Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.460
Filter
1.
Mol Biol Rep ; 51(1): 716, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824237

ABSTRACT

BACKGROUND: Post kala-azar dermal leishmaniasis (PKDL) is a consequential dermal manifestation of visceral leishmaniasis (VL), serving as a parasite reservoir. The traditional diagnostic approach, which requires an invasive skin biopsy is associated with inherent risks and necessitates skilled healthcare practitioners in sterile settings. There is a critical need for a rapid, less invasive method for Leishmania detection. The main objective of this study was to evaluate and compare the diagnostic efficacy of PCR and qPCR in detecting PKDL, utilizing both skin and blood samples and to assess the utility of blood samples for molecular diagnosis. METHODS AND RESULTS: 73 individuals exhibiting clinical symptoms of PKDL and who had tested positive for rK39 rapid diagnostic test (RDT) were enrolled in this study. For the diagnosis of PKDL, both PCR and real-time quantitative PCR (qPCR), employing SYBR Green and TaqMan assays, were performed on blood and skin matched samples. qPCR results using both TaqMan and SYBR Green assay, indicated higher parasite loads in the skin compared to blood, as evident by the Ct values. Importantly, when blood samples were used for PKDL diagnosis by qPCR, an encouraging sensitivity of 69.35% (TaqMan assay) and 79.36% (SYBR Green) were obtained, compared to 8.2% with conventional PCR. CONCLUSION: The findings of the study suggest the potential utility of blood for molecular diagnosis by qPCR, offering a less invasive alternative to skin biopsies in field setting for the early detection of parasitaemia in PKDL patients and effective management and control of the disease.


Subject(s)
Leishmaniasis, Cutaneous , Leishmaniasis, Visceral , Real-Time Polymerase Chain Reaction , Humans , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/blood , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Cutaneous/diagnosis , Leishmaniasis, Cutaneous/parasitology , Leishmaniasis, Cutaneous/blood , Leishmaniasis, Cutaneous/genetics , Real-Time Polymerase Chain Reaction/methods , Male , Female , Adult , Adolescent , Skin/parasitology , Skin/pathology , Sensitivity and Specificity , Middle Aged , Parasite Load/methods , Molecular Diagnostic Techniques/methods , Young Adult , Child , DNA, Protozoan/genetics , DNA, Protozoan/blood
2.
PLoS One ; 19(6): e0304268, 2024.
Article in English | MEDLINE | ID: mdl-38838004

ABSTRACT

American tegumentary leishmaniasis (ATL) diagnosis is an open question, and the search for a solution is urgent. The available tests that detect the etiological agent of the infection are specific for ATL diagnosis. However, they present disadvantages, such as low sensitivity and the need for invasive procedures to obtain the samples. Immunological methods (leishmanin skin test and search for anti-Leishmania antibodies) are good alternatives to the etiological diagnosis of ATL. Presently, we face problems with disease confirmation due to the discontinuity in the production of leishmanin skin test antigen, particularly in resource-poor settings. Aiming to diagnose ATL, we validated rLb6H-ELISA for IgG antibodies using 1,091 samples from leishmaniasis patients and healthy controls, divided into four panels, living in 19 Brazilian endemic and non-endemic states. The rLb6H-ELISA showed a sensitivity of 98.6% and a specificity of 100.0%, with the reference panel comprising 70 ATL patient samples and 70 healthy controls. The reproducibility evaluation showed a coefficient of variation of positive samples ≤ 8.20% for repeatability, ≤ 17,97% for reproducibility, and ≤ 8.12% for homogeneity. The plates sensitized with rLb6H were stable at 4°C and -20°C for 180 days and 37°C for seven days, indicating 12 months of validity. In samples of ATL patients from five research and healthcare centers in endemic and non-endemic areas, rLb6H-ELISA showed a sensitivity of 84.0%; no significant statistical difference was observed among the five centers (chi-square test, p = 0.13). In samples of healthy controls from four areas with different endemicity, a specificity of 92.4% was obtained; lower specificity was obtained in a visceral leishmaniasis high endemicity locality (chi-square test, p<0.001). Cross-reactivity was assessed in 166 other disease samples with a positivity of 13.9%. Based on the good diagnostic performance and the reproducibility and stability of the antigen, we suggest using ELISA-rLb6H to diagnose ATL.


Subject(s)
Antigens, Protozoan , Enzyme-Linked Immunosorbent Assay , Leishmaniasis, Cutaneous , Humans , Leishmaniasis, Cutaneous/diagnosis , Leishmaniasis, Cutaneous/immunology , Leishmaniasis, Cutaneous/parasitology , Leishmaniasis, Cutaneous/epidemiology , Enzyme-Linked Immunosorbent Assay/methods , Antigens, Protozoan/immunology , Female , Male , Adult , Middle Aged , Sensitivity and Specificity , Adolescent , Reproducibility of Results , Recombinant Proteins/immunology , Young Adult , Immunoglobulin G/blood , Immunoglobulin G/immunology , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Aged , Child , Case-Control Studies , Brazil/epidemiology
3.
Sci Rep ; 14(1): 10073, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698123

