Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.652
Filter
1.
Arq Gastroenterol ; 61: e24016, 2024.
Article in English | MEDLINE | ID: mdl-38775586

ABSTRACT

BACKGROUND: Colorectal carcinoma (CRC) is one of the common carcinomas with a rising incidence of metastasis due to its advanced stage of presentation. The existing biomarkers such as CEA (Carcinoembryonic antigen) etc., for prognosis, have low sensitivity and specificity. Hence a need for a newer definitive biomarker. Obesity is the leading cause of CRC. Leptin and adiponectin secreted by adipose tissue have been studied as potential biomarkers in the field of CRC. The present study helps to understand the association of leptin and adiponectin receptors with clinicopathological parameters. OBJECTIVE: To correlate the various clinicopathological parameters with the tissue expression of leptin and adiponectin receptors in CRC. METHODS: It is a cross-sectional prospective study conducted at a tertiary care hospital. Formalin fixed paraffin blocks of all radical resection CRC cases were collected and immunohistochemistry (IHC)was carried out on tumor tissue for leptin and adiponectin receptor. Tumor characteristics and clinical parameters were collected from the hospital medical records. Pearson's correlation coefficient test was used. RESULTS: Immunohistochemistry was performed on 60 cases of CRC. Significant positive correlation of leptin was observed with size, lymph node metastasis, advanced stage, and grade of tumor (P<0.05). A significant correlation between adiponectin receptor and CRC was observed concerning age, stage, lymph node metastasis, distant metastasis and grade of tumor. CONCLUSION: Positive expression of leptin and negative expression of adiponectin receptors in CRC helps to predict the risk of metastasis.


Subject(s)
Biomarkers, Tumor , Colorectal Neoplasms , Immunohistochemistry , Leptin , Neoplasm Staging , Receptors, Adiponectin , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Cross-Sectional Studies , Prospective Studies , Male , Female , Middle Aged , Leptin/metabolism , Leptin/analysis , Receptors, Adiponectin/analysis , Receptors, Adiponectin/metabolism , Aged , Biomarkers, Tumor/metabolism , Adult , Receptors, Leptin/metabolism , Receptors, Leptin/analysis , Neoplasm Grading , Lymphatic Metastasis
2.
Neoplasma ; 71(2): 164-179, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38766857

ABSTRACT

Obesity is a major public health concern because it increases the risk of several diseases, including cancer. Crosstalk between obesity and cancer seems to be very complex, and the interaction between adipocytes and cancer cells leads to changes in adipocytes' function and their paracrine signaling, promoting a microenvironment that supports tumor growth. Carbonic anhydrase IX (CA IX) is a tumor-associated enzyme that not only participates in pH regulation but also facilitates metabolic reprogramming and supports the migration, invasion, and metastasis of cancer cells. In addition, CA IX expression, predominantly regulated via hypoxia-inducible factor (HIF-1), serves as a surrogate marker of hypoxia. In this study, we investigated the impact of adipocytes and adipocyte-derived factors on the expression of CA IX in colon and breast cancer cells. We observed increased expression of CA9 mRNA as well as CA IX protein in the presence of adipocytes and adipocyte-derived conditioned medium. Moreover, we confirmed that adipocytes affect the hypoxia signaling pathway and that the increased CA IX expression results from adipocyte-mediated induction of HIF-1α. Furthermore, we demonstrated that adipocyte-mediated upregulation of CA IX leads to increased migration and decreased adhesion of colon cancer cells. Finally, we brought experimental evidence that adipocytes, and more specifically leptin, upregulate CA IX expression in cancer cells and consequently promote tumor progression.


Subject(s)
Adipocytes , Antigens, Neoplasm , Breast Neoplasms , Carbonic Anhydrase IX , Cell Movement , Colonic Neoplasms , Hypoxia-Inducible Factor 1, alpha Subunit , Leptin , Paracrine Communication , Humans , Carbonic Anhydrase IX/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Adipocytes/metabolism , Adipocytes/pathology , Antigens, Neoplasm/metabolism , Female , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Leptin/metabolism , Cell Line, Tumor , Animals , Obesity/metabolism , Culture Media, Conditioned/pharmacology , Tumor Microenvironment , Gene Expression Regulation, Neoplastic , Mice
3.
Nature ; 629(8012): 652-659, 2024 May.
Article in English | MEDLINE | ID: mdl-38693261

