Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.333
Filter
1.
Sci Rep ; 14(1): 11561, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773300

ABSTRACT

Mitochondrial diseases are mainly caused by dysfunction of mitochondrial respiratory chain complexes and have a variety of genetic variants or phenotypes. There are only a few approved treatments, and fundamental therapies are yet to be developed. Leigh syndrome (LS) is the most severe type of progressive encephalopathy. We previously reported that apomorphine, an anti- "off" agent for Parkinson's disease, has cell-protective activity in patient-derived skin fibroblasts in addition to strong dopamine agonist effect. We obtained 26 apomorphine analogs, synthesized 20 apomorphine derivatives, and determined their anti-cell death effect, dopamine agonist activity, and effects on the mitochondrial function. We found three novel apomorphine derivatives with an active hydroxy group at position 11 of the aporphine framework, with a high anti-cell death effect without emetic dopamine agonist activity. These synthetic aporphine alkaloids are potent therapeutics for mitochondrial diseases without emetic side effects and have the potential to overcome the low bioavailability of apomorphine. Moreover, they have high anti-ferroptotic activity and therefore have potential as a therapeutic agent for diseases related to ferroptosis.


Subject(s)
Aporphines , Leigh Disease , Mitochondria , Leigh Disease/drug therapy , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Aporphines/pharmacology , Aporphines/chemistry , Aporphines/chemical synthesis , Aporphines/therapeutic use , Fibroblasts/drug effects , Fibroblasts/metabolism , Apomorphine/pharmacology , Apomorphine/therapeutic use , Apomorphine/analogs & derivatives , Dopamine Agonists/pharmacology , Dopamine Agonists/therapeutic use , Dopamine Agonists/chemistry , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/therapeutic use
2.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732047

ABSTRACT

Mitochondrial dysfunction plays a major role in physiological aging and in many pathological conditions. Yet, no study has explored the consequence of primary mitochondrial deficiency on the blood-brain barrier (BBB) structure and function. Addressing this question has major implications for pharmacological and genetic strategies aimed at ameliorating the neurological symptoms that are often predominant in patients suffering from these conditions. In this study, we examined the permeability of the BBB in the Ndufs4-/- mouse model of Leigh syndrome (LS). Our results indicated that the structural and functional integrity of the BBB was preserved in this severe model of mitochondrial disease. Our findings suggests that pharmacological or gene therapy strategies targeting the central nervous system in this mouse model and possibly other models of mitochondrial dysfunction require the use of specific tools to bypass the BBB. In addition, they raise the need for testing the integrity of the BBB in complementary in vivo models.


Subject(s)
Blood-Brain Barrier , Disease Models, Animal , Electron Transport Complex I , Leigh Disease , Animals , Mice , Blood-Brain Barrier/metabolism , Electron Transport Complex I/metabolism , Electron Transport Complex I/genetics , Electron Transport Complex I/deficiency , Leigh Disease/genetics , Leigh Disease/metabolism , Leigh Disease/pathology , Mice, Knockout , Mitochondria/metabolism , Mitochondria/genetics
3.
Eur J Clin Invest ; 54(7): e14217, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38644687

ABSTRACT

OBJECTIVES AND SCOPE: Primary mitochondrial diseases (PMDs) are rare genetic disorders resulting from mutations in genes crucial for effective oxidative phosphorylation (OXPHOS) that can affect mitochondrial function. In this review, we examine the bioenergetic alterations and oxidative stress observed in cellular models of primary mitochondrial diseases (PMDs), shedding light on the intricate complexity between mitochondrial dysfunction and cellular pathology. We explore the diverse cellular models utilized to study PMDs, including patient-derived fibroblasts, induced pluripotent stem cells (iPSCs) and cybrids. Moreover, we also emphasize the connection between oxidative stress and neuroinflammation. INSIGHTS: The central nervous system (CNS) is particularly vulnerable to mitochondrial dysfunction due to its dependence on aerobic metabolism and the correct functioning of OXPHOS. Similar to other neurodegenerative diseases affecting the CNS, individuals with PMDs exhibit several neuroinflammatory hallmarks alongside neurodegeneration, a pattern also extensively observed in mouse models of mitochondrial diseases. Based on histopathological analysis of postmortem human brain tissue and findings in mouse models of PMDs, we posit that neuroinflammation is not merely a consequence of neurodegeneration but a potential pathogenic mechanism for disease progression that deserves further investigation. This recognition may pave the way for novel therapeutic strategies for this group of devastating diseases that currently lack effective treatments. SUMMARY: In summary, this review provides a comprehensive overview of bioenergetic alterations and redox imbalance in cellular models of PMDs while underscoring the significance of neuroinflammation as a potential driver in disease progression.


