Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 955
Filter
1.
Gene ; 926: 148637, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38844270

ABSTRACT

The cytosolic T-complex protein-1 ring complex (TRiC), also referred as chaperonin containing TCP-1(CCT), comprising eight different subunits stacked in double toroidal rings, binds to around 10 % of newly synthesized polypeptides and facilitates their folding in ATP dependent manner. In Leishmania, among five subunits of TCP1 complex, identified either by transcriptome or by proteome analysis, only LdTCP1γ has been well characterized. It forms biologically active homo-oligomeric complex and plays role in protein folding and parasite survival. Lack of information regarding rest of the TCP1 subunits and its structural configuration laid down the necessity to study individual subunits and their role in parasite pathogenicity. The present study involves the cloning, expression and biochemical characterization of TCP1ε subunit (LdTCP1ε) of Leishmania donovani, the causative agent of visceral leishmaniasis. LdTCP1ε exhibited significant difference in primary structure as compared to LdTCP1γ and was evolutionary close to LdTCP1 zeta subunit. Recombinant protein (rLdTCP1ε) exhibited two major bands of 132 kDa and 240 kDa on native-PAGE that corresponds to the dimeric and tetrameric assembly of the epsilon subunit, which showed the chaperonin activity (ATPase and luciferase refolding activity). LdTCP1ε also displayed an increased expression upto 2.7- and 1.8-fold in the late log phase and stationary phase promastigotes and exhibited majorly vesicular localization. The study, thus for the first time, provides an insight for the presence of highly diverge but functionally active dimeric/tetrameric TCP1 epsilon subunit in Leishmania parasite.


Subject(s)
Chaperonin Containing TCP-1 , Leishmania donovani , Protozoan Proteins , Leishmania donovani/genetics , Leishmania donovani/metabolism , Chaperonin Containing TCP-1/metabolism , Chaperonin Containing TCP-1/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/chemistry , Protein Multimerization , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Protein Subunits/metabolism , Protein Subunits/genetics , Cloning, Molecular , Amino Acid Sequence , Chaperonins/metabolism , Chaperonins/genetics , Protein Folding
2.
Microbiol Spectr ; 12(6): e0402623, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38712926

ABSTRACT

Post-kala-azar dermal leishmaniasis (PKDL) patients are a key source of Leishmania donovani parasites, hindering the goal of eliminating visceral leishmaniasis (VL). Monitoring treatment response and parasite susceptibility is essential due to increasing drug resistance. We assessed the drug susceptibility of PKDL isolates (n = 18) from pre-miltefosine (MIL) era (1997-2004) with isolates (n = 16) from the post-miltefosine era (2010-2019) and post-miltefosine treatment relapse isolates (n = 5) towards miltefosine and amphotericin B (AmB) at promastigote stage and towards sodium antimony gluconate (SAG) at amastigote stage. PKDL isolates were examined for mutation in gene-encoding AQP1 transporter, C26882T mutation on chromosome 24, and miltefosine-transporter (MT). PKDL isolates from the post-miltefosine era were significantly more susceptible to SAG than SAG-resistant isolates from the pre-miltefosine era (P = 0.0002). There was no significant difference in the susceptibility of parasites to miltefosine between pre- and post-miltefosine era isolates. The susceptibility of PKDL isolates towards AmB remained unchanged between the pre- and post-miltefosine era. However, the post-miltefosine era isolates had a higher IC50 value towards AmB compared with PKDL relapse isolates. We did not find any association between AQP1 gene sequence variation and susceptibility to SAG, or between miltefosine susceptibility and single nucleotide polymorphisms (SNPs in the MT gene. This study demonstrates that recent isolates of Leishmania have resumed susceptibility to antimonials in vitro. The study also offers significant insights into the intrinsic drug susceptibility of Leishmania parasites over the past two decades, covering the period before the introduction of miltefosine and after its extensive use. IMPORTANCE: Post-kala-azar dermal leishmaniasis (PKDL) patients, a key source of Leishmania donovani parasites, hinder eliminating visceral-leishmaniasis. Assessment of the susceptibility of PKDL isolates to antimony, miltefosine (MIL), and amphotericin-B indicated that recent isolates remain susceptible to antimony, enabling its use with other drugs for treating PKDL.