ABSTRACT

The gut microbiota operates at the interface of host-environment interactions to influence human homoeostasis and metabolic networks1-4. Environmental factors that unbalance gut microbial ecosystems can therefore shape physiological and disease-associated responses across somatic tissues5-9. However, the systemic impact of the gut microbiome on the germline-and consequently on the F1 offspring it gives rise to-is unexplored10. Here we show that the gut microbiota act as a key interface between paternal preconception environment and intergenerational health in mice. Perturbations to the gut microbiota of prospective fathers increase the probability of their offspring presenting with low birth weight, severe growth restriction and premature mortality. Transmission of disease risk occurs via the germline and is provoked by pervasive gut microbiome perturbations, including non-absorbable antibiotics or osmotic laxatives, but is rescued by restoring the paternal microbiota before conception. This effect is linked with a dynamic response to induced dysbiosis in the male reproductive system, including impaired leptin signalling, altered testicular metabolite profiles and remapped small RNA payloads in sperm. As a result, dysbiotic fathers trigger an elevated risk of in utero placental insufficiency, revealing a placental origin of mammalian intergenerational effects. Our study defines a regulatory 'gut-germline axis' in males, which is sensitive to environmental exposures and programmes offspring fitness through impacting placenta function.


Subject(s)
Dysbiosis , Fathers , Gastrointestinal Microbiome , Male , Animals , Female , Mice , Pregnancy , Dysbiosis/microbiology , Spermatozoa/metabolism , Testis/metabolism , Testis/microbiology , Genetic Fitness , Leptin/metabolism , Mice, Inbred C57BL , Placenta/microbiology , Placenta/metabolism
4.
PLoS One ; 19(5): e0292997, 2024.
Article in English | MEDLINE | ID: mdl-38728264

ABSTRACT

BACKGROUND: Current research suggests that energy transfer through human milk influences infant nutritional development and initiates metabolic programming, influencing eating patterns into adulthood. To date, this research has predominantly been conducted among women in high income settings and/or among undernourished women. We will investigate the relationship between maternal body composition, metabolic hormones in human milk, and infant satiety to explore mechanisms of developmental satiety programming and implications for early infant growth and body composition in Samoans; a population at high risk and prevalence for overweight and obesity. Our aims are (1) to examine how maternal body composition influences metabolic hormone transfer from mother to infant through human milk, and (2) to examine the influences of maternal metabolic hormone transfer and infant feeding patterns on early infant growth and satiety. METHODS: We will examine temporal changes in hormone transfers to infants through human milk in a prospective longitudinal cohort of n = 80 Samoan mother-infant dyads. Data will be collected at three time points (1, 3, & 4 months postpartum). At each study visit we will collect human milk and fingerpick blood samples from breastfeeding mother-infant dyads to measure the hormones leptin, ghrelin, and adiponectin. Additionally, we will obtain body composition measurements from the dyad, observe breastfeeding behavior, conduct semi-structured interviews, and use questionnaires to document infant hunger and feeding cues and satiety responsiveness. Descriptive statistics, univariate and multivariate analyses will be conducted to address each aim. DISCUSSION: This research is designed to advance our understanding of variation in the developmental programming of satiety and implications for early infant growth and body composition. The use of a prospective longitudinal cohort alongside data collection that utilizes a mixed methods approach will allow us to capture a more accurate representation on both biological and cultural variables at play in a population at high risk of overweight and obesity.


Subject(s)
Body Composition , Milk, Human , Humans , Milk, Human/metabolism , Milk, Human/chemistry , Female , Infant , Prospective Studies , Longitudinal Studies , Leptin/blood , Leptin/metabolism , Adiponectin/blood , Adiponectin/metabolism , Adult , Ghrelin/blood , Ghrelin/metabolism , Child Development/physiology , Male , Breast Feeding , Infant Nutritional Physiological Phenomena , Satiation/physiology , Mothers
5.
Int J Mol Sci ; 25(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38732183

ABSTRACT

The impact of microplastics (MPs) on the metabolic functions of the liver is currently unclear and not completely understood. To investigate the effects of the administration of MPs on the hepatic metabolism of normal and obese mice, alterations in the lipid, glucose (Glu), and amino acid regulation pathways were analyzed in the liver and adipose tissues of C57BL/6Korl (wild type, WT) or C57BL/6-Lepem1hwl/Korl mice (leptin knockout, Lep KO) orally administered polystyrene (PS) MPs for 9 weeks. Significant alterations in the lipid accumulation, adipogenesis, lipogenesis, and lipolysis pathways were detected in the liver tissue of MP-treated WT and Lep KO mice compared to the vehicle-treated group. These alterations in their liver tissues were accompanied by an upregulation of the serum lipid profile, as well as alterations in the adipogenesis, lipogenesis, and lipolysis pathways in the adipose tissues of MP-treated WT and Lep KO mice. Specifically, the level of leptin was increased in the adipose tissues of MP-treated WT mice without any change in their food intake. Also, MP-induced disruptions in the glycogenolysis, Glu transporter type 4 (GLUT4)-5' AMP-activated protein kinase (AMPK) signaling pathway, levels of lipid intermediates, and the insulin resistance of the liver tissues of WT and Lep KO mice were observed. Furthermore, the levels of seven endogenous metabolites were remarkably changed in the serum of WT and Lep KO mice after MP administrations. Finally, the impact of the MP administration observed in both types of mice was further verified in differentiated 3T3-L1 adipocytes and HepG2 cells. Thus, these results suggest that the oral administration of MPs for 9 weeks may be associated with the disruption of lipid, Glu, and amino acid metabolism in the liver tissue of obese WT and Lep KO mice.