Subject(s)
Energy Metabolism , Mitochondrial Diseases , Neuroinflammatory Diseases , Oxidative Stress , Humans , Oxidative Stress/physiology , Mitochondrial Diseases/physiopathology , Mitochondrial Diseases/metabolism , Neuroinflammatory Diseases/physiopathology , Neuroinflammatory Diseases/metabolism , Animals , Energy Metabolism/physiology , Oxidative Phosphorylation , Mice , Mitochondria/metabolism , Fibroblasts/metabolism , Induced Pluripotent Stem Cells/metabolism , Leigh Disease/metabolism , Leigh Disease/genetics , Leigh Disease/physiopathology , MELAS Syndrome/metabolism , MELAS Syndrome/physiopathology , MELAS Syndrome/genetics , Disease Models, Animal
4.
Neuropathol Appl Neurobiol ; 50(3): e12977, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38680020

ABSTRACT

AIM: Leigh syndrome (LS), the most common paediatric presentation of genetic mitochondrial dysfunction, is a multi-system disorder characterised by severe neurologic and metabolic abnormalities. Symmetric, bilateral, progressive necrotizing lesions in the brainstem are defining features of the disease. Patients are often symptom free in early life but typically develop symptoms by about 2 years of age. The mechanisms underlying disease onset and progression in LS remain obscure. Recent studies have shown that the immune system causally drives disease in the Ndufs4(-/-) mouse model of LS: treatment of Ndufs4(-/-) mice with the macrophage-depleting Csf1r inhibitor pexidartinib prevents disease. While the precise mechanisms leading to immune activation and immune factors involved in disease progression have not yet been determined, interferon-gamma (IFNγ) and interferon gamma-induced protein 10 (IP10) were found to be significantly elevated in Ndufs4(-/-) brainstem, implicating these factors in disease. Here, we aimed to explore the role of IFNγ and IP10 in LS. METHODS: To establish the role of IFNγ and IP10 in LS, we generated IFNγ and IP10 deficient Ndufs4(-/-)/Ifng(-/-) and Ndufs4(-/-)/IP10(-/-) double knockout animals, as well as IFNγ and IP10 heterozygous, Ndufs4(-/-)/Ifng(+/-) and Ndufs4(-/-)/IP10(+/-), animals. We monitored disease onset and progression to define the impact of heterozygous or homozygous loss of IFNγ and IP10 in LS. RESULTS: Loss of IP10 does not significantly impact the onset or progression of disease in the Ndufs4(-/-) model. IFNγ loss significantly extends survival and delays disease progression in a gene dosage-dependent manner, though the benefits are modest compared to Csf1r inhibition. CONCLUSIONS: IFNγ contributes to disease onset and progression in LS. Our findings suggest that IFNγ targeting therapies may provide some benefits in genetic mitochondrial disease, but targeting IFNγ alone would likely yield only modest benefits in LS.