Subject(s)
Amphotericin B , Antimony , Antiprotozoal Agents , Drug Resistance , Leishmania donovani , Leishmaniasis, Cutaneous , Leishmaniasis, Visceral , Phosphorylcholine , Humans , Leishmania donovani/drug effects , Leishmania donovani/genetics , Leishmania donovani/isolation & purification , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/pharmacology , Phosphorylcholine/therapeutic use , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Visceral/drug therapy , Antiprotozoal Agents/pharmacology , Antimony/pharmacology , Antimony/therapeutic use , Leishmaniasis, Cutaneous/parasitology , Leishmaniasis, Cutaneous/drug therapy , Drug Resistance/genetics , Amphotericin B/pharmacology , Parasitic Sensitivity Tests , Antimony Sodium Gluconate/pharmacology , Antimony Sodium Gluconate/therapeutic use , Mutation
3.
Arch Biochem Biophys ; 757: 110040, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38750922

ABSTRACT

Purine salvage enzymes have been of significant interest in anti-Leishmanial drug development due to the parasite's critical dependence on this pathway for the supply of nucleotides in the absence of a de novo purine synthesis pathway. Adenylosuccinate lyase (ADSL) one of the key enzymes in this pathway is a homo-tetramer, where the active site is formed by residues from three distinct subunits. Analysis of the subunit interfaces of LdADSL, revealed a conserved Arg40 forming critical inter-subunit interactions and also involved in substrate binding. We hypothesized that mutating this residue can affect both the structural stability and activity of the enzyme. In our study, we used biochemical, biophysical, and computational simulation approaches to understand the structural and functional role of Arg40 in LdADSL. We have replaced Arg40 with an Ala and Glu using site directed mutagenesis. The mutant enzymes were similar to wild-type enzyme in secondary structure and subunit association. Thermal shift assays indicated that the mutations affected the protein stability. Both mutants showed decreased specific activities in both forward and reverse directions with significantly weakened affinities towards succinyl-adenosine monophosphate (SAMP). The mutations resulted in changes in C3 loop conformation and D3 domain rotation. Consequently, the orientation of the active site amino acid residues changed resulting in compromised activity and stability. Studies so far have majorly focused on the ADSL active site for designing drugs against it. Our work indicates that an alternative inhibitory mechanism for the enzyme can be designed by targeting the inter-subunit interface.


Subject(s)
Adenylosuccinate Lyase , Arginine , Enzyme Stability , Leishmania donovani , Adenylosuccinate Lyase/genetics , Adenylosuccinate Lyase/chemistry , Adenylosuccinate Lyase/metabolism , Leishmania donovani/enzymology , Leishmania donovani/genetics , Arginine/metabolism , Arginine/chemistry , Purines/metabolism , Purines/chemistry , Protozoan Proteins/genetics , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Mutagenesis, Site-Directed , Catalytic Domain , Molecular Dynamics Simulation
4.
ACS Infect Dis ; 10(6): 2074-2088, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38717971

ABSTRACT

Palmitoylation is an essential post-translational modification in Leishmania donovani, catalyzed by enzymes called palmitoyl acyl transferases (PATs) and has an essential role in virulence. Due to the toxicity and promiscuity of known PAT inhibitors, identification of new molecules is needed. Herein, we identified a specific novel de novo peptide inhibitor, PS1, against the PAT6 Leishmania donovani palmitoyl acyl transferase (LdPAT6). To demonstrate specific inhibition of LdPAT6 by PS1, we employed a bacterial orthologue system and metabolic labeling-coupled click chemistry where both LdPAT6 and PS1 were coexpressed and displayed palmitoylation suppression. Furthermore, strong binding of the LdPAT6-DHHC domain with PS1 was observed through analysis using microscale thermophoresis, ELISA, and dot blot assay. PS1 specific to LdPAT6 showed significant growth inhibition in promastigotes and amastigotes by expressing low cytokines levels and invasion. This study reveals discovery of a novel de novo peptide against LdPAT6-DHHC which has potential to block survivability and infectivity of L. donovani.


Subject(s)
Acyltransferases , Leishmania donovani , Peptides , Leishmania donovani/enzymology , Leishmania donovani/drug effects , Leishmania donovani/genetics , Acyltransferases/metabolism , Acyltransferases/genetics , Acyltransferases/antagonists & inhibitors , Acyltransferases/chemistry , Peptides/pharmacology , Peptides/chemistry , Animals , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/chemistry , Lipoylation , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Mice , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Leishmaniasis, Visceral/parasitology
5.
ACS Infect Dis ; 10(6): 2002-2017, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38753953

ABSTRACT

Leishmaniasis is a neglected tropical disease; there is currently no vaccine and treatment is reliant upon a handful of drugs suffering from multiple issues including toxicity and resistance. There is a critical need for development of new fit-for-purpose therapeutics, with reduced toxicity and targeting new mechanisms to overcome resistance. One enzyme meriting investigation as a potential drug target in Leishmania is M17 leucyl-aminopeptidase (LAP). Here, we aimed to chemically validate LAP as a drug target in L. major through identification of potent and selective inhibitors. Using RapidFire mass spectrometry, the compounds DDD00057570 and DDD00097924 were identified as selective inhibitors of recombinant Leishmania major LAP activity. Both compounds inhibited in vitro growth of L. major and L. donovani intracellular amastigotes, and overexpression of LmLAP in L. major led to reduced susceptibility to DDD00057570 and DDD00097924, suggesting that these compounds specifically target LmLAP. Thermal proteome profiling revealed that these inhibitors thermally stabilized two M17 LAPs, indicating that these compounds selectively bind to enzymes of this class. Additionally, the selectivity of the inhibitors to act on LmLAP and not against the human ortholog was demonstrated, despite the high sequence similarities LAPs of this family share. Collectively, these data confirm LmLAP as a promising therapeutic target for Leishmania spp. that can be selectively inhibited by drug-like small molecules.