Subject(s)
Amino Acids , Glucose , Lipid Metabolism , Liver , Mice, Inbred C57BL , Mice, Knockout , Microplastics , Polystyrenes , Animals , Liver/metabolism , Liver/drug effects , Mice , Glucose/metabolism , Lipid Metabolism/drug effects , Amino Acids/metabolism , Administration, Oral , Leptin/metabolism , Adipose Tissue/metabolism , Adipose Tissue/drug effects , Adipogenesis/drug effects , Male , Lipogenesis/drug effects , Obesity/metabolism , Obesity/etiology , Obesity/genetics , Humans , Lipolysis/drug effects
6.
Sci Rep ; 14(1): 10206, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702334

ABSTRACT

Cardiovascular function and adipose metabolism were markedly influenced under high altitudes. However, the interplay between adipokines and heart under hypoxia remains to be elucidated. We aim to explore alterations of adipokines and underlying mechanisms in regulating cardiac function under high altitudes. We investigated the cardiopulmonary function and five adipokines in Antarctic expeditioners at Kunlun Station (4,087 m) for 20 days and established rats exposed to hypobaric hypoxia (5,000 m), simulating Kunlun Station. Antarctic expeditioners exhibited elevated heart rate, blood pressure, systemic vascular resistance, and decreased cardiac pumping function. Plasma creatine phosphokinase-MB (CK-MB) and platelet-endothelial cell adhesion molecule-1 (sPecam-1) increased, and leptin, resistin, and lipocalin-2 decreased. Plasma leptin significantly correlated with altered cardiac function indicators. Additionally, hypoxic rats manifested impaired left ventricular systolic and diastolic function, elevated plasma CK-MB and sPecam-1, and decreased plasma leptin. Chronic hypoxia for 14 days led to increased myocyte hypertrophy, fibrosis, apoptosis, and mitochondrial dysfunction, coupled with reduced protein levels of leptin signaling pathways in myocardial tissues. Cardiac transcriptome analysis revealed leptin was associated with downregulated genes involved in rhythm, Na+/K+ transport, and cell skeleton. In conclusion, chronic hypoxia significantly reduced leptin signaling pathways in cardiac tissues along with significant pathological changes, thus highlighting the pivotal role of leptin in regulation of cardiac function under high altitudes.


Subject(s)
Altitude , Hypoxia , Leptin , Signal Transduction , Leptin/metabolism , Leptin/blood , Animals , Rats , Male , Hypoxia/metabolism , Hypoxia/physiopathology , Humans , Altitude Sickness/metabolism , Altitude Sickness/physiopathology , Myocardium/metabolism , Myocardium/pathology , Adult , Heart/physiopathology
7.
Cell Rep Med ; 5(5): 101559, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38744275

ABSTRACT

Dysfunction of the sympathetic nervous system and increased epicardial adipose tissue (EAT) have been independently associated with the occurrence of cardiac arrhythmia. However, their exact roles in triggering arrhythmia remain elusive. Here, using an in vitro coculture system with sympathetic neurons, cardiomyocytes, and adipocytes, we show that adipocyte-derived leptin activates sympathetic neurons and increases the release of neuropeptide Y (NPY), which in turn triggers arrhythmia in cardiomyocytes by interacting with the Y1 receptor (Y1R) and subsequently enhancing the activity of the Na+/Ca2+ exchanger (NCX) and calcium/calmodulin-dependent protein kinase II (CaMKII). The arrhythmic phenotype can be partially blocked by a leptin neutralizing antibody or an inhibitor of Y1R, NCX, or CaMKII. Moreover, increased EAT thickness and leptin/NPY blood levels are detected in atrial fibrillation patients compared with the control group. Our study provides robust evidence that the adipose-neural axis contributes to arrhythmogenesis and represents a potential target for treating arrhythmia.