Subject(s)
Disease Progression , Electron Transport Complex I , Interferon-gamma , Leigh Disease , Animals , Mice , Brain Stem/pathology , Brain Stem/metabolism , Disease Models, Animal , Electron Transport Complex I/genetics , Electron Transport Complex I/deficiency , Interferon-gamma/metabolism , Leigh Disease/pathology , Leigh Disease/genetics , Mice, Inbred C57BL , Mice, Knockout
5.
Genes (Basel) ; 15(4)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38674434

ABSTRACT

Oxidative phosphorylation involves a complex multi-enzymatic mitochondrial machinery critical for proper functioning of the cell, and defects herein cause a wide range of diseases called "primary mitochondrial disorders" (PMDs). Mutations in about 400 nuclear and 37 mitochondrial genes have been documented to cause PMDs, which have an estimated birth prevalence of 1:5000. Here, we describe a 4-year-old female presenting from early childhood with psychomotor delay and white matter signal changes affecting several brain regions, including the brainstem, in addition to lactic and phytanic acidosis, compatible with Leigh syndrome, a genetically heterogeneous subgroup of PMDs. Whole genome sequencing of the family trio identified a homozygous 12.9 Kb deletion, entirely overlapping the NDUFA4 gene. Sanger sequencing of the breakpoints revealed that the genomic rearrangement was likely triggered by Alu elements flanking the gene. NDUFA4 encodes for a subunit of the respiratory chain Complex IV, whose activity was significantly reduced in the patient's fibroblasts. In one family, dysfunction of NDUFA4 was previously documented as causing mitochondrial Complex IV deficiency nuclear type 21 (MC4DN21, OMIM 619065), a relatively mild form of Leigh syndrome. Our finding confirms the loss of NDUFA4 function as an ultra-rare cause of Complex IV defect, clinically presenting as Leigh syndrome.


Subject(s)
Electron Transport Complex I , Leigh Disease , Humans , Leigh Disease/genetics , Leigh Disease/pathology , Female , Child, Preschool , Electron Transport Complex IV/genetics , Mitochondrial Diseases/genetics , Mitochondrial Diseases/pathology , Pedigree , Sequence Deletion
6.
Pediatr Neurol ; 155: 91-103, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38626668

ABSTRACT

BACKGROUND: Pathogenic variants in the NDUFV1 gene disrupt mitochondrial complex I, leading to neuroregression with leukoencephalopathy and basal ganglia involvement on neuroimaging. This study aims to provide a concise review on NDUFV1-related disorders while adding the largest cohort from a single center to the existing literature. METHODS: We retrospectively collected genetically proven cases of NDUFV1 pathogenic variants from our center over the last decade and explored reported instances in existing literature. Magnetic resonance imaging (MRI) patterns observed in these patients were split into three types-Leigh (putamen, basal ganglia, thalamus, and brainstem involvement), mitochondrial leukodystrophy (ML) (cerebral white matter involvement with cystic cavitations), and mixed (both). RESULTS: Analysis included 44 children (seven from our center and 37 from literature). The most prevalent comorbidities were hypertonia, ocular abnormalities, feeding issues, and hypotonia at onset. Children with the Leigh-type MRI pattern exhibited significantly higher rates of breathing difficulties, whereas those with a mixed phenotype had a higher prevalence of dystonia. The c.1156C>T variant in exon 8 of the NDUFV1 gene was the most common variant among individuals of Asian ethnicity and is predominantly associated with irritability and dystonia. Seizures and Leigh pattern of MRI of the brain was found to be less commonly associated with this variant. Higher rate of mortality was observed in children with Leigh-type pattern on brain MRI and those who did not receive mitochondrial cocktail. CONCLUSIONS: MRI phenotyping might help predict outcome. Appropriate and timely treatment with mitochondrial cocktail may reduce the probability of death and may positively impact the long-term outcomes, regardless of the genetic variant or age of onset.