Subject(s)
Antiprotozoal Agents , Leishmania major , Leishmania major/enzymology , Leishmania major/drug effects , Leishmania major/genetics , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Protozoan Proteins/metabolism , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/genetics , Protozoan Proteins/chemistry , Animals , Humans , Leishmania donovani/enzymology , Leishmania donovani/drug effects , Leishmania donovani/genetics
6.
PLoS Negl Trop Dis ; 18(5): e0011637, 2024 May.
Article in English | MEDLINE | ID: mdl-38713648

ABSTRACT

BACKGROUND: Diagnosis of visceral leishmaniasis (VL) in resource-limited endemic regions is currently based on serological testing with rK39 immunochromatographic tests (ICTs). However, rK39 ICT frequently has suboptimal diagnostic accuracy. Furthermore, treatment monitoring and detection of VL relapses is reliant on insensitive and highly invasive tissue aspirate microscopy. Miniature direct-on-blood PCR nucleic acid lateral flow immunoassay (mini-dbPCR-NALFIA) is an innovative and user-friendly molecular tool which does not require DNA extraction and uses a lateral flow strip for result read-out. This assay could be an interesting candidate for more reliable VL diagnosis and safer test of cure at the point of care. METHODOLOGY/PRINCIPLE FINDINGS: The performance of mini-dbPCR-NALFIA for diagnosis of VL in blood was assessed in a laboratory evaluation and compared with the accuracy of rK39 ICTs Kalazar Detect in Spain and IT LEISH in East Africa. Limit of detection of mini-dbPCR-NALFIA was 650 and 500 parasites per mL of blood for Leishmania donovani and Leishmania infantum, respectively. In 146 blood samples from VL-suspected patients from Spain, mini-dbPCR-NALFIA had a sensitivity of 95.8% and specificity 97.2%, while Kalazar Detect had a sensitivity of 71.2% and specificity of 94.5%, compared to a nested PCR reference. For a sample set from 58 VL patients, 10 malaria patients and 68 healthy controls from Ethiopia and Kenya, mini-dbPCR-NALFIA had a pooled sensitivity of 87.9% and pooled specificity of 100% using quantitative PCR as reference standard. IT LEISH sensitivity and specificity in the East African samples were 87.9% and 97.4%, respectively. CONCLUSIONS/SIGNIFICANCE: Mini-dbPCR-NALFIA is a promising tool for simplified molecular diagnosis of VL and follow-up of treated patients in blood samples. Future studies should evaluate its use in endemic, resource-limited settings, where mini-dbPCR-NALFIA may provide an accurate and versatile alternative to rK39 ICTs and aspirate microscopy.


Subject(s)
Leishmania donovani , Leishmaniasis, Visceral , Sensitivity and Specificity , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/parasitology , Humans , Leishmania donovani/genetics , Leishmania donovani/isolation & purification , Immunoassay/methods , Leishmania infantum/genetics , Leishmania infantum/isolation & purification , Polymerase Chain Reaction/methods , Spain , Molecular Diagnostic Techniques/methods , Female , Male , Adult , Adolescent , Child , Young Adult , Middle Aged , Africa, Eastern , DNA, Protozoan/genetics , DNA, Protozoan/blood , Child, Preschool
7.
mBio ; 15(5): e0085924, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38639536

ABSTRACT

Visceral leishmaniasis is a deadly infectious disease and is one of the world's major neglected health problems. Because the symptoms of infection are similar to other endemic diseases, accurate diagnosis is crucial for appropriate treatment. Definitive diagnosis using splenic or bone marrow aspirates is highly invasive, and so, serological assays are preferred, including the direct agglutination test (DAT) or rK39 strip test. These tests, however, are either difficult to perform in the field (DAT) or lack specificity in some endemic regions (rK39), making the development of new tests a research priority. The availability of Leishmania spp. genomes presents an opportunity to identify new diagnostic targets. Here, we use genome data and a mammalian protein expression system to create a panel of 93 proteins consisting of the extracellular ectodomains of the Leishmania donovani cell surface and secreted proteins. We use these panel and sera from murine experimental infection models and natural human and canine infections to identify new candidates for serological diagnosis. We observed a concordance between the most immunoreactive antigens in different host species and transmission settings. The antigen encoded by the LdBPK_323600.1 gene can diagnose Leishmania infections with high sensitivity and specificity in patient cohorts from different endemic regions including Bangladesh and Ethiopia. In longitudinal sampling of treated patients, we observed reductions in immunoreactivity to LdBPK_323600.1 suggesting it could be used to diagnose treatment success. In summary, we have identified new antigens that could contribute to improved serological diagnostic tests to help control the impact of this deadly tropical infectious disease. IMPORTANCE: Visceral leishmaniasis is fatal if left untreated with patients often displaying mild and non-specific symptoms during the early stages of infection making accurate diagnosis important. Current methods for diagnosis require highly trained medical staff to perform highly invasive biopsies of the liver or bone marrow which pose risks to the patient. Less invasive molecular tests are available but can suffer from regional variations in their ability to accurately diagnose an infection. To identify new diagnostic markers of visceral leishmaniasis, we produced and tested a panel of 93 proteins identified from the genome of the parasite responsible for this disease. We found that the pattern of host antibody reactivity to these proteins was broadly consistent across naturally acquired infections in both human patients and dogs, as well as experimental rodent infections. We identified a new protein called LdBPK_323600.1 that could accurately diagnose visceral leishmaniasis infections in humans.