Subject(s)
Adipocytes , Adipose Tissue , Arrhythmias, Cardiac , Leptin , Myocytes, Cardiac , Neuropeptide Y , Pericardium , Humans , Animals , Pericardium/metabolism , Pericardium/pathology , Adipose Tissue/metabolism , Adipose Tissue/pathology , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Neuropeptide Y/metabolism , Leptin/metabolism , Adipocytes/metabolism , Male , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Neurons/metabolism , Neurons/pathology , Sodium-Calcium Exchanger/metabolism , Female , Receptors, Neuropeptide Y/metabolism , Middle Aged , Atrial Fibrillation/metabolism , Atrial Fibrillation/physiopathology , Atrial Fibrillation/pathology , Sympathetic Nervous System/metabolism , Mice , Epicardial Adipose Tissue
8.
Int J Mol Sci ; 25(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791099

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by progressive loss of motor neurons. Emerging evidence suggests a potential link between metabolic dysregulation and ALS pathogenesis. This study aimed to investigate the relationship between metabolic hormones and disease progression in ALS patients. A cross-sectional study was conducted involving 44 ALS patients recruited from a tertiary care center. Serum levels of insulin, total amylin, C-peptide, active ghrelin, GIP (gastric inhibitory peptide), GLP-1 active (glucagon-like peptide-1), glucagon, PYY (peptide YY), PP (pancreatic polypeptide), leptin, interleukin-6, MCP-1 (monocyte chemoattractant protein-1), and TNFα (tumor necrosis factor alpha) were measured, and correlations with ALSFRS-R, evolution scores, and biomarkers were analyzed using Spearman correlation coefficients. Subgroup analyses based on ALS subtypes, progression pattern of disease, and disease progression rate patterns were performed. Significant correlations were observed between metabolic hormones and ALS evolution scores. Insulin and amylin exhibited strong correlations with disease progression and clinical functional outcomes, with insulin showing particularly robust associations. Other hormones such as C-peptide, leptin, and GLP-1 also showed correlations with ALS progression and functional status. Subgroup analyses revealed differences in hormone levels based on sex and disease evolution patterns, with male patients showing higher amylin and glucagon levels. ALS patients with slower disease progression exhibited elevated levels of amylin and insulin. Our findings suggest a potential role for metabolic hormones in modulating ALS progression and functional outcomes. Further research is needed to elucidate the underlying mechanisms and explore the therapeutic implications of targeting metabolic pathways in ALS management.


Subject(s)
Amyotrophic Lateral Sclerosis , Biomarkers , Insulin , Islet Amyloid Polypeptide , Humans , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/blood , Male , Female , Middle Aged , Aged , Islet Amyloid Polypeptide/metabolism , Islet Amyloid Polypeptide/blood , Cross-Sectional Studies , Biomarkers/blood , Insulin/metabolism , Insulin/blood , Disease Progression , Leptin/blood , Leptin/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 1/blood , C-Peptide/blood , C-Peptide/metabolism , Ghrelin/metabolism , Ghrelin/blood , Glucagon/blood , Glucagon/metabolism , Adult , Hormones/metabolism , Hormones/blood
9.
Int J Mol Sci ; 25(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38791252

ABSTRACT

Leptin is an obesity-related hormone that plays an important role in breast cancer progression. Vasculogenic mimicry (VM) refers to the formation of vascular channels lined by tumor cells. This study aimed to investigate the relationship between leptin and VM in human breast cancer cells. VM was measured by a 3D culture assay. Signal transducers and activators of transcription 3 (STAT3) signaling, aquaporin-1 (AQP1), and the expression of VM-related proteins, including vascular endothelial cadherin (VE-cadherin), twist, matrix metalloproteinase-2 (MMP-2), and laminin subunit 5 gamma-2 (LAMC2), were examined by Western blot. AQP1 mRNA was analyzed by a reverse transcriptase-polymerase chain reaction (RT-PCR). Leptin increased VM and upregulated phospho-STAT3, VE-cadherin, twist, MMP-2, and LAMC2. These effects were inhibited by the leptin receptor-blocking peptide, Ob-R BP, and the STAT3 inhibitor, AG490. A positive correlation between leptin and AQP1 mRNA was observed and was confirmed by RT-PCR. Leptin upregulated AQP1 expression, which was blocked by Ob-R BP and AG490. AQP1 overexpression increased VM and the expression of VM-related proteins. AQP1 silencing inhibited leptin-induced VM and the expression of VM-related proteins. Thus, these results showed that leptin facilitates VM in breast cancer cells via the Ob-R/STAT3 pathway and that AQP1 is a key mediator in leptin-induced VM.


Subject(s)
Aquaporin 1 , Breast Neoplasms , Leptin , Neovascularization, Pathologic , STAT3 Transcription Factor , Humans , Leptin/metabolism , Leptin/pharmacology , Leptin/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Aquaporin 1/metabolism , Aquaporin 1/genetics , Female , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Signal Transduction , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Cadherins/metabolism , Cadherins/genetics , MCF-7 Cells , Laminin/metabolism , Antigens, CD
10.
Physiol Behav ; 281: 114580, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38714271