Subject(s)
Electron Transport Complex I , Mitochondrial Diseases , NADH Dehydrogenase , Humans , Retrospective Studies , Male , Electron Transport Complex I/genetics , Female , Child, Preschool , Infant , Child , NADH Dehydrogenase/genetics , Mitochondrial Diseases/genetics , Mitochondrial Diseases/diagnostic imaging , Magnetic Resonance Imaging , Leigh Disease/genetics , Leigh Disease/diagnostic imaging , Adolescent
7.
Stem Cell Res ; 76: 103379, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38458030

ABSTRACT

Leigh syndrome is a rare autosomal recessive disorder showcasing a diverse range of neurological symptoms. Classical Leigh syndrome is associated with mitochondrial complex I deficiency, primarily resulting from biallelic mutations in the NDUFAF5 gene, encoding the NADH:ubiquinone oxidoreductase complex assembly factor 5. Using the Sendai virus delivery system, we generated an induced pluripotent stem cell line from peripheral blood mononuclear cells of a 47-years-old female patient who carried a homozygous NDUFAF5 c.836 T > G (p.Met279Arg) mutation. This cellular model serves as a tool for investigating the underlying pathogenic mechanisms and for the development of potential treatments for Leigh syndrome.


Subject(s)
Induced Pluripotent Stem Cells , Leigh Disease , Mitochondrial Diseases , Humans , Female , Middle Aged , Leigh Disease/genetics , Mutation, Missense , Induced Pluripotent Stem Cells/pathology , Leukocytes, Mononuclear/pathology , Mitochondrial Diseases/genetics , Mitochondrial Diseases/pathology , Mutation , Methyltransferases/genetics , Mitochondrial Proteins/genetics
8.
Nitric Oxide ; 146: 19-23, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38521487

ABSTRACT

The mammalian brain is exquisitely vulnerable to lack of oxygen. However, the mechanism underlying the brain's sensitivity to hypoxia is incompletely understood. In this narrative review, we present a case for sulfide catabolism as a key defense mechanism of the brain against acute oxygen shortage. We will examine literature on the role of sulfide in hypoxia/ischemia, deep hibernation, and leigh syndrome patients, and present our recent data that support the neuroprotective effects of sulfide catabolism and persulfide production. When oxygen levels become low, hydrogen sulfide (H2S) accumulates in brain cells and impairs the ability of these cells to use the remaining, available oxygen to produce energy. In recent studies, we found that hibernating ground squirrels, which can withstand very low levels of oxygen, have high levels of sulfide:quinone oxidoreductase (SQOR) and the capacity to catabolize hydrogen sulfide in the brain. Silencing SQOR increased the sensitivity of the brain of squirrels and mice to hypoxia, whereas neuron-specific SQOR expression prevented hypoxia-induced sulfide accumulation, bioenergetic failure, and ischemic brain injury in mice. Excluding SQOR from mitochondria increased sensitivity to hypoxia not only in the brain but also in heart and liver. Pharmacological agents that scavenge sulfide and/or increase persulfide maintained mitochondrial respiration in hypoxic neurons and made mice resistant to ischemic injury to the brain or spinal cord. Drugs that oxidize hydrogen sulfide and/or increase persulfide may prove to be an effective approach to the treatment of patients experiencing brain injury caused by oxygen deprivation or mitochondrial dysfunction.


Subject(s)
Hibernation , Neuroprotection , Hibernation/physiology , Animals , Humans , Sulfides/metabolism , Sulfides/pharmacology , Hydrogen Sulfide/metabolism , Brain/metabolism , Mice , Sciuridae/metabolism , Leigh Disease/metabolism , Quinone Reductases/metabolism
9.
Mitochondrion ; 76: 101858, 2024 May.
Article in English | MEDLINE | ID: mdl-38437941

ABSTRACT

Mitochondrial diseases are caused by nuclear, or mitochondrial DNA (mtDNA) variants and related co-factors. Here, we report a novel m.10197G > C variant in MT-ND3 in a patient, and two other patients with m.10191 T > C. MT-ND3 variants are known to cause Leigh syndrome or mitochondrial complex I deficiency. We performed the functional analyses of the novel m.10197G > C variant that significantly lowered MT-ND3 protein levels, causing complex I assembly and activity deficiency, and reduction of ATP synthesis. We adapted a previously described re-engineering technique of delivering mitochondrial genes into mitochondria through codon optimization for nuclear expression and translation by cytoplasmic ribosomes to rescue defects arising from the MT-ND3 variants. We constructed mitochondrial targeting sequences along with the codon-optimized MT-ND3 and imported them into the mitochondria. To achieve the goal, we imported codon-optimized MT-ND3 into mitochondria in three patients with m.10197G > C and m.10191 T > C missense variants in the MT-ND3. Nuclear expression of the MT-ND3 gene partially restored protein levels, complex I deficiency, and significant improvement of ATP production indicating a functional rescue of the mutant phenotype. The codon-optimized nuclear expression of mitochondrial protein and import inside the mitochondria can supplement the requirements for ATP in energy-deficient mitochondrial disease patients.