Subject(s)
Antibodies, Protozoan , Antigens, Protozoan , Leishmania donovani , Leishmaniasis, Visceral , Protozoan Proteins , Serologic Tests , Leishmania donovani/genetics , Leishmania donovani/immunology , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/parasitology , Animals , Humans , Mice , Dogs , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Serologic Tests/methods , Biomarkers/blood , Female , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Mice, Inbred BALB C , Membrane Proteins/genetics , Membrane Proteins/immunology , Sensitivity and Specificity , Dog Diseases/diagnosis , Dog Diseases/parasitology
8.
Biochem Biophys Res Commun ; 715: 149975, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38676997

ABSTRACT

Many GTPases have been shown to utilize ATP too as the phosphoryl donor. Both GTP and ATP are important molecules in the cellular environments and play multiple and discrete functional role within the cells. In our present study, we showed that one of the purine metabolic enzymes Adenylosuccinate synthetase from Leishmania donovani (LdAdSS) which belongs to the BioD-superfamily of GTPases can also carry out the catalysis by hydrolysing ATP instead of its cognate substrate GTP albeit with less efficiency. Biochemical and biophysical studies indicated its ability to bind to ATP too but at a higher concentration of ATP compared to that of GTP. Sequence analysis and molecular dynamic simulations suggested that residues of the switch loop and the G4-G5 (593SAXD596) connected motif of LdAdSS plays a role in determining the nucleotide specificity. Though the crucial interaction between Asp596 and the nucleotide is broken when ATP is bound, interactions between the Ala594 and the adenine ring of ATP could still hold ATP in the GTP binding site. The results of the present study suggested that though LdAdSS is GTP specific, it still shows ATP hydrolysing activity.


Subject(s)
Adenosine Triphosphate , Adenylosuccinate Synthase , Guanosine Triphosphate , Leishmania donovani , Leishmania donovani/enzymology , Leishmania donovani/metabolism , Leishmania donovani/genetics , Adenosine Triphosphate/metabolism , Guanosine Triphosphate/metabolism , Adenylosuccinate Synthase/metabolism , Adenylosuccinate Synthase/chemistry , Substrate Specificity , Molecular Dynamics Simulation , Amino Acid Sequence , Binding Sites , Protozoan Proteins/metabolism , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/chemistry
9.
PLoS One ; 19(4): e0289578, 2024.
Article in English | MEDLINE | ID: mdl-38630746

ABSTRACT

In Nepal, visceral leishmaniasis (VL) has been targeted for elimination as a public health problem by 2026. Recently, increasing numbers of VL cases have been reported from districts of doubtful endemicity including hills and mountains, threatening the ongoing VL elimination program in Nepal. We conducted a multi-disciplinary, descriptive cross-sectional survey to assess the local transmission of Leishmania donovani in seven such districts situated at altitudes of up to 1,764 meters in western Nepal from March to December 2019. House-to-house surveys were performed for socio-demographic data and data on past and current VL cases. Venous blood was collected from all consenting individuals aged ≥2 years and tested with the rK39 RDT. Blood samples were also tested with direct agglutination test, and a titer of ≥1:1600 was taken as a marker of infection. A Leishmania donovani species-specific PCR (SSU-rDNA) was performed for parasite species confirmation. We also captured sand flies using CDC light traps and mouth aspirators. The house-to-house surveys documented 28 past and six new VL cases of which 82% (28/34) were without travel exposure. Overall, 4.1% (54/1320) of healthy participants tested positive for L. donovani on at least one serological or molecular test. Among asymptomatic individuals, 17% (9/54) were household contacts of past VL cases, compared to 0.5% (6/1266) among non-infected individuals. Phlebotomus argentipes, the vector of L. donovani, was found in all districts except in Bajura. L. donovani was confirmed in two asymptomatic individuals and one pool of sand flies of Phlebotomus (Adlerius) sp. We found epidemiological and entomological evidence for local transmission of L. donovani in areas previously considered as non-endemic for VL. The national VL elimination program should revise the endemicity status of these districts and extend surveillance and control activities to curb further transmission of the disease.