ABSTRACT

Cutaneous leishmaniasis is the most prevalent form of leishmaniasis worldwide. Although various anti-leishmanial regimens have been considered, due to the lack of efficacy or occurrence of adverse reactions, design and development of novel topical delivery systems would be essential. This study aimed to prepare artemether (ART)-loaded niosomes and evaluate their anti-leishmanial effects against Leishmania major. ART-loaded niosomes were prepared through the thin-film hydration technique and characterized in terms of particle size, zeta potential, morphology, differential scanning calorimetry, drug loading, and drug release. Furthermore, anti-leishmanial effect of the preparation was assessed in vitro and in vivo. The prepared ART-loaded niosomes were spherical with an average diameter of about 100 and 300 nm with high encapsulation efficiencies of > 99%. The results of in vitro cytotoxicity revealed that ART-loaded niosomes had significantly higher anti-leishmanial activity, lower general toxicity, and higher selectivity index (SI). Half-maximal inhibitory concentration (IC50) values of ART, ART-loaded niosomes, and liposomal amphotericin B were 39.09, 15.12, and 20 µg/mL, respectively. Also, according to the in vivo study results, ART-loaded niosomes with an average size of 300 nm showed the highest anti-leishmanial effects in animal studies. ART-loaded niosomes would be promising topical drug delivery system for the management of cutaneous leishmaniasis.


Subject(s)
Artemether , Leishmania major , Leishmaniasis, Cutaneous , Liposomes , Liposomes/chemistry , Leishmaniasis, Cutaneous/drug therapy , Leishmaniasis, Cutaneous/parasitology , Artemether/chemistry , Leishmania major/drug effects , Animals , Mice , Particle Size , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/administration & dosage , Antiprotozoal Agents/chemistry , Mice, Inbred BALB C , Drug Liberation , Humans
4.
Chem Biol Drug Des ; 103(5): e14535, 2024 May.
Article in English | MEDLINE | ID: mdl-38772877

ABSTRACT

Despite efforts, available alternatives for the treatment of leishmaniasis are still scarce. In this work we tested a class of 15 quinolinylhydrazone analogues and presented data that support the use of the most active compound in cutaneous leishmaniasis caused by Leishmania amazonensis. In general, the compounds showed activity at low concentrations for both parasitic forms (5.33-37.04 µM to promastigotes, and 14.31-61.98 µM to amastigotes). In addition, the best compound (MHZ15) is highly selective for the parasite. Biochemical studies indicate that the treatment of promastigotes with MHZ15 leads the loss of mitochondrial potential and increase in ROS levels as the primary effects, which triggers accumulation of lipid droplets, loss of plasma membrane integrity and apoptosis hallmarks, including DNA fragmentation and phosphatidylserine exposure. These effects were similar in the intracellular form of the parasite. However, in this parasitic form there is no change in plasma membrane integrity in the observed treatment time, which can be attributed to metabolic differences and the resilience of the amastigote. Also, ultrastructural changes such as vacuolization suggesting autophagy were observed. The in vivo effectiveness of MHZ15 in the experimental model of cutaneous leishmaniasis was carried out in mice of the BALB/c strain infected with L. amazonensis. The treatment by intralesional route showed that MHZ15 acted with great efficiency with significantly reduction in the parasite load in the injured paws and draining lymph nodes, without clinical signs of distress or compromise of animal welfare. In vivo toxicity was also evaluated and null alterations in the levels of hepatic enzymes aspartate aminotransferase, and alanine aminotransferase was observed. The data presented herein demonstrates that MHZ15 exhibits a range of favorable characteristics conducive to the development of an antileishmanial agent.


Subject(s)
Apoptosis , Hydrazones , Leishmaniasis, Cutaneous , Mice, Inbred BALB C , Mitochondria , Animals , Apoptosis/drug effects , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Hydrazones/pharmacology , Hydrazones/chemistry , Leishmaniasis, Cutaneous/drug therapy , Leishmaniasis, Cutaneous/parasitology , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/therapeutic use , Leishmania/drug effects , Reactive Oxygen Species/metabolism , Female , Leishmania mexicana/drug effects , Membrane Potential, Mitochondrial/drug effects
5.
PLoS Negl Trop Dis ; 18(5): e0012165, 2024 May.
Article in English | MEDLINE | ID: mdl-38771858

ABSTRACT

The infectious inoculum of a sand fly, apart from its metacyclic promastigotes, is composed of factors derived from both the parasite and the vector. Vector-derived factors, including salivary proteins and the gut microbiota, are essential for the establishment and enhancement of infection. However, the type and the number of bacteria egested during salivation is unclear. In the present study, sand flies of Phlebotomus papatasi were gathered from three locations in hyperendemic focus of zoonotic cutaneous leishmaniasis (ZCL) in Isfahan Province, Iran. By using the forced salivation assay and targeting the 16S rRNA barcode gene, egested bacteria were characterized in 99 (44%) out of 224 sand flies. Culture-dependent and culture-independent methods identified the members of Enterobacter cloacae and Spiroplasma species as dominant taxa, respectively. Ten top genera of Spiroplasma, Ralstonia, Acinetobacter, Reyranella, Undibacterium, Bryobacter, Corynebacterium, Cutibacterium, Psychrobacter, and Wolbachia constituted >80% of the saliva microbiome. Phylogenetic analysis displayed the presence of only one bacterial species for the Spiroplasma, Ralstonia, Reyranella, Bryobacter and Wolbachia, two distinct species for Cutibacterium, three for Undibacterium and Psychrobacter, 16 for Acinetobacter, and 27 for Corynebacterium, in the saliva. The abundance of microbes in P. papatasi saliva was determined by incorporating the data on the read counts and the copy number of 16S rRNA gene, about 9,000 bacterial cells, per sand fly. Both microbiological and metagenomic data indicate that bacteria are constant companions of Leishmania, from the intestine of the vector to the vertebrate host. This is the first forced salivation experiment in a sand fly, addressing key questions on infectious bite and competent vectors.