Subject(s)
Electron Transport Complex I , Mitochondria , Mitochondrial Diseases , Humans , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Electron Transport Complex I/deficiency , Male , Female , Leigh Disease/genetics , Leigh Disease/metabolism , Mutation, Missense , Adenosine Triphosphate/metabolism
10.
Brain ; 147(6): 1967-1974, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38478578

ABSTRACT

Leigh syndrome spectrum (LSS) is a primary mitochondrial disorder defined neuropathologically by a subacute necrotizing encephalomyelopathy and characterized by bilateral basal ganglia and/or brainstem lesions. LSS is associated with variants in several mitochondrial DNA genes and more than 100 nuclear genes, most often related to mitochondrial complex I (CI) dysfunction. Rarely, LSS has been reported in association with primary Leber hereditary optic neuropathy (LHON) variants of the mitochondrial DNA, coding for CI subunits (m.3460G>A in MT-ND1, m.11778G>A in MT-ND4 and m.14484T>C in MT-ND6). The underlying mechanism by which these variants manifest as LSS, a severe neurodegenerative disease, as opposed to the LHON phenotype of isolated optic neuropathy, remains an open question. Here, we analyse the exome sequencing of six probands with LSS carrying primary LHON variants, and report digenic co-occurrence of the m.11778G > A variant with damaging heterozygous variants in nuclear disease genes encoding CI subunits as a plausible explanation. Our findings suggest a digenic mechanism of disease for m.11778G>A-associated LSS, consistent with recent reports of digenic disease in individuals manifesting with LSS due to biallelic variants in the recessive LHON-associated disease gene DNAJC30 in combination with heterozygous variants in CI subunits.


Subject(s)
Leigh Disease , Optic Atrophy, Hereditary, Leber , Humans , Leigh Disease/genetics , Optic Atrophy, Hereditary, Leber/genetics , Male , Female , Adult , DNA, Mitochondrial/genetics , Electron Transport Complex I/genetics , Child , Adolescent , NADH Dehydrogenase/genetics , Mutation , Young Adult , Exome Sequencing , Child, Preschool
11.
Paediatr Anaesth ; 34(5): 467-476, 2024 05.
Article in English | MEDLINE | ID: mdl-38358320

ABSTRACT

BACKGROUND: Genetic mitochondrial diseases impact over 1 in 4000 individuals, most often presenting in infancy or early childhood. Seizures are major clinical sequelae in some mitochondrial diseases including Leigh syndrome, the most common pediatric presentation of mitochondrial disease. Dietary ketosis has been used to manage seizures in mitochondrial disease patients. Mitochondrial disease patients often require surgical interventions, leading to anesthetic exposures. Anesthetics have been shown to be toxic in the setting of mitochondrial disease, but the impact of a ketogenic diet on anesthetic toxicities in this setting has not been studied. AIMS: Our aim in this study was to determine whether dietary ketosis impacts volatile anesthetic toxicities in the setting of genetic mitochondrial disease. METHODS: The impact of dietary ketosis on toxicities of volatile anesthetic exposure in mitochondrial disease was studied by exposing young Ndufs4(-/-) mice fed ketogenic or control diet to isoflurane anesthesia. Blood metabolites were measured before and at the end of exposures, and survival and weight were monitored. RESULTS: Compared to a regular diet, the ketogenic diet exacerbated hyperlactatemia resulting from isoflurane exposure (control vs. ketogenic diet in anesthesia mean difference 1.96 mM, Tukey's multiple comparison adjusted p = .0271) and was associated with a significant increase in mortality during and immediately after exposures (27% vs. 87.5% mortality in the control and ketogenic diet groups, respectively, during the exposure period, Fisher's exact test p = .0121). Our data indicate that dietary ketosis and volatile anesthesia interact negatively in the setting of mitochondrial disease. CONCLUSIONS: Our findings suggest that extra caution should be taken in the anesthetic management of mitochondrial disease patients in dietary ketosis.