Subject(s)
Leishmania donovani , Leishmaniasis, Visceral , Phlebotomus , Psychodidae , Animals , Humans , Leishmaniasis, Visceral/epidemiology , Nepal/epidemiology , Cross-Sectional Studies , Leishmania donovani/genetics , Phlebotomus/parasitology
10.
J Biol Chem ; 300(4): 107170, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38492777

ABSTRACT

Intercellular miRNA exchange acts as a key mechanism to control gene expression post-transcriptionally in mammalian cells. Regulated export of repressive miRNAs allows the expression of inflammatory cytokines in activated macrophages. Intracellular trafficking of miRNAs from the endoplasmic reticulum to endosomes is a rate-determining step in the miRNA export process and plays an important role in controlling cellular miRNA levels and inflammatory processes in macrophages. We have identified the SNARE protein Syntaxin 5 (STX5) to show a synchronized expression pattern with miRNA activity loss in activated mammalian macrophage cells. STX5 is both necessary and sufficient for macrophage activation and clearance of the intracellular pathogen Leishmania donovani from infected macrophages. Exploring the mechanism of how STX5 acts as an immunostimulant, we have identified the de novo RNA-binding property of this SNARE protein that binds specific miRNAs and facilitates their accumulation in endosomes in a cooperative manner with human ELAVL1 protein, Human antigen R. This activity ensures the export of miRNAs and allows the expression of miRNA-repressed cytokines. Conversely, in its dual role in miRNA export, this SNARE protein prevents lysosomal targeting of endosomes by enhancing the fusion of miRNA-loaded endosomes with the plasma membrane to ensure accelerated release of extracellular vesicles and associated miRNAs.


Subject(s)
ELAV-Like Protein 1 , Macrophages , MicroRNAs , Qa-SNARE Proteins , Animals , Humans , Mice , Endosomes/metabolism , Leishmania donovani/metabolism , Leishmania donovani/genetics , Macrophage Activation , Macrophages/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Qa-SNARE Proteins/metabolism , Qa-SNARE Proteins/genetics , RNA Transport , ELAV-Like Protein 1/metabolism
11.
Biochimie ; 222: 72-86, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38403043

ABSTRACT

Pyridoxal kinase (PdxK) is a vitamin B6 salvage pathway enzyme which produces pyridoxal phosphate. We have investigated the impact of PdxK deletion in Leishmania donovani on parasite survivability, infectivity and cellular metabolism. LdPdxK mutants were generated by gene replacement strategy. All mutants showed significant reduction in growth in comparison to wild type. For PdxK mediated biochemical perturbations, only heterozygous mutants and complementation mutants were used as the growth of null mutants were compromised. Heterozygous mutant showed reduction invitro infectivity and higher cytosolic and mitochondrial ROS levels. Glutathione levels decreased significantly in heterozygous mutant indicating its involvement in cellular oxidative metabolism. Pyridoxal kinase gene deletion resulted in reduced ATP levels in parasites and arrest at G0/G1 phase of cell cycle. All these perturbations were rescued by PdxK gene complementation. This is the first report to confirm that LdPdxK plays an indispensable role in cell survival, pathogenicity, redox metabolism and cell cycle progression of L. donovani parasites. These results provide substantial evidence supporting PdxK as a therapeutic target for the development of specific antileishmanial drug candidates.


Subject(s)
Cell Cycle Checkpoints , Gene Deletion , Leishmania donovani , Oxidation-Reduction , Pyridoxal Kinase , Leishmania donovani/genetics , Leishmania donovani/metabolism , Leishmania donovani/growth & development , Pyridoxal Kinase/metabolism , Pyridoxal Kinase/genetics , Cell Cycle Checkpoints/genetics , Animals , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Reactive Oxygen Species/metabolism , Mice
12.
Sci Rep ; 14(1): 3246, 2024 02 08.
Article in English | MEDLINE | ID: mdl-38332162

ABSTRACT

Leishmania donovani is the causal organism of leishmaniasis with critical health implications affecting about 12 million people around the globe. Due to less efficacy, adverse side effects, and resistance, the available therapeutic molecules fail to control leishmaniasis. The mitochondrial primase of Leishmania donovani (LdmtPRI1) is a vital cog in the DNA replication mechanism, as the enzyme initiates the replication of the mitochondrial genome of Leishmania donovani. Hence, we target this protein as a probable drug target against leishmaniasis. The de-novo approach enabled computational prediction of the three-dimensional structure of LdmtPRI1, and its active sites were identified. Ligands from commercially available drug compounds were selected and docked against LdmtPRI1. The compounds were chosen for pharmacokinetic study and molecular dynamics simulation based on their binding energies and protein interactions. The LdmtPRI1 gene was cloned, overexpressed, and purified, and a primase activity assay was performed. The selected compounds were verified experimentally by the parasite and primase inhibition assay. Capecitabine was observed to be effective against the promastigote form of Leishmania donovani, as well as inhibiting primase activity. This study's findings suggest capecitabine might be a potential anti-leishmanial drug candidate after adequate further studies.