Subject(s)
Bacteria , Phlebotomus , Phylogeny , RNA, Ribosomal, 16S , Saliva , Animals , Phlebotomus/microbiology , RNA, Ribosomal, 16S/genetics , Saliva/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Iran , Insect Vectors/microbiology , Insect Vectors/physiology , Female , Microbiota , Leishmaniasis, Cutaneous/transmission , Leishmaniasis, Cutaneous/microbiology , Leishmaniasis, Cutaneous/parasitology , Male
6.
PLoS Negl Trop Dis ; 18(5): e0012175, 2024 May.
Article in English | MEDLINE | ID: mdl-38768213

ABSTRACT

In Brazil, Leishmania amazonensis is the etiological agent of cutaneous and diffuse cutaneous leishmaniasis. The state of Maranhão in the Northeast of Brazil is prevalent for these clinical forms of the disease and also has high rates of HIV infection. Here, we characterized the drug susceptibility of a L. amazonensis clinical isolate from a 46-year-old man with diffuse cutaneous leishmaniasis coinfected with HIV from this endemic area. This patient underwent several therapeutic regimens with meglumine antimoniate, liposomal amphotericin B, and pentamidine, without success. In vitro susceptibility assays against promastigotes and intracellular amastigotes demonstrated that this isolate had low susceptibility to amphotericin B, when compared with the reference strain of this species that is considered susceptible to antileishmanial drugs. Additionally, we investigated whether the low in vitro susceptibility would affect the in vivo response to amphotericin B treatment. The drug was effective in reducing the lesion size and parasite burden in mice infected with the reference strain, whereas those infected with the clinical isolate and a resistant line (generated experimentally by stepwise selection) were refractory to amphotericin B treatment. To evaluate whether the isolate was intrinsically resistant to amphotericin B in animals, infected mice were treated with other drugs that had not been used in the treatment of the patient (miltefosine, paromomycin, and a combination of both). Our findings demonstrated that all drug schemes were able to reduce lesion size and parasite burden in animals infected with the clinical isolate, confirming the amphotericin B-resistance phenotype. These findings indicate that the treatment failure observed in the patient may be associated with amphotericin B resistance, and demonstrate the potential emergence of amphotericin B-resistant L. amazonensis isolates in an area of Brazil endemic for cutaneous leishmaniasis.


Subject(s)
Amphotericin B , Antiprotozoal Agents , Drug Resistance , Amphotericin B/pharmacology , Amphotericin B/therapeutic use , Animals , Brazil , Middle Aged , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Humans , Male , Mice , Leishmania/drug effects , Leishmania/isolation & purification , Leishmania/classification , Leishmania mexicana/drug effects , Leishmania mexicana/isolation & purification , Leishmaniasis, Cutaneous/drug therapy , Leishmaniasis, Cutaneous/parasitology , HIV Infections/complications , HIV Infections/drug therapy , Parasitic Sensitivity Tests , Mice, Inbred BALB C , Leishmaniasis, Diffuse Cutaneous/parasitology , Leishmaniasis, Diffuse Cutaneous/drug therapy
7.
Int Immunopharmacol ; 134: 112100, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38728877

ABSTRACT

The parasite Leishmania resides as amastigotes within the macrophage parasitophorous vacuoles inflicting the disease Leishmaniasis. Leishmania selectively modulates mitogen-activated protein kinase (MAPK) phosphorylation subverting CD40-triggered anti-leishmanial functions of macrophages. The mechanism of any pathogen-derived molecule induced host MAPK modulation remains poorly understood. Herein, we show that of the fifteen MAPKs, LmjMAPK4 expression is higher in virulent L. major. LmjMAPK4- detected in parasitophorous vacuoles and cytoplasm- binds MEK-1/2, but not MKK-3/6. Lentivirally-overexpressed LmjMAPK4 augments CD40-activated MEK-1/2-ERK-1/2-MKP-1, but inhibits MKK3/6-p38MAPK-MKP-3, phosphorylation. A rationally-identified LmjMAPK4 inhibitor reinstates CD40-activated host-protective anti-leishmanial functions in L. major-infected susceptible BALB/c mice. These results identify LmjMAPK4 as a MAPK modulator at the host-pathogen interface and establish a pathogen-intercepted host receptor signaling as a scientific rationale for identifying drug targets.


