the reliability of DBA and MAL as markers for discriminating specific cell type. Melanocytes and keratinocytes adhere to DBA-coated surfaces, while melanoma cells prefer MAL-coated surfaces. A comprehensive analysis encompassing cell shape, cytoskeleton, and focal adhesions shows the independence of our approach from the inherent characteristics of cells, thus demonstrating its robustness. Our results carry practical implications for lectin-biosensor designs, emphasizing the significance of glycan-based discrimination of pathologically altered cells. Combined with microfluidics, it demonstrates the value of cell adhesion as a discriminant of cancer-related changes, with potential applications spanning diagnostics, therapeutic interventions, and advanced biomedical technologies.


Subject(s)
Biosensing Techniques , Cell Adhesion , Skin Neoplasms , Humans , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Glycosylation , Skin Neoplasms/pathology , Melanoma/pathology , Melanoma/diagnosis , Keratinocytes/cytology , Skin/pathology , Skin/chemistry , Lectins/chemistry , Lectins/metabolism , Cell Line, Tumor , Melanocytes/cytology , Melanocytes/metabolism , Microfluidics/methods , Microfluidic Analytical Techniques/instrumentation
14.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38732017

ABSTRACT

Intelectins belong to a family of lectins with specific and transitory carbohydrate interaction capabilities. These interactions are related to the activity of agglutinating pathogens, as intelectins play a significant role in immunity. Despite the prominent immune defense function of intelectins, limited information about its structural characteristics and carbohydrate interaction properties is available. This study investigated an intelectin transcript identified in RNA-seq data obtained from the South American lungfish (Lepidosiren paradoxa), namely LpITLN2-B. The structural analyses predicted LpITLN2-B to be a homo-trimeric globular protein with the fibrinogen-like functional domain (FReD), exhibiting a molecular mass of 57 kDa. The quaternary structure is subdivided into three monomers, A, B, and C, and each domain comprises 11 ß-sheets: an anti-parallel ß-sheet, a ß-hairpin, and a disordered ß-sheet structure. Molecular docking demonstrates a significant interaction with disaccharides rather than monosaccharides. The preferential interaction with disaccharides highlights the potential interaction with pathogen molecules, such as LPS and Poly(I:C). The hemagglutination assay inhibited lectins activity, especially maltose and sucrose, highlighting lectin activity in L. paradoxa samples. Overall, our results show the potential relevance of LpITLN2-B in L. paradoxa immune defense against pathogens.


Subject(s)
Fish Proteins , Fishes , Immunity, Innate , Lectins , Animals , Lectins/chemistry , Lectins/metabolism , Lectins/immunology , Lectins/genetics , Fishes/immunology , Fishes/genetics , Fish Proteins/genetics , Fish Proteins/chemistry , Fish Proteins/immunology , Fish Proteins/metabolism , Molecular Docking Simulation , Amino Acid Sequence , GPI-Linked Proteins/chemistry , GPI-Linked Proteins/metabolism , GPI-Linked Proteins/genetics , GPI-Linked Proteins/immunology
15.
Sci Rep ; 14(1): 12143, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802677

ABSTRACT

Microglia are natural immune cells in the central nervous system, and the activation of microglia is accompanied by a reprogramming of glucose metabolism. In our study, we investigated the role of long non-coding RNA taurine-upregulated gene 1 (TUG1) in regulating microglial glucose metabolism reprogramming and activation. BV2 cells were treated with Lipopolysaccharides (LPS)/Interferon-γ (IFN-γ) to establish a microglial activation model. The glycolysis inhibitor 2-Deoxy-D-glucose (2-DG) was used as a control. The expression levels of TUG1 mRNA and proinflammatory cytokines such as Interleukin-1ß (IL-1ß), Interleukin -6, and Tumor Necrosis Factor-α mRNA and anti-inflammatory cytokines such as IL-4, Arginase 1(Arg1), CD206, and Ym1 were detected by RT-qPCR. TUG1 was silenced using TUG1 siRNA and knocked out using CRISPR/Cas9. The mRNA and protein expression levels of key enzymes involved in glucose metabolism, such as Hexokinase2, Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Lactate dehydrogenase, Glucose 6 phosphate dehydrogenase, and Pyruvate dehydrogenase (PDH), were determined by RT-qPCR and Western blotting. The glycolytic rate of microglial cells was measured using Seahorse. Differential metabolites were determined by metabolomics, and pathway enrichment was performed using these differential metabolites. Our findings revealed that the expression of TUG1 was elevated in proinflammatory-activated microglia and positively correlated with the levels of inflammatory factors. The expression of anti-inflammatory cytokines such as IL-4, Arg1, CD206, and Ym1 were decreased when induced with LPS/IFN-γ. However, this decrease was reversed by the treatment with 2-DG. Silencing of GAPDH led to an increase in the expression of TUG1 and inflammatory factors. TUG1 knockout (TUG1KO) inhibited the expression of glycolytic key enzymes and promoted the expression of oxidative phosphorylation key enzymes, shifting the metabolic profile of activated microglia from glycolysis to oxidative phosphorylation. Additionally, TUG1KO reduced the accumulation of metabolites, facilitating the restoration of the tricarboxylic acid cycle and enhancing oxidative phosphorylation in microglia. Furthermore, the downregulation of TUG1 was found to reduce the expression of both proinflammatory and anti-inflammatory cytokines under normal conditions. Interestingly, when induced with LPS/IFN-γ, TUG1 downregulation showed a potentially beneficial effect on microglia in terms of inflammation. Downregulation of TUG1 expression inhibits glycolysis and facilitates the shift of microglial glucose metabolism from glycolysis to oxidative phosphorylation, promoting their transformation towards an anti-inflammatory phenotype and exerting anti-inflammatory effects in BV2.