Subject(s)
Antiprotozoal Agents , Leishmania donovani , Leishmaniasis, Visceral , Leishmaniasis , Humans , Leishmania donovani/genetics , DNA Primase , DNA, Mitochondrial , Capecitabine/therapeutic use , Drug Repositioning , Leishmaniasis/drug therapy , Leishmaniasis, Visceral/drug therapy , Leishmaniasis, Visceral/parasitology , Antiprotozoal Agents/chemistry
13.
Parasitol Int ; 100: 102865, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38341021

ABSTRACT

In visceral and mucocutaneous leishmaniasis, humoral immune response can reflect disease severity and parasite burden. Cutaneous leishmaniasis (CL) in Sri Lanka is caused by a usually visceralizing parasite, Leishmania donovani. We assessed the parasite burden (relative quantity-RQ) in 190 CL patients using quantitative real-time PCR (qPCR-with primers designed for this study) and smear microscopy, then correlated it with clinical parameters and IgG response. RQ of parasite DNA was determined with human-specific glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as the internal control. The qPCR sensitivity was tested with serially diluted DNA from cultured L. donovani parasites. Smears were assigned a score based on number of parasites per high power field. Data from previous studies were used for comparison and correlation; nested Internal Transcribed Spacer 1 (ITS1) PCR as reference standard (RS) and IgG antibody titers to the Leishmania rKRp42 antigen as the immune response. The qPCR amplified and quantified 86.8% of the samples while demonstrating a fair and significant agreement with ITS1-PCR and microscopy. Parasite burden by qPCR and microscopy were highly correlated (r = 0.76; p = 0.01) but showed no correlation with the IgG response (r = 0.056; p = 0.48). Corresponding mean RQs of IgG titers grouped by percentiles, showed no significant difference (p = 0.93). Mean RQ was higher in early lesions (p = 0.04), decreased with lesion size (p = 0.12) and slightly higher among papules, nodules and wet ulcers (p = 0.72). Our study established qPCR's efficacy in quantifying parasite burden in Sri Lankan CL lesions but no significant correlation was observed between the parasite burden and host IgG response to the Leishmania rKRP42 antigen.


Subject(s)
Leishmania donovani , Leishmaniasis, Cutaneous , Parasites , Animals , Humans , Real-Time Polymerase Chain Reaction , Sri Lanka/epidemiology , Leishmaniasis, Cutaneous/epidemiology , Leishmaniasis, Cutaneous/parasitology , Leishmania donovani/genetics , DNA , Immunoglobulin G
14.
J Biol Chem ; 300(3): 105720, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38311179

ABSTRACT

SET domain proteins methylate specific lysines on proteins, triggering stimulation or repression of downstream processes. Twenty-nine SET domain proteins have been identified in Leishmania donovani through sequence annotations. This study initiates the first investigation into these proteins. We find LdSET7 is predominantly cytosolic. Although not essential, set7 deletion slows down promastigote growth and hypersensitizes the parasite to hydroxyurea-induced G1/S arrest. Intriguingly, set7-nulls survive more proficiently than set7+/+ parasites within host macrophages, suggesting that LdSET7 moderates parasite response to the inhospitable intracellular environment. set7-null in vitro promastigote cultures are highly tolerant to hydrogen peroxide (H2O2)-induced stress, reflected in their growth pattern, and no detectable DNA damage at H2O2 concentrations tested. This is linked to reactive oxygen species levels remaining virtually unperturbed in set7-nulls in response to H2O2 exposure, contrasting to increased reactive oxygen species in set7+/+ cells under similar conditions. In analyzing the cell's ability to scavenge hydroperoxides, we find peroxidase activity is not upregulated in response to H2O2 exposure in set7-nulls. Rather, constitutive basal levels of peroxidase activity are significantly higher in these cells, implicating this to be a factor contributing to the parasite's high tolerance to H2O2. Higher levels of peroxidase activity in set7-nulls are coupled to upregulation of tryparedoxin peroxidase transcripts. Rescue experiments using an LdSET7 mutant suggest that LdSET7 methylation activity is critical to the modulation of the cell's response to oxidative environment. Thus, LdSET7 tunes the parasite's behavior within host cells, enabling the establishment and persistence of infection without eradicating the host cell population it needs for survival.