Subject(s)
CD40 Antigens , Leishmania major , Leishmaniasis, Cutaneous , Macrophages , Mice, Inbred BALB C , Signal Transduction , Animals , Leishmania major/immunology , Leishmania major/physiology , CD40 Antigens/metabolism , Mice , Leishmaniasis, Cutaneous/immunology , Leishmaniasis, Cutaneous/parasitology , Macrophages/immunology , Macrophages/parasitology , Humans , Female , Phosphorylation , Host-Parasite Interactions/immunology , MAP Kinase Signaling System/immunology
8.
PLoS Pathog ; 20(5): e1012211, 2024 May.
Article in English | MEDLINE | ID: mdl-38709823

ABSTRACT

Cytolytic CD8+ T cells mediate immunopathology in cutaneous leishmaniasis without controlling parasites. Here, we identify factors involved in CD8+ T cell migration to the lesion that could be targeted to ameliorate disease severity. CCR5 was the most highly expressed chemokine receptor in patient lesions, and the high expression of CCL3 and CCL4, CCR5 ligands, was associated with delayed healing of lesions. To test the requirement for CCR5, Leishmania-infected Rag1-/- mice were reconstituted with CCR5-/- CD8+ T cells. We found that these mice developed smaller lesions accompanied by a reduction in CD8+ T cell numbers compared to controls. We confirmed these findings by showing that the inhibition of CCR5 with maraviroc, a selective inhibitor of CCR5, reduced lesion development without affecting the parasite burden. Together, these results reveal that CD8+ T cells migrate to leishmanial lesions in a CCR5-dependent manner and that blocking CCR5 prevents CD8+ T cell-mediated pathology.


Subject(s)
CD8-Positive T-Lymphocytes , Cell Movement , Leishmaniasis, Cutaneous , Receptors, CCR5 , Animals , Receptors, CCR5/metabolism , Receptors, CCR5/immunology , CD8-Positive T-Lymphocytes/immunology , Mice , Humans , Leishmaniasis, Cutaneous/immunology , Leishmaniasis, Cutaneous/parasitology , Leishmaniasis, Cutaneous/pathology , Mice, Knockout , Mice, Inbred C57BL , CCR5 Receptor Antagonists/pharmacology , Maraviroc/pharmacology , Female
10.
Microbiol Spectr ; 12(6): e0402623, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38712926

ABSTRACT

Post-kala-azar dermal leishmaniasis (PKDL) patients are a key source of Leishmania donovani parasites, hindering the goal of eliminating visceral leishmaniasis (VL). Monitoring treatment response and parasite susceptibility is essential due to increasing drug resistance. We assessed the drug susceptibility of PKDL isolates (n = 18) from pre-miltefosine (MIL) era (1997-2004) with isolates (n = 16) from the post-miltefosine era (2010-2019) and post-miltefosine treatment relapse isolates (n = 5) towards miltefosine and amphotericin B (AmB) at promastigote stage and towards sodium antimony gluconate (SAG) at amastigote stage. PKDL isolates were examined for mutation in gene-encoding AQP1 transporter, C26882T mutation on chromosome 24, and miltefosine-transporter (MT). PKDL isolates from the post-miltefosine era were significantly more susceptible to SAG than SAG-resistant isolates from the pre-miltefosine era (P = 0.0002). There was no significant difference in the susceptibility of parasites to miltefosine between pre- and post-miltefosine era isolates. The susceptibility of PKDL isolates towards AmB remained unchanged between the pre- and post-miltefosine era. However, the post-miltefosine era isolates had a higher IC50 value towards AmB compared with PKDL relapse isolates. We did not find any association between AQP1 gene sequence variation and susceptibility to SAG, or between miltefosine susceptibility and single nucleotide polymorphisms (SNPs in the MT gene. This study demonstrates that recent isolates of Leishmania have resumed susceptibility to antimonials in vitro. The study also offers significant insights into the intrinsic drug susceptibility of Leishmania parasites over the past two decades, covering the period before the introduction of miltefosine and after its extensive use. IMPORTANCE: Post-kala-azar dermal leishmaniasis (PKDL) patients, a key source of Leishmania donovani parasites, hinder eliminating visceral-leishmaniasis. Assessment of the susceptibility of PKDL isolates to antimony, miltefosine (MIL), and amphotericin-B indicated that recent isolates remain susceptible to antimony, enabling its use with other drugs for treating PKDL.


Subject(s)
Amphotericin B , Antimony , Antiprotozoal Agents , Drug Resistance , Leishmania donovani , Leishmaniasis, Cutaneous , Leishmaniasis, Visceral , Phosphorylcholine , Humans , Leishmania donovani/drug effects , Leishmania donovani/genetics , Leishmania donovani/isolation & purification , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/pharmacology , Phosphorylcholine/therapeutic use , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Visceral/drug therapy , Antiprotozoal Agents/pharmacology , Antimony/pharmacology , Antimony/therapeutic use , Leishmaniasis, Cutaneous/parasitology , Leishmaniasis, Cutaneous/drug therapy , Drug Resistance/genetics , Amphotericin B/pharmacology , Parasitic Sensitivity Tests , Antimony Sodium Gluconate/pharmacology , Antimony Sodium Gluconate/therapeutic use , Mutation
11.
PLoS Negl Trop Dis ; 18(5): e0012156, 2024 May.
Article in English | MEDLINE | ID: mdl-38709850