ABSTRACT

Environmental factors in early life have been demonstrated to increase the risk of neurodevelopmental disorders in offspring, especially the deficiency of the cognitive ability. Leptin has emerged as a key hormone that conveys information on energy stores, but there is growing appreciation that leptin signaling may also play an important role in neurodevelopment. The present study aimed to investigate whether maternal HFD exposure impairs the offspring learning and memory through the programming of central leptin system. We observed that hippocampus-dependent learning and memory were impaired in male but not female offspring from HFD-fed maternal ancestors (C57BL/6 mice), as assessed by novel object recognition and Morris water maze tests. Moreover, the chromatin immunoprecipitation results revealed the maternal HFD consumption led to the increasement in the binding of the histone marker H3K9me3 in male offspring, which mediates gene silencing in the leptin receptor promoter region. Furthermore, there was an increase in the expression of the histone methylase SUV39H1 in male but not female offspring, which regulates H3K9me3. Additionally, it has been observed that IL-6 and IL-1 also could lead to similar alternations when acting on cultured hippocampal neurons in vitro. Taken together, our data suggest that maternal HFD consumption influences male offspring hippocampal cognitive performance in a sex-specific manner, and central leptin signaling may serve as the cross-talk between maternal diet and cognitive impairment in offspring.


Subject(s)
Diet, High-Fat , Hippocampus , Leptin , Mice, Inbred C57BL , Prenatal Exposure Delayed Effects , Signal Transduction , Spatial Learning , Animals , Female , Male , Hippocampus/metabolism , Leptin/metabolism , Diet, High-Fat/adverse effects , Mice , Spatial Learning/physiology , Prenatal Exposure Delayed Effects/metabolism , Pregnancy , Signal Transduction/physiology , Sex Characteristics , Neurons/metabolism , Histones/metabolism , Receptors, Leptin/metabolism , Receptors, Leptin/genetics
11.
Nat Commun ; 15(1): 3769, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704393

ABSTRACT

Excessive bone marrow adipocytes (BMAds) accumulation often occurs under diverse pathophysiological conditions associated with bone deterioration. Estrogen-related receptor α (ESRRA) is a key regulator responding to metabolic stress. Here, we show that adipocyte-specific ESRRA deficiency preserves osteogenesis and vascular formation in adipocyte-rich bone marrow upon estrogen deficiency or obesity. Mechanistically, adipocyte ESRRA interferes with E2/ESR1 signaling resulting in transcriptional repression of secreted phosphoprotein 1 (Spp1); yet positively modulates leptin expression by binding to its promoter. ESRRA abrogation results in enhanced SPP1 and decreased leptin secretion from both visceral adipocytes and BMAds, concertedly dictating bone marrow stromal stem cell fate commitment and restoring type H vessel formation, constituting a feed-forward loop for bone formation. Pharmacological inhibition of ESRRA protects obese mice against bone loss and high marrow adiposity. Thus, our findings highlight a therapeutic approach via targeting adipocyte ESRRA to preserve bone formation especially in detrimental adipocyte-rich bone milieu.


Subject(s)
Adipocytes , Bone Marrow , Leptin , Osteogenesis , Receptors, Estrogen , Animals , Osteogenesis/genetics , Adipocytes/metabolism , Adipocytes/cytology , Mice , Leptin/metabolism , Leptin/genetics , Bone Marrow/metabolism , Receptors, Estrogen/metabolism , Receptors, Estrogen/genetics , Mesenchymal Stem Cells/metabolism , Obesity/metabolism , Obesity/pathology , Obesity/genetics , ERRalpha Estrogen-Related Receptor , Estrogen Receptor alpha/metabolism , Estrogen Receptor alpha/genetics , Female , Male , Mice, Inbred C57BL , Signal Transduction , Bone Marrow Cells/metabolism , Mice, Knockout
12.
Aging (Albany NY) ; 16(9): 7870-7888, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38709288

ABSTRACT

BMP9 has demonstrated significant osteogenic potential. In this study, we investigated the effect of Leptin on BMP9-induced osteogenic differentiation. Firstly, we found Leptin was decreased during BMP9-induced osteogenic differentiation and serum Leptin concentrations were increased in the ovariectomized (OVX) rats. Both in vitro and in vivo, exogenous expression of Leptin inhibited the process of osteogenic differentiation, whereas silencing Leptin enhanced. Exogenous Leptin could increase the malonylation of ß-catenin. However, BMP9 could increase the level of Sirt5 and subsequently decrease the malonylation of ß-catenin; the BMP9-induced osteogenic differentiation was inhibited by silencing Sirt5. These data suggested that Leptin can inhibit the BMP9-induced osteogenic differentiation, which may be mediated through reducing the activity of Wnt/ß-catenin signalling via down-regulating Sirt5 to increase the malonylation level of ß-catenin partly.