Subject(s)
Glucose , Glycolysis , Lipopolysaccharides , Microglia , RNA, Long Noncoding , Microglia/metabolism , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Glucose/metabolism , Mice , Lipopolysaccharides/pharmacology , Cytokines/metabolism , Inflammation/metabolism , Inflammation/genetics , Interferon-gamma/metabolism , beta-N-Acetylhexosaminidases/metabolism , beta-N-Acetylhexosaminidases/genetics , Cell Line , Mannose Receptor , Mannose-Binding Lectins/metabolism , Mannose-Binding Lectins/genetics , Deoxyglucose/pharmacology , Interleukin-4/metabolism , Interleukin-1beta/metabolism , Metabolic Reprogramming , Arginase , Hexokinase , Lectins
16.
Nat Commun ; 15(1): 3900, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724552

ABSTRACT

By incompletely understood mechanisms, type 2 (T2) inflammation present in the airways of severe asthmatics drives the formation of pathologic mucus which leads to airway mucus plugging. Here we investigate the molecular role and clinical significance of intelectin-1 (ITLN-1) in the development of pathologic airway mucus in asthma. Through analyses of human airway epithelial cells we find that ITLN1 gene expression is highly induced by interleukin-13 (IL-13) in a subset of metaplastic MUC5AC+ mucus secretory cells, and that ITLN-1 protein is a secreted component of IL-13-induced mucus. Additionally, we find ITLN-1 protein binds the C-terminus of the MUC5AC mucin and that its deletion in airway epithelial cells partially reverses IL-13-induced mucostasis. Through analysis of nasal airway epithelial brushings, we find that ITLN1 is highly expressed in T2-high asthmatics, when compared to T2-low children. Furthermore, we demonstrate that both ITLN-1 gene expression and protein levels are significantly reduced by a common genetic variant that is associated with protection from the formation of mucus plugs in T2-high asthma. This work identifies an important biomarker and targetable pathways for the treatment of mucus obstruction in asthma.


Subject(s)
Asthma , GPI-Linked Proteins , Interleukin-13 , Lectins , Mucin 5AC , Mucus , Child , Humans , Asthma/genetics , Asthma/metabolism , Cytokines , Epithelial Cells/metabolism , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Interleukin-13/genetics , Interleukin-13/metabolism , Lectins/genetics , Lectins/metabolism , Mucin 5AC/genetics , Mucin 5AC/metabolism , Mucus/metabolism , Nasal Mucosa/metabolism , Polymorphism, Genetic , Respiratory Mucosa/metabolism
17.
Biochem Biophys Res Commun ; 710: 149881, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38583233

ABSTRACT

Maackia amurensis lectins serve as research and botanical agents that bind to sialic residues on proteins. For example, M. amurensis seed lectin (MASL) targets the sialic acid modified podoplanin (PDPN) receptor to suppress arthritic chondrocyte inflammation, and inhibit tumor cell growth and motility. However, M. amurensis lectin nomenclature and composition are not clearly defined. Here, we sought to definitively characterize MASL and its effects on tumor cell behavior. We utilized SDS-PAGE and LC-MS/MS to find that M. amurensis lectins can be divided into two groups. MASL is a member of one group which is composed of subunits that form dimers, evidently mediated by a cysteine residue in the carboxy region of the protein. In contrast to MASL, members of the other group do not dimerize under nonreducing conditions. These data also indicate that MASL is composed of 4 isoforms with an identical amino acid sequence, but unique glycosylation sites. We also produced a novel recombinant soluble human PDPN receptor (shPDPN) with 17 threonine residues glycosylated with sialic acid moieties with potential to act as a ligand trap that inhibits OSCC cell growth and motility. In addition, we report here that MASL targets PDPN with very strong binding kinetics in the nanomolar range. Moreover, we confirm that MASL can inhibit the growth and motility of human oral squamous cell carcinoma (OSCC) cells that express the PDPN receptor. Taken together, these data characterize M. amurensis lectins into two major groups based on their intrinsic properties, clarify the composition of MASL and its subunit isoform sequence and glycosylation sites, define sialic acid modifications on the PDPN receptor and its ability to act as a ligand trap, quantitate MASL binding to PDPN with KD in the nanomolar range, and verify the ability of MASL to serve as a potential anticancer agent.