ABSTRACT

The multifactorial basis of therapeutic response can obscure the relation between antimicrobial drug susceptibility and clinical outcome. To discern the relationship between parasite susceptibility to meglumine antimoniate (SbV) and therapeutic outcome of cutaneous leishmaniasis, risk factors for treatment failure were considered in evaluating this relationship in ninety-one cutaneous leishmaniasis patients and corresponding clinical strains of Leishmania (Viannia) panamensis. Parasite susceptibility to 32 µg SbV/mL (plasma Cmax) was evaluated in primary human macrophages, PBMCs, and U937 macrophages. Early parasitological response to treatment was determined in lesions of a subgroup of patients, and pathogenicity of Sb-resistant and sensitive clinical strains was compared in BALB/c mice. Parasite survival in cell models and patient lesions was determined by qRT-PCR of Leishmania 7SLRNA transcript. Parasite loads in BALB/c mice were quantified by limiting dilution analysis. The disparate Sb-susceptibility of parasite subpopulations distinguished by isoenzyme profiles (zymodemes) was manifest in all cell models. Notably, Sb-resistance defined by parasite survival, was most effectively discerned in U937 macrophages compared with primary human host cells, significantly higher among strains from patients who failed treatment than cured and, significantly associated with treatment failure. Each unit increase in transformed survival rate corresponded to a 10.6-fold rise in the odds of treatment failure. Furthermore, treatment failure was significantly associated with naturally Sb-resistant zymodeme 2.3 strains, which also produced larger lesions and parasite burdens in BALB/c mice than Sb-sensitive zymodeme 2.2 strains. The confounding effect of host risk factors for treatment failure in discerning this association was evidenced in comparing strains from patients with and without the defined risk factors for treatment failure. These results establish the association of natural resistance to meglumine antimoniate with treatment failure, the importance of host risk factors in evaluating drug susceptibility and treatment outcome, and the clinical and epidemiological relevance of natural Sb-resistance in L. (V.) panamensis subpopulations.


Subject(s)
Antiprotozoal Agents , Drug Resistance , Leishmaniasis, Cutaneous , Macrophages , Meglumine Antimoniate , Meglumine , Mice, Inbred BALB C , Organometallic Compounds , Treatment Failure , Animals , Leishmaniasis, Cutaneous/drug therapy , Leishmaniasis, Cutaneous/parasitology , Meglumine Antimoniate/therapeutic use , Meglumine Antimoniate/pharmacology , Humans , Antiprotozoal Agents/therapeutic use , Antiprotozoal Agents/pharmacology , Female , Meglumine/therapeutic use , Meglumine/pharmacology , Organometallic Compounds/therapeutic use , Organometallic Compounds/pharmacology , Mice , Macrophages/parasitology , Macrophages/drug effects , Macrophages/immunology , Male , Leishmania guyanensis/drug effects , Adult , Middle Aged , Young Adult , Parasite Load , Adolescent
12.
PLoS Negl Trop Dis ; 18(4): e0012113, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38662642

ABSTRACT

BACKGROUND: Accuracy of molecular tools for the identification of parasites that cause human cutaneous leishmaniasis (CL) could largely depend on the sampling method. Non-invasive or less-invasive sampling methods such as filter paper imprints and cotton swabs are preferred over punch biopsies and lancet scrapings for detection methods of Leishmania based on polymerase chain reaction (PCR) because they are painless, simple, and inexpensive, and of benefit to military and civilian patients to ensure timely treatment. However, different types of samples can generate false negatives and there is a clear need to demonstrate which sample is more proper for molecular assays. METHODOLOGY: Here, we compared the sensitivity of molecular identification of different Leishmania (Viannia) species from Peru, using three types of sampling: punch biopsy, filter paper imprint and lancet scraping. Different composite reference standards and latent class models allowed to evaluate the accuracy of the molecular tools. Additionally, a quantitative PCR assessed variations in the results and parasite load in each type of sample. PRINCIPAL FINDINGS: Different composite reference standards and latent class models determined higher sensitivity when lancet scrapings were used for sampling in the identification and determination of Leishmania (Viannia) species through PCR-based assays. This was consistent for genus identification through kinetoplastid DNA-PCR and for the determination of species using FRET probes-based Nested Real-Time PCR. Lack of species identification in some samples correlated with the low intensity of the PCR electrophoretic band, which reflects the low parasite load in samples. CONCLUSIONS: The type of clinical sample can directly influence the detection and identification of Leishmania (Viannia) species. Here, we demonstrated that lancet scraping samples consistently allowed the identification of more leishmaniasis cases compared to filter paper imprints or biopsies. This procedure is inexpensive, painless, and easy to implement at the point of care and avoids the need for anesthesia, surgery, and hospitalization and therefore could be used in resource limited settings for both military and civilian populations.


Subject(s)
Leishmania , Leishmaniasis, Cutaneous , Sensitivity and Specificity , Humans , Leishmania/genetics , Leishmania/isolation & purification , Leishmania/classification , Leishmaniasis, Cutaneous/parasitology , Leishmaniasis, Cutaneous/diagnosis , Peru , Specimen Handling/methods , Polymerase Chain Reaction/methods , Molecular Diagnostic Techniques/methods , DNA, Protozoan/genetics , Biopsy
13.
PLoS Negl Trop Dis ; 18(4): e0012085, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38578804