Subject(s)
Anesthesia , Anesthetics , Isoflurane , Ketosis , Leigh Disease , Mitochondrial Diseases , Humans , Child , Child, Preschool , Mice , Animals , Leigh Disease/genetics , Diet , Ketosis/metabolism , Seizures , Electron Transport Complex I/metabolism
12.
J Hum Genet ; 69(6): 283-285, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38374165

ABSTRACT

Only five children with pathogenic PMPCB gene variants have been described and all carried missense variants. Clinical features included a Leigh-like syndrome of developmental regression, basal ganglia lesions and ataxia with or without dystonia and epilepsy. Three of the five died in childhood and none was older than age six when described. We report the first splice site variant in the PMPCB gene in a 39-year old individual who experienced developmental regression and ataxia following otitis media in childhood. A minigene assay confirms this variant results in aberrant splicing and skipping of exon 12.


Subject(s)
Leigh Disease , RNA Splicing , Humans , Leigh Disease/genetics , Leigh Disease/pathology , Adult , RNA Splicing/genetics , Ataxia/genetics , Ataxia/pathology , Male , Female
13.
Sci Rep ; 14(1): 2975, 2024 02 05.
Article in English | MEDLINE | ID: mdl-38316835

ABSTRACT

Two Jack-Russell Terrier × Chihuahua mixed-breed littermates with Leigh syndrome were investigated. The dogs presented with progressive ataxia, dystonia, and increased lactate levels. Brain MRI showed characteristic bilateral symmetrical T2 hyperintense lesions, histologically representing encephalomalacia. Muscle histopathology revealed accumulation of mitochondria. Whole genome sequencing identified a missense variant in a gene associated with human Leigh syndrome, NDUFS7:c.535G > A or p.(Val179Met). The genotypes at the variant co-segregated with the phenotype in the investigated litter as expected for a monogenic autosomal recessive mode of inheritance. We investigated the functional consequences of the missense variant in a Drosophila melanogaster model by expressing recombinant wildtype or mutant canine NDUFS7 in a ubiquitous knockdown model of the fly ortholog ND-20. Neither of the investigated overexpression lines completely rescued the lethality upon knockdown of the endogenous ND-20. However, a partial rescue was found upon overexpression of wildtype NDUFS7, where pupal lethality was moved to later developmental stages, which was not seen upon canine mutant overexpression, thus providing additional evidence for the pathogenicity of the identified variant. Our results show the potential of the fruit fly as a model for canine disease allele validation and establish NDUFS7:p.(Val179Met) as causative variant for the investigated canine Leigh syndrome.


Subject(s)
Dystonic Disorders , Leigh Disease , Animals , Dogs , Drosophila melanogaster/genetics , Dystonic Disorders/genetics , Dystonic Disorders/veterinary , Leigh Disease/genetics , Leigh Disease/veterinary , Mutation, Missense
14.
Orphanet J Rare Dis ; 19(1): 92, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38419071