Subject(s)
Antineoplastic Agents , Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Carcinoma, Squamous Cell/pathology , Squamous Cell Carcinoma of Head and Neck , N-Acetylneuraminic Acid/metabolism , Maackia/chemistry , Maackia/metabolism , Mouth Neoplasms/pathology , Chromatography, Liquid , Ligands , Tandem Mass Spectrometry , Lectins/pharmacology , Antineoplastic Agents/pharmacology , Sequence Analysis , Cell Movement
18.
PLoS Negl Trop Dis ; 18(4): e0012048, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38564496

ABSTRACT

BACKGROUND: Numerous studies indicate a potential protective role of helminths in diabetes mellitus (DM) progression. The complement system, vital for host defense, plays a crucial role in tissue homeostasis and immune surveillance. Dysregulated complement activation is implicated in diabetic complications. We aimed to investigate the influence of the helminth, Strongyloides stercoralis (Ss) on complement activation in individuals with type 2 DM (T2D). METHODOLOGY: We assessed circulating levels of complement proteins (C1q, C2, C3, C4, C4b, C5, C5a, and MBL (Lectin)) and their regulatory components (Factor B, Factor D, Factor H, and Factor I) in individuals with T2D with (n = 60) or without concomitant Ss infection (n = 58). Additionally, we evaluated the impact of anthelmintic therapy on these parameters after 6 months in Ss-infected individuals (n = 60). RESULTS: Ss+DM+ individuals demonstrated reduced levels of complement proteins (C1q, C4b, MBL (Lectin), C3, C5a, and C3b/iC3b) and complement regulatory proteins (Factor B and Factor D) compared to Ss-DM+ individuals. Following anthelmintic therapy, there was a partial reversal of these levels in Ss+DM+ individuals. CONCLUSION: Our findings indicate that Ss infection reduces complement activation, potentially mitigating inflammatory processes in individuals with T2D. The study underscores the complex interplay between helminth infections, complement regulation, and diabetes mellitus, offering insights into potential therapeutic avenues.


Subject(s)
Anthelmintics , Diabetes Mellitus, Type 2 , Helminths , Strongyloides stercoralis , Strongyloidiasis , Animals , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Complement Factor B , Complement Factor D/therapeutic use , Complement C1q , Strongyloidiasis/complications , Strongyloidiasis/drug therapy , Complement Activation , Anthelmintics/therapeutic use , Lectins
19.
Sci Rep ; 14(1): 8587, 2024 04 13.
Article in English | MEDLINE | ID: mdl-38615147

ABSTRACT

Helicobacter pylori infects approximately half the human population and has an unusual infective niche of the human stomach. Helicobacter pylori is a major cause of gastritis and has been classified as a group 1 carcinogen by the WHO. Treatment involves triple or quadruple antibiotic therapy, but antibiotic resistance is becoming increasingly prevalent. Helicobacter pylori expresses certain blood group related antigens (Lewis system) as a part of its lipopolysaccharide (LPS), which is thought to assist in immune evasion. Additionally, H. pylori LPS participates in adhesion to host cells alongside several adhesion proteins. This study profiled the carbohydrates of H. pylori reference strains (SS1 and 26695) using monoclonal antibodies (mAbs) and lectins, identifying interactions between two carbohydrate-targeting mAbs and multiple lectins. Atomic force microscopy (AFM) scans were used to probe lectin and antibody interactions with the bacterial surfaces. The selected mAb and lectins displayed an increased adhesive force over the surface of the curved H. pylori rods. Furthermore, this study demonstrates the ability of anti-carbohydrate antibodies to reduce the adhesion of H. pylori 26695 to human gastric adenocarcinoma cells via AFM. Targeting bacterial carbohydrates to disrupt crucial adhesion and immune evasion mechanisms represents a promising strategy for combating H. pylori infection.


Subject(s)
Blood Group Antigens , Helicobacter Infections , Helicobacter pylori , Humans , Lipopolysaccharides , Polysaccharides , Antibodies, Monoclonal , Lectins
20.
Zebrafish ; 21(2): 177-180, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38621207

ABSTRACT

Lectins are carbohydrate-binding proteins with specific affinity to glycoconjugates expressed in various tissues. Lectins are of substantial utility as research, histochemical, and diagnostic tools in mammalian systems. Reactivity of 12 commonly used plant-based lectins was studied in zebrafish liver. Four lectins, tomato lectin (TL), wheat germ agglutinin, concanavalin A, and Jacalin showed strong reactivity to hepatic parenchymal structures. Importantly, TL reacted to glycoconjugates within segments of the larval and adult intrahepatic biliary network, from canaliculi to bile ducts. We provide evidence that lectins can serve as important histochemical tools to investigate the structural and functional characteristics of the zebrafish liver.


Subject(s)
Lectins , Zebrafish , Animals , Zebrafish/metabolism , Histocytochemistry , Liver/metabolism , Glycoconjugates/metabolism , Mammals/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...