ABSTRACT

BACKGROUND: In the Mediterranean basin, three Leishmania species have been identified: L. infantum, L. major and L. tropica, causing zoonotic visceral leishmaniasis (VL), zoonotic cutaneous leishmaniasis (CL) and anthroponotic CL, respectively. Despite animal models and genomic/transcriptomic studies provided important insights, the pathogenic determinants modulating the development of VL and CL are still poorly understood. This work aimed to identify host transcriptional signatures shared by cells infected with L. infantum, L. major, and L. tropica, as well as specific transcriptional signatures elicited by parasites causing VL (i.e., L. infantum) and parasites involved in CL (i.e., L. major, L. tropica). METHODOLOGY/PRINCIPAL FINDINGS: U937 cells differentiated into macrophage-like cells were infected with L. infantum, L. major and L. tropica for 24h and 48h, and total RNA was extracted. RNA sequencing, performed on an Illumina NovaSeq 6000 platform, was used to evaluate the transcriptional signatures of infected cells with respect to non-infected cells at both time points. The EdgeR package was used to identify differentially expressed genes (fold change > 2 and FDR-adjusted p-values < 0.05). Then, functional enrichment analysis was employed to identify the enriched ontology terms in which these genes are involved. At 24h post-infection, a common signature of 463 dysregulated genes shared among all infection conditions was recognized, while at 48h post-infection the common signature was reduced to 120 genes. Aside from a common transcriptional response, we evidenced different upregulated functional pathways characterizing L. infantum-infected cells, such as VEGFA-VEGFR2 and NFE2L2-related pathways, indicating vascular remodeling and reduction of oxidative stress as potentially important factors for visceralization. CONCLUSIONS: The identification of pathways elicited by parasites causing VL or CL could lead to new therapeutic strategies for leishmaniasis, combining the canonical anti-leishmania compounds with host-directed therapy.


Subject(s)
Leishmania infantum , Leishmania major , Leishmania tropica , Leishmaniasis, Cutaneous , Leishmaniasis, Visceral , Animals , Humans , Leishmania tropica/genetics , Leishmania infantum/genetics , Leishmaniasis, Cutaneous/parasitology , Leishmaniasis, Visceral/parasitology , Macrophages
14.
Parasitol Res ; 123(4): 185, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38632113

ABSTRACT

Leishmania braziliensis (L. braziliensis) causes cutaneous leishmaniasis (CL) in the New World. The costs and the side effects of current treatments render imperative the development of new therapies that are affordable and easy to administer. Topical treatment would be the ideal option for the treatment of CL. This underscores the urgent need for affordable and effective treatments, with natural compounds being explored as potential solutions. The alkaloid piperine (PIP), the polyphenol curcumin (CUR), and the flavonoid quercetin (QUE), known for their diverse biological properties, are promising candidates to address these parasitic diseases. Initially, the in vitro cytotoxicity activity of the compounds was evaluated using U-937 cells, followed by the assessment of the leishmanicidal activity of these compounds against amastigotes of L. braziliensis. Subsequently, a golden hamster model with stationary-phase L. braziliensis promastigote infections was employed. Once the ulcer appeared, hamsters were treated with QUE, PIP, or CUR formulations and compared to the control group treated with meglumine antimoniate administered intralesionally. We observed that the three organic compounds showed high in vitro leishmanicidal activity with effective concentrations of less than 50 mM, with PIP having the highest activity at a concentration of 8 mM. None of the compounds showed cytotoxic activity for U937 macrophages with values between 500 and 700 mM. In vivo, topical treatment with QUE daily for 15 days produced cured in 100% of hamsters while the effectiveness of CUR and PIP was 83% and 67%, respectively. No failures were observed with QUE. Collectively, our data suggest that topical formulations mainly for QUE but also for CUR and PIP could be a promising topical treatment for CL. Not only the ease of obtaining or synthesizing the organic compounds evaluated in this work but also their commercial availability eliminates one of the most important barriers or bottlenecks in drug development, thus facilitating the roadmap for the development of a topical drug for the management of CL caused by L. braziliensis.


Subject(s)
Alkaloids , Antiprotozoal Agents , Benzodioxoles , Curcumin , Leishmania braziliensis , Leishmaniasis, Cutaneous , Piperidines , Polyunsaturated Alkamides , Cricetinae , Animals , Quercetin/pharmacology , Quercetin/therapeutic use , Curcumin/pharmacology , Leishmaniasis, Cutaneous/parasitology , Alkaloids/pharmacology , Alkaloids/therapeutic use , Mesocricetus , Antiprotozoal Agents/pharmacology
15.
Microb Genom ; 10(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38578294

ABSTRACT

In Morocco, cutaneous leishmaniasis (CL) caused by Leishmania (L.) tropica is an important health problem. Despite the high incidence of CL in the country, the genomic heterogeneity of these parasites is still incompletely understood. In this study, we sequenced the genomes of 14 Moroccan isolates of L. tropica collected from confirmed cases of CL to investigate their genomic heterogeneity. Comparative genomics analyses were conducted by applying the recently established Genome Instability Pipeline (GIP), which allowed us to conduct phylogenomic and principal components analyses (PCA), and to assess genomic variations at the levels of the karyotype, gene copy number, single nucleotide polymorphisms (SNPs) and small insertions/deletions (INDELs) variants. Read-depth analyses revealed a mostly disomic karyotype, with the exception of the stable tetrasomy of chromosome 31. In contrast, we identified important gene copy number variations across all isolates, which affect known virulence genes and thus were probably selected in the field. SNP-based cluster analysis of the 14 isolates revealed a core group of 12 strains that formed a tight cluster and shared 45.1 % (87 751) of SNPs, as well as two strains (M3015, Ltr_16) that clustered separately from each other and the core group, suggesting the circulation of genetically highly diverse strains in Morocco. Phylogenetic analysis, which compared our 14 L. tropica isolates against 40 published genomes of L. tropica from a diverse array of locations, confirmed the genetic difference of our Moroccan isolates from all other isolates examined. In conclusion, our results indicate potential regional variations in SNP profiles that may differentiate Moroccan L. tropica from other L. tropica strains circulating in endemic countries in the Middle East. Our report paves the way for future research with a larger number of strains that will allow correlation of diverse phenotypes (resistance to treatments, virulence) and origins (geography, host species, year of isolation) to defined genomic signals such as gene copy number variations or SNP profiles that may represent interesting biomarker candidates.