Subject(s)
Down-Regulation , Growth Differentiation Factor 2 , Leptin , Osteogenesis , Sirtuins , Wnt Signaling Pathway , beta Catenin , Animals , beta Catenin/metabolism , beta Catenin/genetics , Sirtuins/metabolism , Sirtuins/genetics , Female , Rats , Osteogenesis/drug effects , Leptin/metabolism , Leptin/pharmacology , Growth Differentiation Factor 2/metabolism , Wnt Signaling Pathway/drug effects , Ovariectomy , Cell Differentiation/drug effects , Rats, Sprague-Dawley
13.
Nutrients ; 16(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38794776

ABSTRACT

BACKGROUND: Functional Gastrointestinal Disorders (FGIDs) present a higher prevalence in individuals with Neurodevelopmental Disorders (NDDs). The Stress System and the Gut-Brain axis (GBA) may mediate these relations. We aimed to assess the prevalence and profile of FGIDs in a clinical sample of children with Autism Spectrum Disorder (ASD) and Attention Deficit/Hyperactivity Disorder (ADHD) compared to typically developing children (TD) as well as to investigate possible relations between stress-related biomarkers and internalizing/externalizing problems in children with NDDS. METHODS: In total, 120 children, aged between 4 and 12 years old, formed three groups (N = 40, each): ADHD, ASD and TD. Salivary cortisol, hair cortisol and serum leptin were measured. RESULTS: The ASD group had more FGID problems than the TD group (p = 0.001). The ADHD and ASD groups had higher total internalizing/externalizing problems than the TD group (p < 0.0001, p < 0.0001, p = 0.005, respectively). Children with FGIDs showed more total, internalizing and externalizing problems compared to children without FGIDs (p < 0.0001, p < 0.0001, p = 0.041, respectively). The ADHD group showed lower AUCg values (p < 0.0001), while the hair cortisol was higher for the TD group (p < 0.0001). CONCLUSION: In conclusion, children with NDDs had more FGID symptoms and present higher internalizing and externalizing problems. Children with ADHD and FGIDs had more internalizing problems compared to those without FGIDs. No differences in stress-related biomarkers were shown to differentiate children with NDDs with and without FGIDs. Future prospective studies including a greater number of children may elucidate the biological pathways linking these comorbidities.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Autism Spectrum Disorder , Gastrointestinal Diseases , Hair , Hydrocortisone , Leptin , Saliva , Humans , Child , Hydrocortisone/blood , Hydrocortisone/analysis , Hydrocortisone/metabolism , Hair/chemistry , Attention Deficit Disorder with Hyperactivity/blood , Leptin/blood , Leptin/analysis , Leptin/metabolism , Female , Male , Saliva/chemistry , Child, Preschool , Gastrointestinal Diseases/blood , Gastrointestinal Diseases/psychology , Gastrointestinal Diseases/epidemiology , Autism Spectrum Disorder/blood , Autism Spectrum Disorder/psychology , Autism Spectrum Disorder/metabolism , Biomarkers/blood , Prevalence
15.
Sci Rep ; 14(1): 11366, 2024 05 18.
Article in English | MEDLINE | ID: mdl-38762543

ABSTRACT

Placental leptin may impact foetal development. Maternal overnutrition has been linked to increased plasma leptin levels and adverse effects on offspring, whereas choline, an essential nutrient for foetal development, has shown promise in mitigating some negative impacts of maternal obesity. Here, we investigate whether a maternal obesogenic diet alters foetal growth and leptin levels in the foetal stomach, amniotic fluid (AF), and placenta in late gestation and explore the potential modulating effects of maternal choline supplementation. Female rats were fed a control (CD) or a western diet (WD) four weeks before mating and during gestation, half of them supplemented with choline (pregnancy days 11-17). Leptin levels (in foetal stomach, AF, and placenta) and leptin gene expression (in placenta) were assessed on gestation days 20 and 21. At day 20, maternal WD feeding resulted in greater leptin levels in foetal stomach, placenta, and AF. The increased AF leptin levels were associated with a premature increase in foetal weight in both sexes. Maternal choline supplementation partially prevented these alterations, but effects differed in CD dams, causing increased AF leptin levels and greater weight in male foetuses at day 20. Maternal choline supplementation effectively mitigates premature foetal overgrowth induced by an obesogenic diet, potentially linked to increased AF leptin levels. Further research is needed to explore the sex-specific effects.


Subject(s)
Amniotic Fluid , Choline , Dietary Supplements , Leptin , Animals , Female , Leptin/blood , Leptin/metabolism , Pregnancy , Choline/administration & dosage , Amniotic Fluid/metabolism , Rats , Male , Placenta/metabolism , Placenta/drug effects , Fetal Development/drug effects , Obesity/metabolism , Obesity/etiology , Fetal Weight/drug effects , Rats, Sprague-Dawley , Diet, Western/adverse effects
16.
Biomolecules ; 14(4)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38672473

ABSTRACT

There is a high demand for agonist biomolecules such as cytokine surrogates in both biological and medicinal research fields. These are typically sourced through natural ligand engineering or affinity-based screening, followed by individual functional validation. However, efficient screening methods for identifying rare hits within immense libraries are very limited. In this research article, we introduce a phenotypic screening method utilizing biological receptor activation-dependent cell survival (BRADS). This method offers a high-throughput, low-background, and cost-effective approach that can be implemented in virtually any biochemical laboratory setting. As a proof-of-concept, we successfully identified a surrogate for human leptin following a two-week cell culture process, without the need for specialized high-throughput equipment or reagents. This surrogate effectively emulates the activity of native human leptin in cell validation assays. Our findings not only underscore the effectiveness of BRADS but also suggest its potential applicability to a broad range of biological receptors, including Notch and GPCRs.