Subject(s)
Leishmania donovani , Oxidative Stress , Peroxidases , Protozoan Proteins , Animals , Hydrogen Peroxide/metabolism , Leishmania donovani/genetics , Leishmania donovani/metabolism , Peroxidases/genetics , Peroxidases/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Reactive Oxygen Species/metabolism , PR-SET Domains
15.
Biochim Biophys Acta Mol Cell Res ; 1871(4): 119687, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38342312

ABSTRACT

Leishmania donovani is an auxotroph for heme. Parasite acquires heme by clathrin-mediated endocytosis of hemoglobin by specific receptor. However, the regulation of receptor recycling pathway is not known in Leishmania. Here, we have cloned, expressed and characterized the Rab4 homologue from L. donovani. We have found that LdRab4 localizes in both early endosomes and Golgi in L. donovani. To understand the role of LdRab4 in L. donovani, we have generated transgenic parasites overexpressing GFP-LdRab4:WT, GFP-LdRab4:Q67L, and GFP-LdRab4:S22N. Our results have shown that overexpression of GFP-LdRab4:Q67L or GFP-LdRab4:S22N does not alter the cell surface localization of hemoglobin receptor in L. donovani. Surprisingly, we have found that overexpression of GFP-LdRab4:S22N significantly blocks the transport of Ldgp63 to the cell surface whereas the trafficking of Ldgp63 is induced to the cell surface in GFP-LdRab4:WT and GFP-LdRab4:Q67L overexpressing parasites. Consequently, we have found significant inhibition of gp63 secretion by GFP-LdRab4:S22N overexpressing parasites whereas secretion of Ldgp63 is enhanced in GFP-LdRab4:WT and GFP-LdRab4:Q67L overexpressing parasites in comparison to untransfected control parasites. Moreover, we have found that survival of transgenic parasites overexpressing GFP-LdRab4:S22N is severely compromised in macrophages in comparison to GFP-LdRab4:WT and GFP-LdRab4:Q67L expressing parasites. These results demonstrated that LdRab4 unconventionally regulates the secretory pathway in L. donovani.


Subject(s)
Leishmania donovani , Secretory Pathway , Animals , Leishmania donovani/genetics , Animals, Genetically Modified/metabolism , Carrier Proteins/metabolism , Hemoglobins/metabolism , Heme/metabolism
16.
Emerg Infect Dis ; 30(3): 611-613, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38407178

ABSTRACT

We sequenced Leishmania donovani genomes in blood samples collected in emerging foci of visceral leishmaniasis in western Nepal. We detected lineages very different from the preelimination main parasite population, including a new lineage and a rare one previously reported in eastern Nepal. Our findings underscore the need for genomic surveillance.


Subject(s)
Leishmania donovani , Leishmaniasis, Visceral , Humans , Leishmania donovani/genetics , Leishmaniasis, Visceral/epidemiology , Nepal/epidemiology , Genomics
17.
Acta Trop ; 251: 107114, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38190929

ABSTRACT

BACKGROUND: Visceral leishmaniasis is a neglected tropical disease affecting millions of people worldwide. Macrophages serve as the primary host cells for L. donovani, the immune response capability of these host cells is crucial for parasites' intracellular survival. L. donovani peptidyl-prolyl cis/trans isomerase Cyclophilin A (LdCypA) is a key protein for L. donovani intracellular proliferation, while the molecular mechanism conducive to intracellular survival of parasites remains elusive. METHODS: In this study, we generated a macrophage cell line overexpressing LdCyPA to investigate its role in controlling host immunity and promoting intracellular immune escape of L. donovani. RESULTS: It was discovered that the overexpression of the LdCyPA cell line regulated the host immune response following infection by downregulating the proportion of M1-type macrophages, promoting the secretion of the anti-inflammatory factor IL-4, and inhibiting the secretion of pro-inflammatory factors like IL-12, IFN-γ, TNF-α, and INOS. Transcriptome sequencing and mechanistic validation, meanwhile, demonstrated that cells overexpressing LdCyPA controlled the immune responses that followed infection by blocking the phosphorylation of P38 and JNK1/2 proteins in the MAPK signaling pathway and simultaneously increasing the phosphorylation of ERK proteins, which helped the L. donovani escape immune recognition. CONCLUSION: Our findings thus pave the way for the development of host-directed antiparasitic drugs by illuminating the pro-Leishmania survival mechanism of L. donovani cyclophilin A and exposing a novel immune escape strategy for L. donovani that targets host cellular immune regulation.


Subject(s)
Leishmania donovani , Leishmaniasis, Visceral , Parasites , Humans , Animals , Leishmania donovani/genetics , Cyclophilin A , Leishmaniasis, Visceral/parasitology , Macrophages , Interleukin-12
18.
Free Radic Biol Med ; 213: 371-393, 2024 03.
Article in English | MEDLINE | ID: mdl-38272324