Subject(s)
Leishmania tropica , Leishmaniasis, Cutaneous , Humans , Leishmania tropica/genetics , Phylogeny , DNA Copy Number Variations , Morocco/epidemiology , Leishmaniasis, Cutaneous/epidemiology , Leishmaniasis, Cutaneous/parasitology , Genomics
16.
Gene ; 921: 148484, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38642857

ABSTRACT

This study investigated nine provinces in northern Morocco and collected 275 skin scraping, 22 bone marrow aspirates, and 89 fine needle aspirations from suspected cutaneous leishmaniasis (CL) and visceral leishmaniasis (VL) patients and potentially infected dogs. Molecular analysis using ITS1 RFLP PCR and RT-PCR revealed a higher prevalence of L. infantum (66.18 %; χ2 = 28.804; df = 1; P-value = 8.01e-08) than L. tropica in skin scraping, with L. infantum being the sole causative agent for both VL and canine leishmaniasis. L. infantum was predominantly found in most provinces, while L. tropica was relatively more dominant in Taza Province. Discriminant Analysis of Principal Components (DAPC) revealed distinct clustering between L. tropica and the other three species. However, no small subset of SNPs could clearly differentiate between Infantum_CL, Infantum_VL, and CanL, as they likely share a significant genetic background. The high rate of L. infantum could be attributed to the abundance of sand fly species transmitting VL. In Taza Province, Phlebotomus sergenti, responsible for anthroponotic CL, is the most abundant species. DNA sequencing demonstrated sequence heterogeneity in L. infantum (variants 1-9) and L. tropica (variants 1-7). Phylogenetic analysis showed a distinct separation between L. tropica and L. infantum strains, with an overlap among L. infantum strains isolated from cutaneous, visceral, and canine cases, and dogs serving as the central population for L. infantum.


Subject(s)
Dog Diseases , Genetic Variation , Leishmania infantum , Leishmania tropica , Leishmaniasis, Visceral , Dogs , Animals , Leishmania infantum/genetics , Leishmania infantum/isolation & purification , Leishmania tropica/genetics , Leishmania tropica/isolation & purification , Morocco , Humans , Dog Diseases/parasitology , Dog Diseases/genetics , Leishmaniasis, Visceral/veterinary , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Visceral/epidemiology , Leishmaniasis, Cutaneous/parasitology , Leishmaniasis, Cutaneous/veterinary , Leishmaniasis, Cutaneous/epidemiology , Phylogeny , Male , Polymorphism, Single Nucleotide
17.
Acta Derm Venereol ; 104: adv35089, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38682801

ABSTRACT

Israel is endemic for Old-World cutaneous leishmaniasis. The most common species is Leishmania major. However, the available treatment options are limited. This study's objective was to compare the authors' experience with different antimony intralesional treatments of Leishmania major cutaneous leishmaniasis. A retrospective evaluation was undertaken for cases of Leishmania major cutaneous leishmaniasis treated by pentavalent antimony in a university-affiliated medical centre in Israel. The previous treatment of intralesional sodium stibogluconate (Pentostam®) was compared with the current treatment of meglumine antimoniate (Glucantime®). One hundred cases of cutaneous leishmaniasis were treated during the study period, of whom 33 were treated with intralesional sodium stibogluconate and 67 were treated with intralesional meglumine antimoniate. The patients were 78 males and 22 females, mean age 24 (range 10-67) and there was a total of 354 skin lesions. Within 3 months from treatment, 91% (30/33) of the intralesional sodium stibogluconate group and 88% (59/67) of the intralesional meglumine antimoniate group had complete healing of the cutaneous lesions after an average of 3 treatment cycles (non-statistically significant). In conclusion, the 2 different medications have the same efficacy and safety for treating cutaneous leishmaniasis. Pentavalent antimoniate intralesional infiltration treatment is safe, effective, and well tolerated with minimal side effects for Old-World cutaneous leishmaniasis.


Subject(s)
Antimony Sodium Gluconate , Antiprotozoal Agents , Injections, Intralesional , Leishmania major , Leishmaniasis, Cutaneous , Meglumine Antimoniate , Humans , Meglumine Antimoniate/administration & dosage , Leishmaniasis, Cutaneous/drug therapy , Leishmaniasis, Cutaneous/parasitology , Leishmaniasis, Cutaneous/diagnosis , Female , Male , Antimony Sodium Gluconate/administration & dosage , Retrospective Studies , Adult , Antiprotozoal Agents/administration & dosage , Antiprotozoal Agents/adverse effects , Middle Aged , Leishmania major/drug effects , Aged , Young Adult , Adolescent , Treatment Outcome , Child , Time Factors , Israel , Meglumine/administration & dosage , Organometallic Compounds/administration & dosage
18.
Eur J Pharm Biopharm ; 199: 114306, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679213

ABSTRACT

In the context of neglected diseases, tegumentary leishmaniasis (TL) presents an emerging and re-emerging character in the national territory and in the world. The treatment of TL has limitations, such as intravenous administration route, high toxicity, and high treatment costs. Thus, several researchers work on new therapeutic strategies to improve the effectiveness of the treatment of leishmaniasis. In this light, the present study used a topical formulation, containing 8-hydroquinoline (8-HQN), for the treatment of Balb/c mice infected with L. amazonensis. After the treatment, the mean diameter of the lesion was measured, as well as the parasite load in organs and immunological parameters associated with the treatment. The results showed that the animals treated with 8-HQN 5%, when compared to controls, showed a reduction in the mean diameter of the lesion and in the parasite load. The animals treated with the ointment showed a type 1 cellular immune response profile associated with the production of cytokines such as INF-γ and TNF-α. In addition, the treatment did not demonstrate toxicity to mice. Therefore, the topical formulation containing 8-HQN 5% is a promising candidate in the topical treatment and could be considered, in the future, as an alternative for the treatment of TL.