Subject(s)
High-Throughput Screening Assays , Leptin , Receptors, Leptin , Humans , Cell Survival/drug effects , HEK293 Cells , High-Throughput Screening Assays/methods , Leptin/analogs & derivatives , Leptin/metabolism , Ligands , Phenotype , Receptors, Leptin/agonists , Receptors, Leptin/metabolism
17.
Cytokine ; 179: 156614, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38621331

ABSTRACT

Emerging evidence suggests an association between chronic pain and elevated body fat. We sought to determine if individuals with higher body fat, measured by hip circumference (HC) and waist circumference (WC), are at risk for chronic pain when they demonstrate higher expression of inflammatory markers. We investigated the incidence and severity of pain in patients with varying WC/HC and inflammatory markers (C-Reactive Protein, IL-6, leptin) using the NIH-sponsored All of Us Database. For each inflammatory marker and sex, participants were divided into four groups based on combinations of normal/high marker levels and small/large WC/HC. We used statistical analysis to compare WC/HC and pain severity (mean NRS pain score) between groups of the same sex. In females, but not males, combinations of elevated CRP with large WC/HC exerted additive effects on the incidence of chronic pain (p < 0.01) and severe pain (p < 0.001), as well as on the severity of pain evaluated by the mean NRS pain score (p < 0.01). This relationship held true for females with high IL-6 or leptin and large WC or HC (p < 0.001 for chronic pain and severe pain incidence, and p < 0.05 for pain severity). Neither IL-6 nor leptin showed any significant impact on pain in males. Obesity status and CRP exert additive prognostic effects for chronic pain in females, but not in males. The concomitant evaluation of other inflammatory factors, such as IL-6 or leptin in females, may further augment the prediction of chronic pain. PERSPECTIVE: This article investigates the relationship between chronic pain, obesity, and inflammatory markers. It could help elucidating sex difference in pain mechanisms, as well as the risk factors for chronic pain, potentially improving patient diagnosis, follow-up and treatment.


Subject(s)
Adipose Tissue , C-Reactive Protein , Chronic Pain , Inflammation , Interleukin-6 , Leptin , Humans , Male , Female , Cross-Sectional Studies , Adipose Tissue/metabolism , Middle Aged , Leptin/blood , Leptin/metabolism , Interleukin-6/blood , Interleukin-6/metabolism , C-Reactive Protein/metabolism , Waist Circumference , Adult , Biomarkers/blood , Biomarkers/metabolism , United States/epidemiology , Sex Characteristics , Sex Factors , Aged , Obesity/complications
18.
J Agric Food Chem ; 72(18): 10406-10419, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38659208

ABSTRACT

The impact of leptin resistance on intestinal mucosal barrier integrity, appetite regulation, and hepatic lipid metabolism through the microbiota-gut-brain-liver axis has yet to be determined. Water extract of Phyllanthus emblica L. fruit (WEPE) and its bioactive compound gallic acid (GA) effectively alleviated methylglyoxal (MG)-triggered leptin resistance in vitro. Therefore, this study investigated how WEPE and GA intervention relieve leptin resistance-associated dysfunction in the intestinal mucosa, appetite, and lipid accumulation through the microbiota-gut-brain-liver axis in high-fat diet (HFD)-fed rats. The results showed that WEPE and GA significantly reduced tissues (jejunum, brain, and liver) MG-evoked leptin resistance, malondialdehyde (MDA), proinflammatory cytokines, SOCS3, orexigenic neuropeptides, and lipid accumulation through increasing leptin receptor, tight junction proteins, antimicrobial peptides, anorexigenic neuropeptides, excretion of fecal triglyceride (TG), and short-chain fatty acids (SCFAs) via a positive correlation with the Allobaculum and Bifidobacterium microbiota. These novel findings suggest that WEPE holds the potential as a functional food ingredient for alleviating obesity and its complications.