ABSTRACT

BACKGROUND: Congenital disorders of the mitochondrial respiratory chain are a heterogeneous group of inborn errors of metabolism. Among them, NADH:ubiquinone oxidoreductase (complex I, CI) deficiency is the most common. Biallelic pathogenic variants in NDUFAF2, encoding the nuclear assembly CI factor NDUFAF2, were initially reported to cause progressive encephalopathy beginning in infancy. Since the initial report in 2005, less than a dozen patients with NDUFAF2-related disease have been reported. METHODS: Clinical, biochemical, and neuroradiological features of four new patients residing in Northern Israel were collected during 2016-2022 at Emek Medical Center. Enzymatic activities of the five respiratory-chain complexes were determined in isolated fibroblast mitochondria by spectrophotometric methods. Western blot analyses were conducted with anti-human NDUFAF2 antibody; antibody against the mitochondrial marker VDAC1 was used as a loading control. Genetic studies were performed by chromosome microarray analysis using Affymetrix CytoScan 750 K arrays. RESULTS: All four patients presented with infantile-onset growth retardation, ophthalmological impairments with nystagmus, strabismus (starting between 5 and 9 months), and further progressed to life-threatening episodes of apnea usually triggered by trivial febrile illnesses (between 10 and 18 months) with gradual loss of acquired developmental milestones (3 of 4 patients). Serial magnetic-resonance imaging studies in two of the four patients showed a progressive pattern of abnormal T2-weighted hyperintense signals involving primarily the brainstem, the upper cervical cord, and later, the basal ganglia and thalami. Magnetic-resonance spectroscopy in one patient showed an increased lactate peak. Disease progression was marked by ventilatory dependency and early lethality. 3 of the 4 patients tested, harbored a homozygous 142-kb partial interstitial deletion that omits exons 2-4 of NDUFAF2. Mitochondrial CI activity was significantly decreased in the only patient tested. Western blot analysis disclosed the absence of NDUFAF2 protein compared to normal controls. In addition, we reviewed all 10 previously reported NDUFAF2-deficient cases to better characterize the disease. CONCLUSIONS: Biallelic loss-of-function mutations in NDUFAF2 result in a distinctive phenotype in the spectrum of Leigh syndrome with clinical and neuroradiological features that are primarily attributed to progressive brainstem damage.


Subject(s)
Leigh Disease , Neurodegenerative Diseases , Humans , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Leigh Disease/genetics , Leigh Disease/metabolism , Electron Transport Complex I/metabolism , Brain Stem/pathology , Mutation/genetics , Molecular Chaperones/genetics , Molecular Chaperones/metabolism
15.
EMBO J ; 43(2): 225-249, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38177503

ABSTRACT

Respiratory complex I (NADH:ubiquinone oxidoreductase) is essential for cellular energy production and NAD+ homeostasis. Complex I mutations cause neuromuscular, mitochondrial diseases, such as Leigh Syndrome, but their molecular-level consequences remain poorly understood. Here, we use a popular complex I-linked mitochondrial disease model, the ndufs4-/- mouse, to define the structural, biochemical, and functional consequences of the absence of subunit NDUFS4. Cryo-EM analyses of the complex I from ndufs4-/- mouse hearts revealed a loose association of the NADH-dehydrogenase module, and discrete classes containing either assembly factor NDUFAF2 or subunit NDUFS6. Subunit NDUFA12, which replaces its paralogue NDUFAF2 in mature complex I, is absent from all classes, compounding the deletion of NDUFS4 and preventing maturation of an NDUFS4-free enzyme. We propose that NDUFAF2 recruits the NADH-dehydrogenase module during assembly of the complex. Taken together, the findings provide new molecular-level understanding of the ndufs4-/- mouse model and complex I-linked mitochondrial disease.


Subject(s)
Leigh Disease , Mitochondrial Diseases , Animals , Mice , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Leigh Disease/genetics , Mitochondria/metabolism , Mitochondrial Diseases/genetics , NAD/metabolism , NADH Dehydrogenase/genetics , NADH Dehydrogenase/metabolism
16.
Radiology ; 310(1): e222509, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38289219

ABSTRACT

HISTORY: A 9-month-old preterm male infant born at 33 weeks gestation presented with a 2-month history of developmental decline. The parents reported that over the past several months, they noted regression of milestones, where the infant stopped smiling, crying, expressing himself, or making eye contact. The parents also reported that the infant had multiple seizures during which he would wake up stiff and stare into space for 10-20 seconds while his lips would become blue. The parents were referred to a neurologist, where physical examination was notable for hypotonia. Electroencephalography (EEG) revealed frequent bilateral parietal epileptiform discharges. The patient was subsequently started on lacosamide. The patient's medical history was notable for abnormally low citrulline levels at birth, with negative results of urea cycle disorder testing at the time, along with left inguinal hernia repair performed 3 months ago. More recent laboratory analysis had shown persistently elevated serum lactate and alanine levels. There was no history of travel, recent infection, or vaccine administration. MRI of the brain with spectroscopy was performed for further evaluation.