Subject(s)
Leishmaniasis, Cutaneous , Mice, Inbred BALB C , Oxyquinoline , Parasite Load , Animals , Leishmaniasis, Cutaneous/drug therapy , Leishmaniasis, Cutaneous/parasitology , Mice , Oxyquinoline/administration & dosage , Oxyquinoline/chemistry , Female , Administration, Topical , Antiprotozoal Agents/administration & dosage , Antiprotozoal Agents/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Cytokines/metabolism , Ointments , Interferon-gamma , Disease Models, Animal
19.
Med Microbiol Immunol ; 213(1): 4, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38532203

ABSTRACT

Besides being scarce, the drugs available for treating cutaneous leishmaniasis have many adverse effects. Ozone is an option to enhance the standard treatment due to the wound-healing activity reported in the literature. In this study, we evaluated the efficiency of ozonated sunflower oil as an adjuvant in treating cutaneous lesions caused by Leishmania amazonensis. BALB/c mice were infected with L. amazonensis, and after the lesions appeared, they were treated in four different schedules using the drug treatment with meglumine antimoniate (Glucantime®), with or without ozonated oil. After thirty days of treatment, the lesions' thickness and their parasitic burden, blood leukocytes, production of NO and cytokines from peritoneal macrophages and lymph node cells were analyzed. The group treated with ozonated oil plus meglumine antimoniate showed the best performance, improving the lesion significantly. The parasitic burden showed that ozonated oil enhanced the leishmanicidal activity of the treatment, eliminating the parasites in the lesion. Besides, a decrease in the TNF levels from peritoneal macrophages and blood leukocytes demonstrated an immunomodulatory action of ozone in the ozonated oil-treated animals compared to the untreated group. Thus, ozonated sunflower oil therapy has been shown as an adjuvant in treating Leishmania lesions since this treatment enhanced the leishmanicidal and wound healing effects of meglumine antimoniate.


Subject(s)
Antiprotozoal Agents , Leishmaniasis, Cutaneous , Ozone , Animals , Mice , Meglumine Antimoniate/pharmacology , Meglumine Antimoniate/therapeutic use , Sunflower Oil/therapeutic use , Antiprotozoal Agents/pharmacology , Meglumine/pharmacology , Meglumine/therapeutic use , Leishmaniasis, Cutaneous/drug therapy , Leishmaniasis, Cutaneous/parasitology , Wound Healing , Ozone/therapeutic use , Mice, Inbred BALB C
20.
Am J Trop Med Hyg ; 110(4): 656-662, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38442428

ABSTRACT

Post-kala-azar dermal leishmaniasis (PKDL), the dermal sequel to visceral leishmaniasis (VL), is characterized by hypopigmented macules (macular) and/or papules and nodules (polymorphic). Post-kala-azar dermal leishmaniasis plays a significant role in disease transmission, emphasizing the need for monitoring chemotherapeutic effectiveness. Accordingly, this study aimed to quantify the parasite burden in PKDL patients after treatment with miltefosine by a quantitative polymerase chain reaction (qPCR). A Leishmania kinetoplastid gene-targeted qPCR was undertaken using DNA from skin biopsy specimens of patients with PKDL at three time points, i.e., at disease presentation (week 0, n = 157, group 1), upon completion of treatment (week 12, n = 39, group 2), and at any time point 6 months after completion of treatment (week ≥36, n = 54, group 3). A cycle threshold (Ct) <30 was considered the cutoff for positivity, and load was quantified as the number of parasites/µg genomic DNA (gDNA); cure was considered when samples had a Ct >30. The parasite load at disease presentation (group 1) was 10,769 (1,339-80,441)/µg gDNA (median [interquartile range]). In groups 2 and 3, qPCR results were negative in 35/39 cases (89.7%) and 48/54 cases (88.8%), respectively. In the 10/93 (10.8%) qPCR-positive cases, the parasite burdens in groups 2 and 3 were 2,420 (1,205-5,661)/µg gDNA and 22,195 (5,524-100,106)/µg gDNA, respectively. Serial monitoring was undertaken in 45 randomly selected cases that had completed treatment; all cases in groups 2 or 3 had a Ct >30, indicating cure. Overall, qPCR confirmed an 89.2% cure (as 83/93 cases showed parasite clearance), and the persistent qPCR positivity was attributed to nonadherence to treatment or unresponsiveness to miltefosine and remains to be investigated.


Subject(s)
Leishmania donovani , Leishmania , Leishmaniasis, Cutaneous , Leishmaniasis, Visceral , Phosphorylcholine/analogs & derivatives , Humans , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Cutaneous/parasitology , DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...