Subject(s)
Brain , Diet, High-Fat , Fruit , Gastrointestinal Microbiome , Homeostasis , Leptin , Liver , Obesity , Phyllanthus emblica , Plant Extracts , Rats, Sprague-Dawley , Animals , Gastrointestinal Microbiome/drug effects , Rats , Male , Obesity/metabolism , Obesity/drug therapy , Obesity/microbiology , Fruit/chemistry , Liver/metabolism , Liver/drug effects , Diet, High-Fat/adverse effects , Leptin/metabolism , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Phyllanthus emblica/chemistry , Brain/metabolism , Brain/drug effects , Homeostasis/drug effects , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Appetite/drug effects , Brain-Gut Axis/drug effects , Bacteria/classification , Bacteria/metabolism , Bacteria/drug effects , Bacteria/genetics , Bacteria/isolation & purification
19.
Biomed Mater ; 19(4)2024 May 20.
Article in English | MEDLINE | ID: mdl-38688311

ABSTRACT

This study investigated the effectiveness of bone regeneration upon the application of leptin and osteolectin to a three-dimensional (3D) printed poly(ϵ-caprolactone) (PCL) scaffold. A fused deposition modeling 3D bioprinter was used to fabricate scaffolds with a diameter of 4.5 mm, a height of 0.5 mm, and a pore size of 420-520 nm using PCL (molecular weight: 43 000). After amination of the scaffold surface for leptin and osteolectin adhesion, the experimental groups were divided into the PCL scaffold (control), the aminated PCL (PCL/Amine) scaffold, the leptin-coated PCL (PCL/Leptin) scaffold, and the osteolectin-coated PCL (PCL/Osteo) scaffold. Next, the water-soluble tetrazolium salt-1 (WST-1) assay was used to assess cell viability. All groups exhibited cell viability rates of >100%. Female 7-week-old Sprague-Dawley rats were used forin vivoexperiments. Calvarial defects were introduced on the rats' skulls using a 5.5 mm trephine bur. The rats were divided into the PCL (control), PCL/Leptin, and PCL/Osteo scaffold groups. The scaffolds were then inserted into the calvarial defect areas, and the rats were sacrificed after 8-weeks to analyze the defect area. Micro-CT analysis indicated that the leptin- and osteolectin-coated scaffolds exhibited significantly higher bone regeneration. Histological analysis revealed new bone and blood vessels in the calvarial defect area. These findings indicate that the 3D-printed PCL scaffold allows for patient-customized fabrication as well as the easy application of proteins like leptin and osteolectin. Moreover, leptin and osteolectin did not show cytotoxicity and exhibited higher bone regeneration potential than the existing scaffold.


Subject(s)
Bone Regeneration , Leptin , Polyesters , Printing, Three-Dimensional , Rats, Sprague-Dawley , Tissue Scaffolds , Leptin/metabolism , Animals , Tissue Scaffolds/chemistry , Bone Regeneration/drug effects , Rats , Polyesters/chemistry , Female , Tissue Engineering/methods , Cell Survival/drug effects , Skull/drug effects , Humans , Osteogenesis/drug effects , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Materials Testing
20.
Life Sci ; 346: 122649, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38626868

ABSTRACT

AIMS: Leptin irresponsiveness, which is often associated with obesity, can have significant impacts on the hypothalamic proteome of individuals, including those who are lean. While mounting evidence on leptin irresponsiveness has focused on obese individuals, understanding the early molecular and proteomic changes associated with deficient hypothalamic leptin signaling in lean individuals is essential for early intervention and prevention of metabolic disorders. Leptin receptor antagonists block the binding of leptin to its receptors, potentially reducing its effects and used in cases where excessive leptin activity might be harmful. MATERIALS AND METHODS: In this work, we blocked the central actions of leptin in lean male adult Wistar rat by chronically administering intracerebroventricularly the superactive leptin receptor antagonist (SLA) (D23L/L39A/D40A/F41A) and investigated its impact on the hypothalamic proteome using label-free sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS) for quantitative proteomics. KEY FINDINGS: Our results show an accumulation of proteins involved in mRNA processing, mRNA stability, and translation in the hypothalamus of SLA-treated rats. Conversely, hypothalamic leptin signaling deficiency reduces the representation of proteins implicated in energy metabolism, neural circuitry, and neurotransmitter release. SIGNIFICANCE: The alterations in the adult rat hypothalamic proteome contribute to dysregulate appetite, metabolism, and energy balance, which are key factors in the development and progression of obesity and related metabolic disorders. Additionally, using bioinformatic analysis, we identified a series of transcription factors that are potentially involved in the upstream regulatory mechanisms responsible for the observed signature.


Subject(s)
Hypothalamus , Leptin , Proteome , Proteomics , Rats, Wistar , Receptors, Leptin , Signal Transduction , Animals , Male , Leptin/metabolism , Receptors, Leptin/metabolism , Receptors, Leptin/genetics , Receptors, Leptin/deficiency , Hypothalamus/metabolism , Hypothalamus/drug effects , Rats , Signal Transduction/drug effects , Proteomics/methods , Proteome/metabolism , Obesity/metabolism , Energy Metabolism/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...