ABSTRACT

Understanding the unique metabolic pathway of L. donovani is crucial for comprehending its biology under oxidative stress conditions. The de novo cysteine biosynthetic pathway of L. donovani is absent in humans and its product, cysteine regulates the downstream components of trypanothione-based thiol metabolism, important for maintaining cellular redox homeostasis. The role of serine o-acetyl transferase (SAT), the first enzyme of this pathway remains unexplored. In order to investigate the role of SAT protein, we cloned SAT gene into pXG-GFP+ vector for episomal expression of SAT in Amphotericin B sensitive L. donovani promastigotes. The SAT overexpression was confirmed by SAT enzymatic assay, GFP fluorescence, immunoblotting and PCR. Our study unveiled an upregulated expression of both LdSAT and LdCS of cysteine biosynthetic pathway and other downstream thiol pathway proteins in LdSAT-OE promastigotes. Additionally, there was an increase in enzymatic activities of LdSAT and LdCS proteins in LdSAT-OE, which was found similar to the Amp B resistant parasites, indicating a potential role of SAT protein in modulating drug resistance. We observed that the overexpression of SAT in Amp B sensitive parasites increases tolerance to drug pressure and oxidative stress via trypanothione-dependent antioxidant mechanism. Moreover, the in vitro J774A.1 macrophage infectivity assessment showed that SAT overexpression augments parasite infectivity. In LdSAT-OE promastigotes, antioxidant enzyme activities like APx and SOD were upregulated, intracellular reactive oxygen species were reduced with a corresponding increase in thiol level, emphasizing SAT's role in stress tolerance and enhanced infectivity. Additionally, the ROS mediated upregulation in the expression of LdSAT, LdCS, LdTryS and LdcTXNPx proteins reveals an essential cross talk between SAT and proteins of thiol metabolism in combating oxidative stress and maintaining redox homeostasis. Taken together, our results provide the first insight into the role of SAT protein in parasite infectivity and survival under drug pressure and oxidative stress.


Subject(s)
Leishmania donovani , Humans , Leishmania donovani/genetics , Leishmania donovani/metabolism , Sulfhydryl Compounds/metabolism , Serine O-Acetyltransferase/metabolism , Cysteine/metabolism , Antioxidants/metabolism , Oxidative Stress , Oxidation-Reduction , Drug Resistance/genetics
19.
PLoS Negl Trop Dis ; 18(1): e0011920, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38295092

ABSTRACT

Sand fly transmitted Leishmania species are responsible for severe, wide ranging, visceral and cutaneous leishmaniases. Genetic exchange can occur among natural Leishmania populations and hybrids can now be produced experimentally, with limitations. Feeding Phlebotomus orientalis or Phlebotomus argentipes on two strains of Leishmania donovani yielded hybrid progeny, selected using double drug resistance and fluorescence markers. Fluorescence activated cell sorting of cultured clones derived from these hybrids indicated diploid progeny. Multilocus sequence typing of the clones showed hybridisation and nuclear heterozygosity, although with inheritance of single haplotypes in a kinetoplastid target. Comparative genomics showed diversity of clonal progeny between single chromosomes, and extraordinary heterozygosity across all 36 chromosomes. Diversity between progeny was seen for the HASPB antigen, which has been noted previously as having implications for design of a therapeutic vaccine. Genomic diversity seen among Leishmania strains and hybrid progeny is of great importance in understanding the epidemiology and control of leishmaniasis. As an outcome of this study we strongly recommend that wider biological archives of different Leishmania species from endemic regions should be established and made available for comparative genomics. However, in parallel, performance of genetic crosses and genomic comparisons should give fundamental insight into the specificity, diversity and limitations of candidate diagnostics, vaccines and drugs, for targeted control of leishmaniasis.


Subject(s)
Leishmania donovani , Leishmaniasis, Cutaneous , Leishmaniasis, Visceral , Phlebotomus , Psychodidae , Animals , Phlebotomus/genetics , Leishmania donovani/genetics , Psychodidae/genetics , Crosses, Genetic , Genomics , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/prevention & control , Leishmaniasis, Visceral/epidemiology
20.
Trans R Soc Trop Med Hyg ; 118(5): 343-345, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38223920

ABSTRACT

BACKGROUND: Focused efforts of the visceral leishmaniasis elimination program have led to a drastic decline in cases, and the present challenge is disease monitoring, which this study aimed to assess. METHODS: A Leishmania kinetoplastid-targeted qPCR quantified parasite load at disease presentation, and following treatment completion (n=49); an additional 80 cases were monitored after completion of treatment. RESULTS: The parasite load at disease presentation was 13 461.00 (2560.00-37764.00)/µg gDNA, which upon completion of treatment reduced in 47 of 49 cases to 1(1-1)/µg gDNA, p<0.0001. In 80 cases that presented >2 months post-treatment, their parasite burden similarly decreased to 1(1-1)/µg gDNA except in 6 of 80 cases, which were qPCR positive. CONCLUSION: In 129 cases of visceral leishmaniasis, qPCR by quantification of parasite burden proved effective for monitoring treatment.


Subject(s)
Antiprotozoal Agents , Leishmaniasis, Visceral , Parasite Load , Real-Time Polymerase Chain Reaction , Leishmaniasis, Visceral/drug therapy , Humans , Antiprotozoal Agents/therapeutic use , Male , Female , Adult , Treatment Outcome , Child , Middle Aged , Adolescent , Young Adult , Child, Preschool , DNA, Protozoan/analysis , Leishmania donovani/genetics , Leishmania donovani/isolation & purification , Aged , Infant
SELECTION OF CITATIONS
SEARCH DETAIL
...