Subject(s)
Leigh Disease , Infant, Newborn , Infant , Humans , Male , Leigh Disease/diagnostic imaging , Brain , Electroencephalography , Infant, Premature , Lacosamide
17.
Pharmacol Biochem Behav ; 234: 173689, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38070656

ABSTRACT

The Ndufs4 knockout (KO) mouse is a validated and robust preclinical model of mitochondrial diseases (specifically Leigh syndrome), that displays a narrow window of relative phenotypical normality, despite its inherent mitochondrial complex I dysfunction and severe phenotype. Preclinical observations related to psychiatric comorbidities that arise in patients with mitochondrial diseases and indeed in Leigh syndrome are, however, yet to be investigated in this model. Strengthening this narrative is the fact that major depression and bipolar disorder are known to present with deficits in mitochondrial function. We therefore screened the behavioural profile of male and female Ndufs4 KO mice (relative to heterozygous; HET and wildtype; WT mice) between postnatal days 28 and 35 for locomotor, depressive- and anxiety-like alterations and linked it with selected brain biomarkers, viz. serotonin, kynurenine, and redox status in brain areas relevant to psychiatric pathologies (i.e., prefrontal cortex, hippocampus, and striatum). The Ndufs4 KO mice initially displayed depressive-like behaviour in the tail suspension test on PND31 but not on PND35 in the forced swim test. In the mirror box test, increased risk resilience was observed. Serotonin levels of KO mice, compared to HET controls, were increased on PND36, together with increased tryptophan to serotonin and kynurenine turnover. Kynurenine to kynurenic acid turnover was however decreased, while reduced versus oxidized glutathione ratio (GSH/GSSG) was increased. When considering the comorbid psychiatric traits of patients with mitochondrial disorders, this work elaborates on the neuropsychiatric profile of the Ndufs KO mouse. Secondly, despite locomotor differences, Ndufs4 KO mice present with a behavioural profile not unlike rodent models of bipolar disorder, namely variable mood states and risk-taking behaviour. The model may elucidate the bio-energetic mechanisms underlying mood disorders, especially in the presence of mitochondrial disease. Studies are however required to further validate the model's translational relevance.


Subject(s)
Leigh Disease , Mitochondrial Diseases , Humans , Male , Female , Animals , Mice , Leigh Disease/genetics , Leigh Disease/pathology , Kynurenine , Serotonin , Mice, Knockout , Mood Disorders/genetics , Mitochondrial Diseases/genetics , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism
19.
Pract Neurol ; 24(1): 45-50, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-37567761

ABSTRACT

A previously healthy 27-year-old man was admitted to the acute neurology ward with events involving his face, throat and upper limb, which video telemetry later confirmed were refractory focal seizures. He also had progressive pyramidal features, dysarthria and ataxia. MR scans of the brain identified progressive bilateral basal ganglia abnormalities, consistent with Leigh syndrome. However, extensive laboratory and genetic panels did not give a unifying diagnosis. A skeletal muscle biopsy showed no histopathological abnormalities on routine stains. Sequencing of the entire mitochondrial genome in skeletal muscle identified a well-characterised pathogenic variant (m.10191T>C in MT-ND3; NC_012920.1) at 85% heteroplasmy in skeletal muscle. We discuss the clinical and molecular diagnosis of an adult presenting with Leigh syndrome, which is more commonly a paediatric presentation of mitochondrial disease, and how early recognition of a mitochondrial cause is important to support patient care.


Subject(s)
Leigh Disease , Male , Adult , Humans , Child , Leigh Disease/genetics , Mutation , Brain/pathology , Muscle, Skeletal/pathology , Ataxia
SELECTION OF CITATIONS
SEARCH DETAIL
...